
Chapter 6

Volume Forms and
Determinants

6.1 Motivation

Consider the vector space V = R2 and let u,v ∈ R2, as shown in the figure
below:

u

v

We want to define a function !, which given two vectors u,v ∈ V , returns the
area of the parallelogram formed by those two vectors. Thus, we are looking
for a function ! ∶ V 2 → R, where V n denotes the space of n-tuples of vectors.

What are the properties we would like ! to satisfy? First, if one of the vectors
is multiplied by a scalar, the area should by magnified by the same scalar,
as depicted below, where v has been magnified by a factor of 2:
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u

v

u

2v

That is, for every u,v ∈ R2 and a ∈ R,
!(au,v) = a!(u,v),

and likewise,
!(u, av) = a!(u,v).

Note that if we require this property to hold for every a ∈ R we may obtain
negative areas; the notion we are looking for is that of a signed area (():
�0/&2/), which is negative or positive depending on the orientation ( �%/#/) of
the parallelogram. In the case of R2, !(u,v) whenever the shortest rotation
from u to v occurs inside the parallelogram (in the above figures the signed
area is negative).

The second property we expect ! to satisfy is that if we translate u along v
(and vice-versa v along u), then the area doesn’t change, as depicted below:

u

v

u
u + 0.5v

v

In other words, for every u,v ∈ R2 and a ∈ R,
!(u + av,v) = !(u,v) and !(u,v + au) = !(u,v).

As we will see, these two properties determine almost uniquely the area
function; there always remains a choice of “units”, which assigns an area to
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a reference shape. To understand why, just observe this sequence of trans-
formations, which do not change the area of the parallelogram:

u

v

6.2 Volume forms

Definition 6.1 Let V be an n-dimensional vector space over a field F. A

function

! ∶ V n → F
is called a volume form (�(51 ;*1";) on V if

(a) For every (v1, . . . ,vn) ∈ V n and for every i ≠ j,
!(v1, . . . ,vi + vj, . . . ,vn) = !(v1, . . . ,vn). (6.1)

(b) For every a1, . . . , an ∈ F,
!(a1 v1, . . . , a

n vn) = a1�an !(v1, . . . ,vn). (6.2)

Note that the function ! returning 0F for every (v1, . . . ,vn) ∈ V n satisfies
those conditions, i.e., it is a volume form. Such a volume form is called
degenerate ( �0&&1/).
The following theorem is the central one in this section:

Theorem 6.2 Let V be an n-dimensional vector space over a field F. For

every ordered basis B = (v1, . . . ,vn), there exists a unique volume form !

satisfying

!(v1, . . . ,vn) = 1F.



240 Chapter 6

We will not prove this theorem right away; for the time being, we will assume
that such volume forms exist and examine their properties.

Lemma 6.3 Let ! ∶ V n → F be a volume form on an n-dimensional vector

space V . Then, for all (v1, . . . ,vn) ∈ V n and all 1 ≤ i ≤ n,
!(v1, . . . ,vi−1,0V ,vi+1, . . . ,vn) = 0F.

Proof : This follows from Property (6.2) that

!(v1, . . . ,vi−1,0V ,vi+1, . . . ,vn) = !(v1, . . . ,vi−1,0Fvi,vi+1, . . . ,vn)= 0F !(v1, . . . ,vn)= 0F.
n

Lemma 6.4 Let ! ∶ V n → F be a volume form on an n-dimensional vector

space V . Then, for all i ≠ j and a ∈ F,
!(v1, . . . ,vi + avj, . . . ,vn) = !(v1, . . . ,vn).

Proof : If a = 0F then there is nothing to prove. Otherwise,

a!(v1, . . . ,vn) = !(v1, . . . ,vi, . . . , avj, . . . ,vn)= !(v1, . . . ,vi + avj, . . . , avj, . . . ,vn)= a!(v1, . . . ,vi + avj, . . . ,vj, . . . ,vn),
where the first and third equalities follow from (6.2) and the second equality
follows from (6.1). Dividing both sides by a, we obtain the required result.
n
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Corollary 6.5 Let ! ∶ V n → F be a volume form on an n-dimensional vector

space V . Then, for all a1, . . . , an ∈ F and 1 ≤ i ≤ n,
! �v1, . . . ,vi +�

j≠i
a
jvj, . . . ,vn� = !(v1, . . . ,vn).

Proof : This follows from (n − 1) applications of the previous lemma. n

Corollary 6.6 Let ! ∶ V n → F be a volume form on an n-dimensional vector

space V . If the sequence of vectors (v1, . . . ,vn) is linearly-dependent, then
!(v1, . . . ,vn) = 0F.

Proof : If the vectors are linearly-dependent, then one of the vectors, say vi,
can be written as a linear combination of all the others,

vi =�
j≠i

a
jvj.

Then,

!(v1, . . . ,vn) = !
�������
v1, . . . ,0V +�

j≠i
a
jvj

���������������������������������������������������������
i-th term

, . . . ,vn

�������
= ! (v1, . . . ,0V , . . . ,vn) = 0F.

n

6.3 Volume forms and elementary matrices

Both operations of multiplying one of the vectors by a scalar and adding to
one vector a multiple of another vector can be realized by multiplication by
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an elementary matrix. If we define the elementary matrices

(Dk

k
(a))j

i
=
�����������
0F i ≠ j
a i = j = k
1 i = j ≠ k,

(6.3)

Then, (v1, . . . ,vn)Dk

k
(a) = (v1, . . . , avk, . . . ,vn).

Similarly, if we define the elementary matrices

(T `

k
(a))j

i
=
�����������
1 i = j
a i = k, j = `
0F otherwise,

(6.4)

Then, (v1, . . . ,vn)T `

k
(a) = (v1, . . . ,vk + av`, . . . ,vn).

If follows that for every volume form !,

!((v1, . . . ,vn)Dk

k
(a)) = a!(v1, . . . ,vn), (6.5)

and
!((v1, . . . ,vn)T `

k
(a)) = !(v1, . . . ,vn). (6.6)

Example: Let V = R2 and let

B = ((1,2), (2,1)) and C = ((1,1), (1,−1))
be two ordered bases. We have seen that

((1,1), (1,−1)) = ((1,2), (2,1)) �1�3 −1
1�3 1

� .
You may verify that

�1�3 −1
1�3 1

� = �1 0
0 1�3� �1�3 0

0 1
� �1 0

1 1
� �1 0

0 6
� �1 −3

0 1
� ,

hence

!((1,1), (1,−1)) = ! �((1,2), (2,1)) �1�3 −1
1�3 1

�� = 1

3
⋅ 1
3
⋅ 6 ⋅ !((1,2), (2,1)).

Thus, the ratio between the volumes associated with these two bases is com-
pletely determined by the structure of the transition matrix between those
bases. The ratio 3�2 is a property of the transition matrix, which we will
identify below as its determinant. ▲▲▲
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6.4 Multilinearity and alternation

In this section we are going to examine volume forms from another perspec-
tive.

Definition 6.7 Let V be an n-dimensional vector space over F. A function

f ∶ V n → F is called multilinear (�;*9!1*-*)-&/) if for every (v1, . . . ,vn) ∈ V n,

w ∈ V and a ∈ F,
f(v1, . . . ,vi +w, . . . ,vn) = f(v1, . . . ,vn) + f(v1, . . . ,w, . . . ,vn),

and

f(v1, . . . , avi, . . . ,vn) = af(v1, . . . ,vn).
Example: Let `1, . . . , `n ∈ V ∨ be a sequence of linear forms, then the function
f ∶ V n → F defined by

f(v1, . . . ,vn) = `1(v1)�`n(vn)
is multilinear. ▲▲▲
Example: Let V = Fn

col
, then the function f ∶ V n → F defined by

f

���
�������
a1
1⋮

an
1

�������
, . . . ,

�������
a1
n⋮

an
n

�������
��� = a

1

1
a
2

2
. . . a

n

n

is multilinear. ▲▲▲
Definition 6.8 Let V be an n-dimensional vector space over F. A function

f ∶ V n → F is called alternating (�;*5&-*() if for every (v1, . . . ,vn) ∈ V n for

which vi = vj with i ≠ j,
f(v1, . . . ,vn) = 0.

Theorem 6.9 Let V be an n-dimensional vector space over F. Let f ∶ V n →
F. Then, f is a volume form if and only if it is multilinear and alternating.
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Proof : Suppose first that ! is a volume form. We need to show that it is
multilinear and alternating. We will show that it is linear in its first entry,
as we can repeat the same argument for all other entries. We need to show
that for every u,v,v2, . . . ,vn ∈ V ,

!(u + v,v2, . . . ,vn) = !(u,v2, . . . ,vn) + !(v,v2, . . . ,vn).
By Corollary 6.6, if the vectors v2, . . . ,vn are linearly-dependent, then both
sides of this equation are zero. Otherwise, let v1 be the completion of
v2, . . . ,vn into a basis for V , and write

u = a1v1 + ⋅ ⋅ ⋅ + anvn and v = b1v1 + ⋅ ⋅ ⋅ + bnvn.

By Properties (6.1),(6.2) of volume forms,

!(u,v2, . . . ,vn) = !(a1 v1,v2, . . . ,vn) = a1 !(v1,v2, . . . ,vn)
!(v,v2, . . . ,vn) = !(b1 v1,v2, . . . ,vn) = b1 !(v1,v2, . . . ,vn)
!(u + v,v2, . . . ,vn) = !((a1 + b1)v1,v2, . . . ,vn) = (a1 + b1)!(v1,v2, . . . ,vn),
which proves the additive property. The multiplicative property of multilin-
earity,

!(av1,v2, . . . ,vn) = a!(v1,v2, . . . ,vn)
is a particular case of (6.2).

The alternating property follows from the fact that if vi = vj for i ≠ j, then
!(v1, . . . ,vi, . . . ,vj, . . . ,vn) = !(v1, . . . ,vi − vj, . . . ,vj, . . . ,vn)= !(v1, . . . ,0V , . . . ,vj, . . . ,vn) = 0F,

where in the last step we used Lemma 6.3.

Conversely, suppose that ! is multilinear and alternating. Property (6.2) is
automatically satisfied. It only remains to prove that

!(v1, . . . ,vi, . . . ,vj, . . . ,vn) = !(v1, . . . ,vi + vj, . . . ,vj, . . . ,vn),
but this is immediate as, by multilinearity and alternation,

!(v1, . . . ,vi + vj, . . . ,vj, . . . ,vn) = !(v1, . . . ,vi, . . . ,vj, . . . ,vn)+ !(v1, . . . ,vj, . . . ,vj, . . . ,vn)= !(v1, . . . ,vi, . . . ,vj, . . . ,vn) + 0F.
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n

In practice, volume forms are more natural to think of geometrically, and al-
ternating multilinear functions are more convenient to think of algebraically.
We have just shown that they are the same.

Proposition 6.10 Let V be an n-dimensional vector space over F and let !

be a volume form on V . Then V is anti-symmetric, namely, for every i ≠ j,
!(v1, . . . ,vi, . . . ,vj, . . . ,vn) = −!(v1, . . . ,vj, . . . ,vi, . . . ,vn).

Proof : Consider

!(v1, . . . ,vi + vj, . . . ,vi + vj, . . . ,vn) = 0F,
which vanishes by the alternating property of the volume form. Using the
multilinearity, two of the terms vanish by the alternating property, remaining
with

!(v1, . . . ,vi, . . . ,vj, . . . ,vn) + !(v1, . . . ,vj, . . . ,vi, . . . ,vn) = 0F.
n

Example: Let dimF V = 2 and let

B = (v1,v2) and B∨ = (`1, `2)
be an ordered basis and its dual. Then, the function ! ∶ V 2 → F defined by

!(u,v) = `1(u)`2(v) − `1(v)`2(u)
is multilinear and alternating (check it!). In addition,

!(v1,v2) = `1(v1)`2(v2) − `1(v2)`2(v1) = 1F.
Note that we proved in fact Theorem 6.2 (the existence part) for n = 2.
Suppose now that

(u,v) = (v1,v2) �a b

c d
� ,
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namely,
u = av1 + cv2 and v = bv1 + dv2.

Then,
!(u,v) = ad − bc,

which should ring a bell. This is the what we called the determinant of the
matrix. ▲▲▲
In view of Theorem 6.9, we can replace Theorem 6.2 by the equivalent:

Theorem 6.11 Let V be an n-dimensional vector space over a field F. For
every ordered basis B = (v1, . . . ,vn), there exists a unique multilinear alter-

nating function ! ∶ V n → F satisfying

!(v1, . . . ,vn) = 1F.

Proof : The proof is by induction on n = dimF V . Take first n = 1 and let
B = (v1) be a basis for V . The linear form ! ∶ V → F satisfying !(v1) = 1 is
(mutli)linear, alternating (in an empty sense) and normalized. It is unique
as there exists a unique linear form that is normalized (the linear forms form
a 1-dimensional vector space. hence are all proportional to !).

Assume that the statement holds for dimF V = n − 1 and let dimF V = n. Let
B = (v1, . . . ,vn)

be a basis for V and define

L = Span{v1} and H = Span{v2, . . . ,vn}
be linear subspaces of V . We note that V = L ⊕ H, with dimFL = 1 and
dimFH = n−1. By the inductive assumption, there exists a unique multilinear
alternating function !H ∶Hn−1 → F satisfying

!H(v2, . . . ,vn) = 1F.
Denote by pL ∶ V → V and pH ∶ V → V the projections on L and H parallel
to H and L, respectively. Every vector u ∈ V has a unique decomposition

u = �(u)v1 + pH(u),
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where � ∶ L→ F is the function satisfying

pL(u) = �(u)v1.

Note also that we can think of pH as a linear transformation V → H. Both
functions � and pH are linear transformations (� is a linear form).

We now define a function ! ∶ V n → F as follows,

!(u1, . . . ,un) = n�
j=1
(−1)j+1�(uj)!H(pH(u1), . . . , �pH(uj), . . . , pH(un)),

where the “hat” over the j-th term means that this term has been omitted.
We now show that ! is a normalized, alternating multilinear function. Let’s
write it more explicitly.

!(u1, . . . ,un) = �(u1)!H(pH(u2), . . . , pH(un))− �(u2)!H(pH(u1), pH(u3), . . . , pH(un))+ �(u3)!H(pH(u1), pH(u2), pH(u4), . . . , pH(un))∓ . . .
+ (−1)n+1�(un)!H(pH(u1), pH(u2), . . . , pH(un−1)).

The function ! is multilinear: each of the terms in the sum is linear in each
of the uj’s, either because � is linear, or because pH is linear and !H is
multilinear. The function ! is also alternating. Suppose, for example, that
u1 = u2. In all of the summands but two, u1 and u2 are arguments of !H ,
which is alternating, hence these terms vanish. Remain two terms, which in
this case are

�(u1)!H(pH(u2), pH(u3), . . . , pH(un))− �(u2)!H(pH(u1), pH(u3), . . . , pH(un)) = 0F.
You may convince yourself that this would happen whenever ui = uj for i ≠ j.
As for the normalization, since �(vi) = 0F and pH(vi) = vi for all i ≥ 2,

!(v1, . . . ,vn) = �(v1)!H(pH(v2), . . . , pH(vn)) = 1F ⋅ 1F = 1F.
We have thus proved that ! is a volume form on V .

It remains to prove the uniqueness. Let ⌘ ∶ V n → F be a volume form on V

satisfying
⌘(v1, . . . ,vn) = 1F.
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Let (u1, . . . ,un) ∈ V n. If this sequence of vectors is linearly-dependent, then

⌘(u1, . . . ,un) = 0F = !(u1, . . . ,un).
Otherwise, (u1, . . . ,un) is a basis, and there exists an invertible matrix P ∈
GLn(F) such that (u1, . . . ,un) = (v1, . . . ,vn)P.
Such a P can be written as a product of elementary matrices of type Dk

k
(a)

and T `

k
(a). By (6.5) and (6.6),

!((v1, . . . ,vn)Dk

k
(a)) = a!(v1, . . . ,vn)= a

= a ⌘(v1, . . . ,vn)
= ⌘((v1, . . . ,vn)Dk

k
(a)),

and

!((v1, . . . ,vn)T `

k
(a)) = !(v1, . . . ,vn)= 1F= ⌘(v1, . . . ,vn)

= ⌘((v1, . . . ,vn)T `

k
(a)).

Proceeding inductively

!((v1, . . . ,vn)P ) = ⌘((v1, . . . ,vn)P ),
proving that ! = ⌘ for all entries (u1, . . . ,un). n

Exercises

(easy) 6.1 Let V be a vector space over F and let k ∈ N (not necessarily
the dimension on V ). We denote by Mult(k, V,F) the set of functions f ∶
V k → F that are multilinear (it is a subspace of Func(V k,F)). Show that
Mult(k, V,F) is a vector space over F.

(intermediate) 6.2 Let V be a three-dimensional vector space over a field
F. Let

B = (v1,v2,v3) and B∨ = (`1, `2, `3)
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be a basis for V and its dual. Consider the function f ∶ V 3 → F by

f(u,v,w) = `1(u)(`2(v)`3(w) − `3(v)`2(w))
− `2(u)(`1(v)`3(w) − `3(v)`1(w))
+ `3(u)(`1(v)`2(w) − `2(v)`1(w)).

Show that f is a normalized volume form on V .

(intermediate) 6.3 Let V be a four-dimensional vector space over a field
F. Let

B = (v1,v2,v3,v4) and B∨ = (`1, `2, `3, `4)
be a basis for V and its dual. Write using the dual basis a normalized volume
form on V .

6.5 Determinants

Let V be an n-dimensional vector space over a field F. Let B = (v1, . . . ,vn)
be an ordered basis and let ! be a volume form on V . By the definition of a
basis, every (u1, . . . ,un) ∈ V n has a unique representation as

(u1, . . . ,un) = (v1, . . . ,vn)A
for some matrix A ∈Mn(F). That is,

!(u1, . . . ,un) = !((v1, . . . ,vn)A).
The right-hand side only depends on the matrix A. Consider then the func-
tion

f(A) = !((v1, . . . ,vn)A)
!(v1, . . . ,vn) .

We note that it satisfies the following properties:

(a) If A = In, then f(A) = 1F.
(b) If (u1, . . . ,un) = (v1, . . . ,vn)A,

and A has two columns that are identical, say,

Coli(A) = Colj(A),
then ui = uj, hence !(u1, . . . ,un) = 0F. It follows that f(A) = 0F.



250 Chapter 6

(c) By the distributivity of matrix multiplication,

(v1, . . . ,vn)
���������

a1
1

. . . b1 + c1 . . . a1
n

a2
1

. . . b2 + c2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . bn + cn . . . an
n

���������
= (v1, . . . ,vn)

���������

a1
1

. . . b1 . . . a1
n

a2
1

. . . b2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . bn . . . an
n

���������
+ (v1, . . . ,vn)

���������

a1
1

. . . c1 . . . a1
n

a2
1

. . . c2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . cn . . . an
n

���������
,

where the b’s and c’s are in the i-th column. This is an equation
involving three elements of V n, which all have the same entries except
for the i-th entry, where the i-th entry on left-hand side is the sum of
the i-th entries on the right-hand side. By the multilinearity of volume
forms,

!

�����
(v1, . . . ,vn)

���������

a1
1

. . . b1 + c1 . . . a1
n

a2
1

. . . b2 + c2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . bn + cn . . . an
n

���������

�����
= !
�����
(v1, . . . ,vn)

���������

a1
1

. . . b1 . . . a1
n

a2
1

. . . b2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . bn . . . an
n

���������

�����

+ !
�����
(v1, . . . ,vn)

���������

a1
1

. . . c1 . . . a1
n

a2
1

. . . c2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . cn . . . an
n

���������

�����
.

Dividing both sides by !(v1, . . . ,vn) we obtain

f

�����

���������

a1
1

. . . b1 + c1 . . . a1
n

a2
1

. . . b2 + c2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . bn + cn . . . an
n

���������

�����
= f
�����

���������

a1
1

. . . b1 . . . a1
n

a2
1

. . . b2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . bn . . . an
n

���������

�����

+ f
�����

���������

a1
1

. . . c1 . . . a1
n

a2
1

. . . c2 . . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . cn . . . an
n

���������

�����
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(d) The n-tuple

(v1, . . . ,vn)
���������

a1
1

. . . c a1
i

. . . a1
n

a2
1

. . . c a2
i

. . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . c an
i

. . . an
n

���������
di↵ers from

(v1, . . . ,vn)
���������

a1
1

. . . a1
i

. . . a1
n

a2
1

. . . a2
i

. . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . an
i

. . . an
n

���������
is the i-th entry, which is c times larger. By the homogeneity of the
volume form,

!

�����
(v1, . . . ,vn)

���������

a1
1

. . . c a1
i

. . . a1
n

a2
1

. . . c a2
i

. . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . c an
i

. . . an
n

���������

�����
= c!

�����
(v1, . . . ,vn)

���������

a1
1

. . . a1
i

. . . a1
n

a2
1

. . . a2
i

. . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . an
i

. . . an
n

���������

�����
.

Dividing both sides by !(v1, . . . ,vn) we obtain

f

�����

���������

a1
1

. . . c a1
i

. . . a1
n

a2
1

. . . c a2
i

. . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . c an
i

. . . an
n

���������

�����
= c f

�����

���������

a1
1

. . . a1
i

. . . a1
n

a2
1

. . . a2
i

. . . a1
n⋮ ⋮ ⋮ ⋮ ⋮

an
1

. . . an
i

. . . an
n

���������

�����
.

Let’s summarize: given an n-tuple of vectors (v1, . . . ,vn),
!((v1, . . . ,vn)A) = f(A)!(v1, . . . ,vn),

where the function function f ∶Mn(F)→ F satisfies the following properties:

(a) It is column-wise multilinear.

(b) It is column-wise alternating, i.e., f(A) = 0F if A has two identical
columns.

(c) f(In) = 1F.
Definition 6.12 A function f ∶ Mn(F) → F is called a determinant
(�%)11*/9)$) if
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(a) It is column-wise multilinear.

(b) It is column-wise alternating, i.e., f(A) = 0F if A has two identical

columns.

(c) It is normalized, i.e., f(In) = 1F.

Proposition 6.13 For every field F and n ∈ N there exists a unique deter-

minant function f ∶Mn(F)→ F. We denote this function either by A� detA
or by A� �A�.

Proof : If we view a matrix A ∈Mn(F) as a sequence of column-vectors,

A = (Col1(A), . . . ,Coln(A)) ,
then the determinant can be viewed as a function

f ∶ V n → F where V = Fn

col
.

The requirements on f are precisely that it is a volume form normalized such
that

f(e1, . . . ,en) = 1F.
By Theorem 6.2 such a function exists and is unique. n

Corollary 6.14 Let ! ∶ V n → F be a volume form on a vector space V . For

every n-tuple (v1, . . . ,vn) ∈ V n and matrix A ∈Mn(F),
!((v1, . . . ,vn)A) = det(A)!(v1, . . . ,vn).

We have thus obtained a means for calculating the volume of every n-tuple
of vectors given its value for a basis, assuming we know how to calculate the
determinant of a matrix.



Volume Forms and Determinants 253

Exercises

(easy) 6.4 Let A ∈Mn(F) and � ∈ F. Show that

det(�A) = �n det(A).
(easy) 6.5 Let A ∈ Mn(F) be such that its n-th column is a linear combi-
nation of the other columns. Show that

detA = 0F.
(easy) 6.6 Let A ∈Mn(F) be such that aj

i
= 0F for all i < j. Show that

detA = a1
1
a
2

2
. . . a

n

n
.

(intermediate) 6.7 In each of the following items is given a function f ∶
M3(R)→ R. Determine whether it is (a) columns-wise multilinear, (b) linear
or (c) neither:

(a) f(A) = 1F.
(b) f(A) = 0F.
(c) f(A) = a1

1
+ a2

2
+ a3

3
.

(d) f(A) = a1
1
a1
1
+ 2a1

1
a2
2
.

(e) f(A) = −a1
1
a1
2
a3
3
.

(f) f(A) = a1
2
a2
3
a3
1
+ a1

3
a2
1
a3
2
.

(easy) 6.8 Show that

det

�������
s1a + t1 s2a + t2 s3a + t3
s1b + t1 s2b + t2 s3b + t3
s1c + t1 s2c + t2 s3c + t3

�������
= 0F

for all a, b, c, s1, s2, s3, t1, t2, t3 ∈ F.
(easy) 6.9 Let A,B ∈M3(R) be given by

A =
�������
a1 b1 c1

a2 b2 c2

a3 b3 c3

�������
and B =

�������
a1 − 4b1 + 9c1 2b1 3c1

a2 − 4b2 + 9c2 2b2 3c2

a3 − 4b3 + 9c3 2b3 3c3

�������
.

What is det(B) if det(A) = 3�2?
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(intermediate) 6.10 (a) Find a function f ∶M3(R) which is multilinear
with respect to its columns, alternating but not normalized.

(b) Find a function f ∶ M3(R) which is alternating, normalized, but not
multilinear with respect to its columns.

(c) Find a function f ∶ M3(R) which is multilinear with respect to its
columns, normalized, but not alternating.

6.6 Calculating determinants

The determinant of a matrix is defined via three properties: column-wise
multilinearity, column-wise alternation, and normalization. In this section we
turn these defining properties into an algorithm for calculating determinants.

Proposition 6.15 Let Dk

k
(a) and T `

k
(a) be the elementary matrices defined

by (6.3) and (6.4). Then, for all A ∈Mn(F),
det(AD

k

k
(a)) = a det(A) and det(AT

`

k
(a)) = det(A).

In particular,

det(Dk

k
(a)) = a and det(T `

k
(a)) = 1F,

so that for every elementary matrix E

det(AE) = det(E) det(A). (6.7)

Proof : This is an immediate consequence of the multilinearity and alterna-
tion of the determinant. But we can also look at it di↵erently. Let ! be a
volume form on an n-dimensional vector space V over F. By (6.5) and (6.6),
with (v1, . . . ,vn) replaced by (v1, . . . ,vn)A,

!((v1, . . . ,vn)ADk

k
(a)) = a!((v1, . . . ,vn)A),

and
!((v1, . . . ,vn)AT `

k
(a)) = !((v1, . . . ,vn)A).

Dividing by !(v1, . . . ,vn), we obtained the desired result. n
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Corollary 6.16 Let E1, . . . ,En be a sequence of elementary matrices.

Then,

det(E1 . . .En) = det(E1)�det(En).

Proof : Apply (6.7) (n − 1) times. n

Proposition 6.17 Let A ∈Mn(F). Then, A ∈ GLn(F) if and only if detA ≠
0.

Proof : If A ∈ GLn(F), then it is a product of elementary matrices,

A = E1�En,

and since detEi ≠ 0 for all i, it follows from the previous corollary that

detA = det(E1)�det(En) ≠ 0F.
Conversely, if A is not invertible, then it has a column linearly-dependent on
the other columns, hence detA = 0F. n

Proposition 6.18 Let A,B ∈Mn(F). Then,
det(AB) = det(A) det(B).

Proof : If either A or B are not invertible, then AB is not invertible and both
sides of the equation vanish. Otherwise, both A and B can be written as
products of elementary matrices,

A = E1�En and B = F1�Fk.

Then,
det(AB) = det(E1)�det(En)���������������������������������������������������������������������������������������������������������

detA

det(F1)�det(Fk)������������������������������������������������������������������������������������������������������
detB

.

n
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Example: You may verify that

�3 1
2 −1� = �1 1

0 1
� �1 0

2 1
� �1 0

0 −5� �1 2
0 1
� .

Hence

det = �3 1
2 −1� = −5.

▲▲▲
Such a means for calculating determinants is not very convenient. A more
systematic way hinges on the proof of Theorem 6.11, which we remind, was
inductive on n. The determinant of a matrix can be viewed as a column-wise
multilinear, column-wise alternating function ! ∶ (Fn

col
)n → F, normalized

such that !(e1, . . . ,en) = 1F.
Define

L = Span{e1} and H = Span{e2, . . . ,en}.
Then,

pL

�����

���������

a1

a2⋮
an

���������

�����
=
���������

a1

0⋮
0

���������
and pH

�����

���������

a1

a2⋮
an

���������

�����
=
���������

0
a2⋮
an

���������
,

so that

�

�����

���������

a1

a2⋮
an

���������

�����
= a1

and we view pH as a function Fn

col
→ Fn−1

col
. By the construction in the proof

of Theorem 6.11, the volume form !H is the unique normalized volume form
on Fn−1

col
, which is nothing but the determinant for (n − 1)× (n − 1) matrices.

Thus, we obtain the following formula for the determinant,

detA = n�
j=1
(−1)j+1�(Colj(A)) det(pH(Col1(A)), . . . , �pH(Colj(A)), . . . , pH(Coln(A)))

= n�
j=1
(−1)j+1a1

j
det(pH(Col11(A), . . . , �Col1j(A), . . . ,Col1n(A)),

(6.8)
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where Coli
j
(A) is the j-th column of A from which the i-entry has been

deleted.

Example: For n = 2,
�a b

c d
� = a�d� − b�c� = ad − bc.

For n = 3, ��������������
a b c

d e f

g h i

��������������
= a �e f

h i
� − b �d f

g i
� + c �d e

g h
� .

▲▲▲
Exercises

(intermediate) 6.11 Let D ∶Mn(F)→ F satisfy

D(AB) =D(A)D(B)
for all A,B ∈Mn(F).
(a) Show that if D(In) = 0F then D is the zero function.

(b) Show that if D(In) ≠ 0F then D(In) = 1F and D(A) ≠ 0F if A is invert-
ible.

(easy) 6.12 Let A ∈M2(F) and let � ∈ F. Show that

det(�I2 −A) = �2 − � trA + detA,
where trA is the sum of its diagonal terms.

(intermediate) 6.13 Let A ∈M2(F) such that A2 = 0.
(a) Show that detA = 0F.
(b) Show that �I2 −A is invertible for every � ≠ 0F.
(c) Show that for every � ∈ F, det(�I2 −A) = �2.
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6.7 Determinants and transposition

Determinants are invariant under certain column operations; what about
invariance under row operations.

Definition 6.19 Let A ∈ Mm×n(F). We denote by At ∈ Mn×m its trans-
pose (�;5-(&:/% %7*9)/%), given by

(At)j
i
= Ai

j
.

In the next semester you will see why such an operations makes sense.

Example: If

A = �1 2 3
4 5 6

� ,
then

A
t =
�������
1 4
2 5
3 6

�������
.

▲▲▲
Lemma 6.20 Let A ∈Mm×n(F) and let B ∈Mn×k(F). Then

(AB)t = Bt
A

t
.

Proof : Just follows the definitions,

(AB)i
j
= n�

k=1
a
i

k
b
k

j
hence ((AB)t)i

j
= n�

k=1
a
j

k
b
k

i
.

On the other hand

(Bt
A

t)i
j
= n�

k=1
(Bt)i

k
(At)k

j
= n�

k=1
b
k

i
a
j

k
.

n
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Lemma 6.21 Let E ∈Mn(F) is an elementary matrix, then

detEt = detE.

Proof : This follows from the fact that

(Dk

k
(a))t =Dk

k
(a) and (T `

k
(a))t = T k

`
(a).

n

Lemma 6.22 A ∈Mn(F) is invertible if and only if At is invertible.

Proof : A is invertible if and only if its columns are linearly-independent and
if and only if its rows are linearly-independent. The claim follows by noting
that the rows of A are the columns of At and vice-versa. n

Corollary 6.23 Let A ∈Mn(F). Then,
detAt = detA.

Proof : If A ∈ GLn(F), then it can be written as a product of elementary
matrices,

A = E1�Ek.

By Lemma 6.20,
A

t = Et

k
�Et

1
.

Combining with Proposition 6.18 and Lemma 6.21,

detAt = detEt

k
�detEt

1
= detE1�detEk = detA.

If A �∈ GLn(F), then At �∈ GLn(F), and
detA = 0F = detAt

.

n

The implication of this last proposition is that you can evaluate determinants
using row operations; for example, the determinant does not change if a
multiple of one row is added to another row.
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Exercises

(intermediate) 6.14 Find the determinant of the following matrix,

���������

a b

c d∗ ∗ e f∗ ∗ g h

���������
,

where the asterisks can represent any scalar.

(intermediate) 6.15 Let A ∈ Fn

col
and let B = Fn

row
for n > 1. What can be

said about
det(AB) ?

(intermediate) 6.16 Find

det

�����������

a b c d e

f g h i j

k l 0 0 0
m n 0 0 0
p q 0 0 0

�����������
(easy) 6.17 Calculate the determinants of the following matrices:

���������

9 5 6 4
7 0 3 0
2 0 0 0
8 6 4 7

���������

�����������

1 0 0 0 3
13 5 14 6 17
0 0 2 0 0
11 8 15 10 19
7 0 0 0 9

�����������

��������������

1 1 1 1 1 1
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1

��������������
(intermediate) 6.18 Calculate the determinants of the following n×n ma-
trices, n > 2,
�����������

0 1 1 . . . 1
1 1 1 . . . 1
1 1 2 . . . 1⋮ � ⋮
1 1 1 . . . n − 1

�����������

�����������

1 2 3 . . . n

2 3 4 . . . n + 1
3 4 5 . . . n + 2⋮ � ⋮
n n + 1 n + 2 . . . 2n − 1

�����������

�����������

a b b . . . b

b a b . . . b

b b a . . . b⋮ � ⋮
b b b . . . a

�����������
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(intermediate) 6.19 Let a1, . . . , an ∈ F. Calculate

det

�����������

1 1 1 . . . 1
a1 a2 a3 . . . an(a1)2 (a2)2 (a3)2 . . . (an)2⋮ �(a1)n−1 (a2)n−1 (a3)n−1 . . . (an)n−1

�����������
.

(intermediate) 6.20 LetA,B ∈M3(R) find det(2A2B−1) given than detA =
5 and detB = 10.
(intermediate) 6.21 Let A,B ∈M3(R) find det(5AB3A−1B−1) given than
detA ≠ 0 and detB = 2.
(intermediate) 6.22 For each of the following matrices, calculate the de-
terminants and determine for what values of the parameters those matrices
are invertible:�������

1 a − 2 −a + 1
0 2 a − 1
a a2 a2 − 1

�������
�b − 3 −2

1 b − 6� �c − 1 4
2 c − 3�

�������
1 d d2

d d2 1
d2 1 d

�������
.

(intermediate) 6.23 Let A ∈Mn(R) satisfy A2 = −A − In.
(a) Show that A is invertible.

(b) Show that A3 = In.
(c) Find detA.

(intermediate) 6.24 Let A,B ∈Mn(F).
(a) Show that if AB +B is invertible then so is BA +B.

(b) Show that if A2B −A2 is invertible then so is BA −A.
(c) Show that if AB2 −A is invertible then so is BA −A.
(d) Show that if A2−B2 is invertible and AB = BA, then A+B is invertible.

(intermediate) 6.25 Calculate the determinant of the matrix

���������

a2 b2 c2 d2(a + 1)2 (b + 1)2 (c + 1)2 (d + 1)2(a + 2)2 (b + 2)2 (c + 2)2 (d + 2)2(a + 3)2 (b + 3)2 (c + 3)2 (d + 3)2

���������
.
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6.8 Cramer’s formula

Let’s look back on how we calculated the determinant of a matrix. The con-
struction was inductive, based on the proof of the existence of a normalized
volume form. Let’s write the formula in a more compact form: First, let’s
denote by

ACi ACj and ACi
Cj

the matrix A with the i-th row removed, the j-column removed and both the
i-th row and the j-th column removed. Formula (6.8) for the determinant of
a matrix can be written as

detA = n�
j=1
(−1)j+1a1

j
detAA1

Cj
. (6.9)

This is of course a recursive formula. It is worth recalling why it is correct.
The determinant is the unique function Mn(F) → F, which is column-wise
multilinear, column-wise alternating and satisfying det In = 1. (Since it is
invariant under transposition, it is also the unique function which is row-
wise multilinear, row-wise alternating and satisfying det In = 1.)
The fact that the inductive definition (6.9) satisfies these requirements is
proved inductively on n. For example, assume that the determinant is alter-
nating for Mn−1(F), and let A ∈Mn(F) have its k-th column equal to its `-th

column. Then, AA1
Cj
has two identical columns unless j = k or j = `; that is,

unless j = k or j = ` we have by the inductive assumption that detAA1
Cj
= 0F.

Thus,

detA = (−1)k+1a1
k
detAA1

Ak
+ (−1)`+1a1

`
detAA1

C̀
.

Now a1
k
= a1

`
and the matrices AA1

Ak
and AA1

C̀
are almost identical; they may only

di↵er in the ordering of the columns. If, for example, ` = k+1, then AA1
Ak
= AA1

C̀
,

hence

detA = (−1)k+1a1
k
detAA1

Ak
+ (−1)k+2a1

k
detAA1

Ak
= 0F.

If, for example ` = k + 2, then AA1
Ak
and AA1

C̀
di↵er by the interchange of two

columns, which implies that their determinants di↵er by a sign, i.e.,

detA = (−1)k+1a1
k
detAA1

Ak
+ (−1)k+3a1

k
(−detAA1

Ak
) = 0F.
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Keep “playing with this” to convince yourself that it does not matter how
far apart k and ` are; in either case, the determinant for n × n matrices is
alternating.

Formula (6.9) delineates the first row as “special”; there is of course nothing
special about it. We could have selected any row i, and write instead

detA = n�
j=1
(−1)j+iai

j
detACi

Cj
. (6.10)

Example: Take the 3 × 3 matrix

A =
�������
1 3 4
7 2 1
9 3 2

�������
.

The term (−1)j+i yields the following pattern,

�������
+ − +− + −+ − +

�������
.

Take for example the second row, i = 2. Then,

AA2
A1
=
�������
1 3 4
7 2 1
9 3 2

�������
AA2
A2
=
�������
1 3 4
7 2 1
9 3 2

�������
AA2
A3
=
�������
1 3 4
7 2 1
9 3 2

�������
So that

detA = −7 �3 4
3 2
�+ 2 �1 4

9 2
�− 1 �1 3

9 3
� = (−7)(−6)+ 2(−34)+ (−1)(−24) = (−2).

▲▲▲
Since the determinant is invariant under transposition, we could have as well
chosen a distinguished column, say the j-th column, and then sum up over
all rows

detA = n�
i=1
(−1)j+iai

j
detACi

Cj
. (6.11)
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Example: Take the same matrix as in the previous example and take say
the third column, j = 3. Then,

AA1
A3
=
�������
1 3 4
7 2 1
9 3 2

�������
AA2
A3
=
�������
1 3 4
7 2 1
9 3 2

�������
AA3
A3
=
�������
1 3 4
7 2 1
9 3 2

�������
So that

detA = 4 �7 2
9 3
� + (−1) �1 3

9 3
� + 2 �1 3

7 2
� = 4 ⋅ 3 − (−24) + 2(−19) = (−2).

▲▲▲
Next, we relate determinants to the first subject of this course, the solution
of linear systems; we focus on the case where the number of equations equals
the number of unknowns. Let A ∈Mn(F) and b ∈ Fn

col
, and denote by

ACj→b

The matrix in which the j-th column has been replaced by the column matrix
b.

Theorem 6.24 (Cramer’s formula) Let A and b be as above and sup-

pose that x ∈ Fn

col satisfies the equation

Ax = b.
The for every j = 1, . . . , n,

detACj→b = xj detA.

In particular, if A is invertible, then

x
j = detACj→b

detA
.
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Example: Consider the linear system,

�5 3
2 1
� �x1

x2
� = �4

0
� .

Then,

x
1 =
�4 3
0 1
�

�5 3
2 1
�
= 4(−1) and x

2 =
�5 4
2 0
�

�5 3
2 1
�
= (−8)(−1) ,

and indeed,

�5 3
2 1
� �−4

8
� = �4

0
� .

But let’s actually go through the steps of the proof below. We have

�4
0
� = �5x1 + 3x2

2x1 + x2
� .

Hence,

�4 3
0 1
� = �5x1 + 3x2 3

2x1 + x2 1
� = �5x1 3

2x1 1
� = x1 �5 3

2 1
� ,

and

�5 4
2 0
� = �5 5x1 + 3x2

2 2x1 + x2
� = �5 3x2

2 x2
� = x2 �5 3

2 1
� .

▲▲▲
Proof : The matrix b satisfies the equation

b = n�
i=1

x
iColi(A).

Take b, place it instead of the j-th column of A; then,

ACj→b = �Col1(A) . . . ∑n

i=1 xiColi(A) . . . Coln(A)� ,
where the sum is ay the j-th column. By the multilinearity of the determi-
nant,

detACj→b = n�
i=1

x
i �Col1(A) . . . Coli(A) . . . Coln(A)� .
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By the alternation of the determinant, all the summands vanish, except for
the j-th, i.e.,

detACj→b = xj detA.

n

And with this, we obtain Cramer’s formula for the inverse matrix:

Theorem 6.25 (Cramer’s formula) Let A ∈ GLn(F) and denote B =
A−1. Then,

b
i

j
= (−1)j+idetACj

Ci
detA

.

Proof : Let’s verify that this coincides with the known formula for 2 × 2
matrices. We have

(A−1)1
1
= (−1)2detAA1

A1
detA

= d

ad − bc (A−1)1
2
= (−1)3detAA2

A1
detA

= − b

ad − bc
(A−1)2

1
= (−1)3detAA1

A2
detA

= − c

ad − bc (A−1)2
2
= (−1)4detAA2

A2
detA

= a

ad − bc,
i.e.,

�a b

c d
�−1 = 1

ad − bc � d −b−c a
� .

n

Proof : The matrix B satisfies the equation AB = In, which we may rewrite
as

A �Col1(B) . . . Coln(B)� = �e1 . . . en� .
That is,

AColj(B) = ej.
By Cramer’s formula,

b
i

j
= detACi→ej

detA
.
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Consider the numerator. The i-th column of the matrix ACi→ej
consists of

zeros, except for 1 at the j-th row. Hence, by (6.10),

detACi→ej
= (−1)i+j detACj

Ci
.

n

Exercises

(intermediate) 6.26 Solve the following linear systems overR using Cramer’s
formula.

(a)
X +2Y +3Z = 6
4X +5Y +6Z = 15
7X +8Y +10Z = 25.

(b)
X +Y +Z = 11
2X −6Y −Z = 0
3X +4Y +2Z = 0.

(c)
3X −2Y = 7

3Y −2Z = 6−2X +3Z = −1.
(intermediate) 6.27 Invert the following matrices using Cramer’s formula,

A =
�������
1 2 3
4 5 6
7 8 10

�������
B =
�������
−2 3 2
6 0 3
4 1 −1

�������
C =
�������
cos ✓ 0 − sin ✓
0 1 0

sin ✓ 0 cos ✓

�������
.

6.9 The determinant of a linear transforma-
tion

In our introduction of determinants we essentially proved the following the-
orem (Corollary 6.14):
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Theorem 6.26 Let V be an n-dimensional vector space over F and let ! ∶
V n → F be a volume form on V . Then, for every ordered basis B and any

matrix A ∈Mn(F), writing
�u1 . . . un� =BA,

we have

! �u1 . . . un� = !(B) detA.

This lead to the perhaps surprising corollary:

Corollary 6.27 For every non-degenerate volume form !, every basis B
and every matrix A, the ratio

!(BA)
!(B)

depends neither on the volume form, nor on the basis.

And further,

Corollary 6.28 Let ! and ⌘ be two non-degenerate volume forms on V ,

then there exists a constant c ∈ F such that

! = c ⌘,
i.e., for every �u1 . . . un�,

! �u1 . . . un� = c ⌘ �u1 . . . un� .

Proof : Let B be any ordered basis on V and let A ∈ Mn(F) be the unique
matrix satisfying �u1 . . . un� =BA.
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Then,

! �u1 . . . un� = !(BA) = !(BA)
!(B) !(B) = ⌘(BA)

⌘(B) !(B) = c ⌘ �u1 . . . un� ,
where

c = !(B)
⌘(B) .

n

Since all the volume forms are multiples of each other, they are essentially
the same; they only di↵er by a choice of units. This observation yields that
an operator on a vector space can be characterized by how much it magnifies
volumes:

Theorem 6.29 Let ! be a non-degenerate volume form on a finitely-

generated vector space V . Let f ∈ HomF(V,V ) be a linear transformation.

Let B = �v1 . . . vn� by an ordered basis on V ; we denote

f(B) = �f(v1), . . . , f(vn)� .
Then, the ratio

!(f(B))
!(B)

depends neither on ! nor on B; it is a sole property of the linear transfor-

mation f , which we call the determinant of f .

Proof : Let A = [f]BB, i.e.,
f(B) =BA.

Then,
!(f(B))
!(B) = !(BA)

!(B) = detA,
and the right-hand side depends neither on ! nor on B. n

Thus, the determinant of f coincides with the determinant of its representing
matrix, but, this identity does not depend on the basis relative to which we
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represent f . This should perhaps not come as a surprise, as if C is some other
basis, then there exists an invertible matrix P , such that

[f]CC = P −1[f]BBP.
By the properties of the determinant,

det[f]CC = detP −1 ⋅ det[f]BB ⋅ detP.
Since detP −1 detP = det In = 1F, we obtain that the determinant of the
representing matrix is independent of the representation, i.e., it is an intrinsic
property of the transformation.

det[f]CC = det[f]BB
Exercises

(intermediate) 6.28 Let V be a finitely-generated vector space and let B
be an ordered basis for V . Let S,T ∈ HomF(V,V ). Show that

det[T ○ S]BB = det[T ]BB det[S]BB.
(intermediate) 6.29 Let V be a finitely-generated vector space and let
B,C,D be ordered bases for V . Show that

(a) det[IdV ]BC ≠ 0.
(b) (det[IdV ]BC )−1 = det[IdV ]CB.
(c) det[IdV ]BD = det[IdV ]CD det[IdV ]BC .

(intermediate) 6.30 Let A ∈ Mn(F) and define a linear transformation
g ∶Mn(F)→Mn(F),

g(X) =XA −AX.

Show that det g = 0F.
(intermediate) 6.31 Let A ∈Mn(F) and define two linear transformations
L,R ∶Mn(F)→Mn(F),

L(X) = AX and R(X) =XA.

Show that
detL = detR = (detA)n.

Hint: Separate the cases A ∈ GLn(F) and A �∈ GLn(F).


