
Chapter 4

Functions

(This chapter should take 18 hours.)

4.1 Basic definitions

What is a function? There is a formal way of defining functions, but at this
point we will deliberately be a little less formal, and introduce a function as
a “machine”, which when provided with a number, returns a number—only
one, and always the same for the same input.

A function is characterized by three components:

1. A domain ( �.A(;): a subset of R. The numbers which may be “fed into
the machine”.

2. A range ( �(&&)): another subset of R. Numbers that may be “emitted
by the machine”. We do not exclude the possibility that some of these
numbers may never be emitted. We only require that every number
returned by the function belongs to its range.

3. A transformation rule ( �%8;3% --,). The crucial point is that to
every number in its domain corresponds one and only one number in
its range (�;A*,93 $().

We denote functions by letters, like we do for real numbers (and for any other
mathematical entity). The most common notation for a function is the letter
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f , but of course, there is nothing special about this letter, except for being
the fist letter of the word “function”. If A ⊆ R is the domain of f , and B ⊆ R
is its range, we write f ∶ A → B (f maps the set A into the set B). The
transformation rule specifies what number in B is assigned by the function
for each number x ∈ A. We denote the assignment by f(x) (the function f
evaluated at x). That the assignment rule is “assign f(x) to x” is denoted
by f ∶ x� f(x) (pronounced “f maps x to f(x)”).
Comment: Programmers: think of f ∶ A → B as defining the “type” or
“syntax” of the function, and of f ∶ x� f(x) as defining the “action” of the
function.

Definition 4.1 Let f ∶ A → B be a function. Its image (�%1&/;) is the subset
of B of numbers that are actually assigned by the function. That is,

Imagef = {y ∈ B ∶ ∃x ∈ A, f(x) = y}.
The function f is said to be onto B ( �-3) if B is its image. f is said to
be one-to-one (�;*,93 $( $() if to each number in its image corresponds a
unique number in its domain, i.e.,

(∀y ∈ Imagef)(∃!x ∈ A)(f(x) = y).
Examples:

1. A function that assigns to every real number its square. If we denote
the function by f , then

f ∶ R→ R and f ∶ x� x2.

We may also write f(x) = x2.

We should not say, however, that “the function f is x2”. In particular,
we may use any letter other than x as an argument for f . Thus, the
functions f ∶ R → R, defined by the transformation rules f(x) = x2,
f(t) = t2, f(↵) = ↵2 and f(⇠) = ⇠2 are identical.

The function f returns only non-negative numbers, and

Imagef = [0,∞).
There is however nothing wrong with the definition of the range as the
whole of R. We could limit the range to be the set [0,∞), but not to
the set [1,2].
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2. A function that assigns to every w ≠ ±1 the number (w3+3w+5)�(w2−
1). If we denote this function by g, then

g ∶ R � {±1}→ R and g ∶ w � w3 + 3w + 5
w2 − 1 .

3. A function that assigns to every −17 ≤ x ≤ ⇡�3 its square. This function
di↵ers from the function in the first example because the two functions
do not have the same domain (di↵erent “syntax” but same “routine”).

4. A function that assigns to every real number the value zero if it is irra-
tional and one if it is rational. This function is known as the Dirichlet
function (named after Peter Gustav Lejeune Dirichlet, 1805–1859).
Thus,

f ∶ R→ {0,1} f ∶ x� �������
0 x is irrational

1 x is rational.

(The Dirichlet function is going to be the course’s favorite to display
counter examples.)

5. A function defined on the domain

A = {2,17,⇡2�17,36�⇡} ∪ {a + b√2 ∶ a, b ∈ Q},
such that

x�
�����������������

5 x = 2
36�⇡ x = 17
28 x = ⇡2�17 or 36�⇡
16 otherwise.

The range may be taken to be R, but the image is {6,16,28,36�⇡}.
6. A function defined on R �Q (the irrational numbers), assigning to x

the number of 7’s in its decimal expansion, if this number is finite. If
this number is infinite, then it returns −⇡. This example di↵ers from
the previous ones in that we do not have an assignment rule in closed
form (how can we compute f(x)?). Nevertheless it provides a legal
assignment rule.



96 Chapter 4

Note that we limited the domain of the function to the irrational num-
bers because rational numbers may have a non-unique decimal repre-
sentation, e.g.,

0.7 = 0.6999999 . . . .
7. For every n ∈ N we may define the n-th power function fn ∶ R → R, by

fn ∶ x � xn. Here again, we will avoid referring to “the function xn”.
The function f1 ∶ x � x is known as the identity function (;*781&5
�;&%'%), often denoted by Id, namely

Id ∶ R→ R, Id ∶ x� x.

8. There are many functions that you all know since high school, such as
polynomials, rational functions, the sine, the cosine, the expo-
nential, the logarithm and many more. These function as well as
functions generated by algebraic combinations thereof are called ele-
mentary functions. . In this course we assume that the definition
and properties of elementary functions (along with their domains and
ranges) are known.

4.2 Sums, products and compositions of func-

tions

Given several functions, they can be combined together to form new func-
tions. Let f ∶ A→ R and g ∶ B → R be given functions, and a, b ∈ R. We may
define a new function,

af + b g ∶ A ∩B → R, a f + b g ∶ x� af(x) + b g(x).
(This is not trivial. We are adding “machines”, not numbers.) Functions
R→ R form a vector space over the field of real numbers, whose zero element
is the zero function, x� 0; given a function f , its inverse is −f = (−1)f .
Moreover, functions form an algebra. We may define the product of two
functions,

f ⋅ g ∶ A ∩B → R, f ⋅ g ∶ x� f(x)g(x),
as well as their quotient,

f�g ∶ A ∩ {z ∈ B ∶ g(z) ≠ 0}→ R, f�g ∶ x� f(x)�g(x).
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A third operation that combines two functions is composition ( �%",9%). Let
f ∶ A→ B and g ∶ B → C. We define

g ○ f ∶ A→ C, g ○ f ∶ x� g(f(x)).
For example, if f is the sine function and g is the square function, then

g ○ f ∶ ⇠ � sin2 ⇠ and f ○ g ∶ ⇣ � sin ⇣2,

i.e., composition is non-commutative. On the other hand, composition is
associative, namely, (f ○ g) ○ h = f ○ (g ○ h).
Note that for every function f ,

Id ○ f = f ○ Id = f,
so that the identity function is the neutral element with respect to function
composition. This should not be confused with the fact that x � 1 is the
neutral element with respect to function multiplication.

Example: Consider the function f that assigns the rule

f ∶ x� x + x2 + x sinx2

x sinx + x sin2 x
.

This function can be written as

f = Id + Id ⋅ Id + Id ⋅ sin ○(Id ⋅ Id)
Id ⋅ sin+Id ⋅ sin ⋅ sin .

▲▲▲ —

30h(2017)—

4.3 Formal definition a function: graphs

As you know, we can associate with every function a graph. What is a
graph? A drawing? A graph has to be thought of as a subset of the
plane. For a function f ∶ A→ B, we define the graph of f to be the set

Graph f = {(x, y) ∶ x ∈ A,y = f(x)}.
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This set is a subset of the Cartesian product:

A ×B = {(x, y) ∶ x ∈ A,y = B}.
Thus, we can also write,

Graph f = {(x, y) ∈ A ×B ∶ y = f(x)}.
Example: The graph of the function

f ∶ R→ R f(x) = x2

is {(x, x2) ∶ x ∈ R}.
▲▲▲

Example: The graph of the function

f ∶ (0,1]→ R f ∶ t� 1�t
is {(m,1�m) ∶ 0 <m ≤ 1}.

▲▲▲
The defining property of a function is that it is uniquely defined, i.e.,

(x, y) ∈ Graph f and (x, z) ∈ Graph f implies y = z,
or written di↵erently,

(∀x ∈ A)(∃!y ∈ B)((x, y) ∈ Graph f).
The function is one-to-one if

(x, y) ∈ Graph f and (w, y) ∈ Graph f implies x = w,
or written di↵erently,

(∀y ∈ Imagef)(∃!x ∈ A)((x, y) ∈ Graph f).
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The function is onto B if

(∀y ∈ B)(∃x ∈ A)((x, y) ∈ Graph f).
The definition we gave to a function as an assignment rule is, strictly speak-
ing, not a formal one. The standard way to define a function is via its graph.
A function is a graph—a subset of the Cartesian product space A ×B.

Given two sets A and B, any subset C ⊂ A ×B satisfying

(∀a ∈ A)(∃!b ∈ B) ∶ ((a, b) ∈ C),
defines uniquely a function A → B. The value returned by the function for
x is the unique y for which (x, y) ∈ C. Having said that, you should stick to
thinking of functions as machines.

4.4 Limits

Definition 4.2 Let x ∈ R. A neighborhood of x (�%"*"2) is an open segment(a, b) that contains the point x (note that since the segment is open, x cannot
be a boundary point). A punctured neighborhood of x (�;⌥"⌥8A1/ %"*"2) is
a set (a, b) � {x} where a < x < b.

a a

punctured neighborhood neighborhood

Definition 4.3 Let A ⊂ R. A point a ∈ A is called an interior point of A
(�;*/*15 %$A81) if it has a neighborhood contained in A.

Comment: We will mostly deal with symmetric neighborhoods (whether
punctured or not), i.e., neighborhoods of a of the form

{x ∶ �x − a� < �}
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for some � > 0. We will introduce the following notations for neighborhoods,

B (a, �) = (a − �, a + �)
B○(a, �) = {x ∶ 0 < �x − a� < �}.

We will also define one-sided neighborhoods,

B+(a, �) = [a, a + �)
B○+(a, �) = (a, a + �)
B−(a, �) = (a − �, a]
B○−(a, �) = (a − �, a).

Example: For A = [0,1], the 1�2 is an interior point, but 0 is not an interior
point. ▲▲▲
Example: The set Q ⊂ R has no interior points, and neither does its comple-
ment, R �Q. ▲▲▲
Lemma 4.4 Let a ∈ R. Then,

1. The intersection of two neighborhoods of a is a neighborhood of a.

2. The intersection of two punctured neighborhoods of a is a punctured
neighborhood of a.

3. Every neighborhood of a contains a symmetric neighborhood B (a, �).
4. Every punctured neighborhood of a contains a symmetric punctured

neighborhood B○(a, �).

Proof : Immediate. n

In this section we define the concept of the limit of a function at a point.
Informally, we say that:

The limit of a function f at a point a is `, if we can make f(x)
assign values as close to ` as we wish, by making its argument x
su�ciently close to a (excluding the value a itself).
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Note that the function does not need to be equal to ` at a; in fact, it does
not even need to be defined at a.

Example: Consider the function

f ∶ R→ R f ∶ x� 3x.

We claim that the limit of f at 5 is 15. This means that we can make f(x)
be as close to 15 as we wish, by making x su�ciently close to 5, with 5 itself
being excluded. Suppose you want f(x) to di↵er from 15 by less than 1�100.
This means that you want

15 − 1

100
< f(x) = 3x < 15 + 1

100
.

This requirement is guaranteed if

5 − 1

300
< x < 5 + 1

300
.

Thus, if we take x to di↵er from 5 by less than 1�300 (but more than zero!),
then we are guaranteed to have f(x) within the desired range. Since we can
repeat this construction for any number other than 1�100, we conclude that
the limit of f at 5 is 15.

We can be more precise. Suppose you want f(x) to di↵er from 15 by less
than ", for some " > 0 of your choice. In other words, you want

�f(x) − 15� = �3x − 15� < ".
This is guaranteed if �x − 5� < "�3, thus given " > 0, choosing x within a
symmetric punctured neighborhood of 5 of radius "�3 guarantees that f(x)
is within a distance of " from 15.

To express the fact that the limit of f at 5 is 15 we write,

lim
5

f = 15.
The more common notation is

lim
x→5

f(x) = 15.
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Note however, that we could have as well written

limℵ→5
f(ℵ) = 15 or lim

⇠→5
f(⇠) = 15.

▲▲▲
This example insinuates what would be a formal definition of the limit of a
function at a point:

Definition 4.5 Let f ∶ A → B with a ∈ A an interior point. We say that the
limit of f at a is `, if for every " > 0, there exists a � > 0, such that

f(x) ∈ B (`, ") for all x ∈ B○(a, �).
In formal notation,

(∀" > 0)(∃� > 0)(∀x ∈ B○(a, �))(f(x) ∈ B (`, ")).
(The game is “you give me " and I give you � in return”.)

a

l

a

l
! !

"

Player A: This is my !.
Player B: No problem.  Here is my ".

Since Player B can find a " for every choice of ! made by Player A,it fo!ows tha" 
the limit of f at a is l.

This definition of the limit of a function at a point is known as the “epsilon-
delta version”. An alternative definition in terms of neighborhoods would
be:
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Proposition 4.6 (Alternative characterization of the limit) Let f ∶ A → B
with a ∈ A an interior point. Then,

lim
a

f = `
if and only if for every neighborhood V of ` there exists a punctured neigh-
borhood U of a, such that f(x) ∈ V for all x ∈ U .

Proof : Suppose first that the limit of f at a is `. Let V be a neighborhood
of `. It contains a symmetric neighborhood of `,

B (`, ") ⊂ V.
By the definition of the limit, there exists a symmetric punctured neighbor-
hood U = B○(a, �) of a, such that f(x) ∈ B (`, ") (and in particular, f(x) ∈ V )
for every x ∈ U .

Conversely, suppose that for every neighborhood V of ` there exists a punc-
tured neighborhood U of a, such that f(x) ∈ V for all x ∈ U . Let " > 0
be given. Then, there exists a punctured neighborhood U of a, such that
f(x) ∈ B (`, ") for all x ∈ U . Also, there exists a � > 0 such that B○(a, �) ⊂ U .
Then, f(x) ∈ B (`, ") for all x ∈ B○(a, �), which completes the proof. n

Comment: For the limit of a function f at a point a to exist, f must be defined
in some punctured neighborhood of a. (This is a necessary condition—not a
su�cient condition.)

Example: Consider the square function f ∶ R → R, f ∶ x � x2. We will show
that

lim
3

f = 9.
By definition, we need to show that for every " > 0 we can find a � > 0, such
that

f(x) ∈ B (9, ") whenever x ∈ B○(3, �).
Thus, the game it to respond with an appropriate � for every ".

To find the appropriate �, we examine the condition that needs to be satisfied:

�f(x) − 9� = �x − 3� �x + 3� < ".
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If we impose that �x − 3� < � then

�f(x) − 9� < �x + 3� �.
If the �x + 3� wasn’t there we would have set � = " and we would be done.
Instead, we note that by the triangle inequality,

�x + 3� = �x − 3 + 6� ≤ �x − 3� + 6,
so that for all �x − 3� < �,

�f(x) − 9� ≤ �x − 3� (�x − 3� + 6) < (6 + �)�.
Now recall: given " we have the freedom to choose � > 0 such to make the
right-hand side less or equal than ". We may freely require for example that
� ≤ 1, in which case �f(x) − 9� < (6 + �)� ≤ 7�.
If we furthermore take � ≤ "�7, then we reach the desired goal.

To summarize, given " > 0 we take � =min(1, "�7), in which case x ∈ B○(3, �),
�f(x) − 9� = �x − 3� �x + 3� ≤ �x − 3� (�x − 3� + 6) < (6 + �)� ≤ (6 + 1)"

7
= ".

This proves (by definition) that lim3 f = 9. Equivalently, we may say that for
all " > 0,

f(x) ∈ B (9, ") for all x ∈ B○(3,1) ∩B○(3, "�7).
In the similar way, we can show that

lim
a

f = a2
for all a ∈ R. [do it!] ▲▲▲—

32h(2017)—

Example: The next example concerns the function f ∶ (0,∞)→ R that assigns
to every number its multiplicative inverse,

f ∶ x� 1�x.
We are going to show that for every a > 0,

lim
a

f = 1

a
.
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First fix a; it is no longer a variable. Let " > 0 be given. We first observe
that

�f(x) − 1

a
� = �1

x
− 1

a
� = �x − a�

ax
.

We need to be careful that the domain of x does not include zero. We start
by requiring that �x− a� < a�2 (or equivalently, that x ∈ B○(a, a�2)), which at
once implies that x > a�2, hence

�f(x) − 1

a
� < 2�x − a�

a2
.

If we further require that �x − a� < a2"�2, then �f(x) − 1�a� < ". To conclude,

�f(x) − 1

a
� < " whenever 0 < �x − a� < �,

for � =min(a�2, a2"�2). Equivalently, for all " > 0,
f(x) ∈ B (1�a, ") for all x ∈ B○(a, a�2) ∩B○(a, a2"2�2).

▲▲▲
Example: Consider next the Dirichlet function, f ∶ R→ R,

f ∶ x� �������
0 x is irrational

1 x is rational.

We will show that f does not have a limit at zero. To show that for all `,

lim
0

f ≠ `,
we need to show that

¬ ((∃` ∈ R)(∀" > 0)(∃� > 0)(∀x ∈ B○(0, �))(f(x) ∈ B (`, "))) ,
i.e., (∀` ∈ R)(∃" > 0)(∀� > 0)(∃x ∈ B○(0, �))(�f(x) − `� ≥ ").
So let ` ∈ R be given. We will take " = 1�4. By the density of the rationals
in the reals, for all � > 0, we can find x1, x2 ∈ B○(0, �), such that

f(x1) = 1 and f(x2) = 0.
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Now either

�f(x1) − `� ≥ 1

4
or �f(x2) − `� ≥ 1

4
,

for otherwise, by the triangle inequality

1 = �f(x1) − f(x2)� = �(f(x1) − `) − (f(x2) − `)� ≤ �f(x1) − `� + �f(x2) − `� ≤ 1

2
,

which is a contradiction. ▲▲▲
Comment: It is important to stress what is the negation that the limit f at
a is `:

There exists an " > 0, such that for all � > 0, there exists an x,
which satisfies 0 < �x − a� < �, but not �f(x) − `� < ".

Example: Consider, in contrast, the function f ∶ R→ R,

f ∶ x� �������
0 x is irrational

x x is rational.

Here we show that

lim
0

f = 0.
Indeed, let " > 0 be given, then

f(x) ∈ B (0, ") for all x ∈ B○(0, ").
▲▲▲

Having a formal definition of a limit, and having seen a number of example,
we are in measure to prove general theorems about limits. The first theorem
states that a limit, if it exists, is unique.

Theorem 4.7 (Uniqueness of the limit) A function f ∶ A → B has at most
one limit at any interior point a ∈ A.
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Proof : Suppose, by contradiction, that

lim
a

f = ` and lim
a

f =m,

with ` ≠ m. Then there exist disjoint neighborhoods V1 of ` and V2 of m.
By the definition of the limit, there exists a punctured neighborhood U1 of
a such that

f(x) ∈ V1 ∀x ∈ U1,

and there exists a punctured neighborhood U2 of a such that

f(x) ∈ V2 ∀x ∈ U2.

Then, U = U1 ∩U2 is a punctured neighborhood of a, and for all x ∈ U ,

f(x) ∈ V1 and f(x) ∈ V2,

which is impossible since V1 ∩ V2 = �.

a

l

!

"

Player A: This is my !.
Player B: I give up.  No " fits.

Since Player B cannot find a " for a particular choice of ! made by Player A,it fo!ows tha" 
the limit of f at a cannot be both l and #.

#

!

a

l

!
#

!

n

4.5 The Heine characterization of the limit

The epsilon-delta characterization of the limit of a function at a point is
sometimes cumbersome to work with. The following theorem provides us
with an alternative definition:
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Theorem 4.8 (Heine’s characterization of the limit) Let the function f be
defined in a punctured neighborhood U of a. Then,

lim
a

f = `
if and only if,

lim
n→∞f(xn) = `

for every sequence (xn) in U converging to a.

Proof : Once again, there are two statements to prove: suppose first that

lim
a

f = `,
and let (xn) be a sequence in U converging to a. By the definition of the
limit of f at a, given " > 0 there exists a punctured neighborhood U1 ⊂ U of
a, such that

f(x) ∈ B (`, ") for all x ∈ U1.

By the definition of the limit of (xn), there exists an N ∈ N such that

xn ∈ U1 for all n > N.

Thus, for all n > N ,
f(xn) ∈ B (`, ") ,

which proves that
lim
n→∞f(xn) = `

Conversely, suppose that
lim
n→∞f(xn) = `

for every sequence (xn) in U converging to a. We will prove that the limit
of f at a is `. Suppose this was not the case. Then,

(∃" > 0)(∀� > 0)(∃x ∈ B○(a, �))(f(x) �∈ B (`, ")).
Thus, for every n ∈ N set �n = 1�n. Then, there exists an xn ∈ B○(a, �n) for
which f(xn) �∈ B (`, ").
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Consider the sequence (xn). Since
�xn − a� < 1

n
,

it follows that
lim
n→∞xn = a.

But since for all n, f(xn) �∈ B (`, "), we conclude that f(xn) does not converge
to `, which contradicts the assumption. n

Comment: Note that in order to prove that the limit of f at a is not `, it
su�ces to find one sequence (xn) converging to a (but never equal to a)
for which f(xn) does not converge to `. In particular, if there exist two
sequences (xn) and (yn), both converging to a, satisfying that f(xn) and
f(yn) converge to di↵erent limits, then f does not have a limit at a.

Example: Using Heine’s characterization it is easy to prove that Dirichlet’s
function has no limit at any point. Note however that if we take

xn = 1�n,
then (xn) converges to zero and (f(xn)) converges to zero as well. Yes, it is
not true that the limit of the Dirichlet function at zero is zero. ▲▲▲
Example: The same idea proves that the function f ∶ R � {0}→ R,

f(x) = sin 1

x

doesn’t have a limit at zero, because take

xn = 1(2n + 1�2)⇡ and yn = 1(2n − 1�2)⇡ .
Then,

lim
n→∞xn = 0 and lim

n→∞yn = 0,
however

lim
n→∞f(xn) = 1 and lim

n→∞f(yn) = −1.
▲▲▲
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Corollary 4.9 A function f ∶ A → B has a limit at a ∈ A if and only if it
is defined in a punctured neighborhood of a, and for every sequence (xn)
converging to a (but not equal to a), the sequence (f(xn)) converges.

Proof : Suppose first that f has a limit at a—call it `. By Heine’s char-
acterization, for every sequence (xn) converging to a, the sequence (f(xn))
converges to `, hence converges.

Conversely, suppose that for every sequence (xn) converging to a the sequence(f(xn)) converges. Take one such sequence (xn) and denote

lim
n→∞f(xn) = `.

We will prove that ` is the limit of f at a. For that, it su�ces, once again by
Heine’s characterization, to prove that for every sequence (yn) converging to
a, the sequence (f(yn)) converges to `. If this weren’t the case, we would
have

lim
n→∞f(yn) ≡m ≠ `,

where we used the fact that (f(yn)) is convergent. Consider now the sequence

(zn) = x1, y1, x2, y2, . . . .

This sequence converges to a (why), however the sequence (f(zn)) does not
converge (why), contradicting the given property of f . n—

34h(2017)—

4.6 Limit arithmetic

We have seen above various examples of limits. In each case, we had to
“work hard” to prove what the limit was, by showing that the definition was
satisfied. This becomes impractical when the functions are more complex.
Thus, like for sequences, we need to develop theorems that will make our
task easier.
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Theorem 4.10 (Limits arithmetic) Let f and g be two functions defined in a
neighborhood of a, such that

lim
a

f = ` and lim
a

g =m.

Then,
lim
a
(f + g) = ` +m and lim

a
(f ⋅ g) = ` ⋅m.

If, moreover, ` ≠ 0, then
lim
a
� 1
f
� = 1

`
.

Proof : There are two basic way to prove this theorem. The first way follows
exactly the same lines as the proof for the limit arithmetic for sequences.

By definition of the limit, for all e > 0,
(∃�1 > 0)(∀x ∈ B○(a, �1))(f(x) ∈ B (`, "�2)),

and (∃�2 > 0)(∀x ∈ B○(a, �2))(g(x) ∈ B (m, "�2)).
Since f(x) ∈ B (`, "�2) and g(x) ∈ B (m, "�2) implies that (f + g)(x) ∈
B (` +m, ") it follows that if we take � =min(�1, �2), thenB○(a, �) = B○(a, �1)∩
B○(a, �2), and

(∀x ∈ B○(a, �))(f(x) ∈ B (`, "�2) and g(x) ∈ B (m, "�2)),
from which follows that

(∀x ∈ B○(a, �))((f + g)(x) ∈ B (` +m, ")),
namely,

lim
a
(f + g) = ` +m.

We proceed similarly for products and ratios.

The second way uses Heine’s characterization. By Heine, for every sequence(xn) in a punctured neighborhood converging to a,

lim
n→∞f(xn)→ ` and lim

n→∞ g(xn)→m.
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By limit arithmetic for sequences,

lim
n→∞(f + g)(xn) = ` +m,

and since this holds for every sequence xn, it follows from Heine’s character-
ization that

lim
a
(f + g) = ` +m.

We proceed similarly for products and ratios. n

Comment: It is important to point out that the fact that f + g has a limit
at a does not imply that either f or g has a limit at that point; take for
example the functions f(x) = 5 + 1�x and g(x) = 6 − 1�x at x = 0.
Example: What does it take now to show that1

lim
x→a

x3 + 7x5

x2 + 1 = a3 + 7a5
a2 + 1 .

We need to show that for all c ∈ R
lim
a

c = c,
and that for all k ∈ N,

lim
x→a

xk = ak,
which follows by induction once we show that for k = 1. ▲▲▲
We conclude this section by extending the notion of a limit to that of a
one-sided limit.

Definition 4.11 Let f ∶ A → B with a having a right neighborhood in A. We
say that the limit on the right ( �0*/*/ -&"#) of f at a is `, if for every " > 0,
there exists a � > 0, such that

f(x) ∈ B (`, ") whenever x ∈ B○+(a, �).
1
This is the standard notation to what we write in these notes as

f ∶ ⇠ � ⇠3 + 7⇠5
⇠2 + 1 and lim

a
f = a3 + 7a5

a2 + 1 .
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We write,

lim
a+ f = `.

An analogous definition is given for the limit on the left (�-!/:/ -&"#).

a

l

a

l
! !

"

Player A: This is my !.
Player B: No problem.  Here is my ".

Since Player B can find a " for every choice of ! made by Player A,it fo!ows tha" 
the right#limit of f at a is l.

The following is easily proved:

Theorem 4.12 [Heine’s characterization for one-sided limits] Let f ∶ A → B
with a having a right neighborhood in A. Then,

lim
a+ f = `

if and only if for every sequence (xn) in a right neighborhood of a that con-
verges to a,

lim
n→∞f(xn) = `.

4.7 Limits and order

In this section we will prove a number of properties pertinent to limits and
order.
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Proposition 4.13 Let f and g be two functions defined in a punctured neigh-
borhood U of a point a. Suppose that

f(x) < g(x) ∀x ∈ U,
and that

lim
a

f = ` and lim
a

g =m.

Then ` ≤m.

Comment: Note that even though f(x) < g(x) is a strict inequality, the
resulting inequality of the limits is in a weak sense. To see what this must
be the case, consider the example

f(x) = �x� and g(x) = 2�x�.
Even though f(x) < g(x) in an open neighborhood of 0,

lim
0

f = lim
0

g = 0.

Proof : By Heine’s characterization, for every sequence U ⊃ (xn)→ a,

∀n ∈ N f(xn) < g(xn),
and

lim
n→∞f(xn) = ` and lim

n→∞ g(xn) =m.

It follows from the parallel proposition for sequences that ` ≤m. n

Proposition 4.14 Let f and g be two functions defined in a punctured neigh-
borhood U of a point a. Suppose that

lim
a

f = ` and lim
a

g =m,

with ` <m. Then there exists a � > 0 such that

(∀x ∈ B○(a, �)) ∶ (f(x) < g(x)).
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Comment: This time both inequalities are strong.

Proof : Take again disjoint neighborhoods V1 of ` and V2 of m; every element
in V2 is greater than every element in V1. By definition of the limit, there
exist �1 > 0 and �2 > 0 such that

(∀x ∈ B○(a, �1))(f(x) ∈ V1) and (∀x ∈ B○(a, �2))(g(x) ∈ V2).
Letting � =min(�1, �2),

(∀x ∈ B○(a, �))(f(x) ∈ V1 and g(x) ∈ V2),
which implies that (∀x ∈ B○(a, �))(f(x) < g(x)).

n

Proposition 4.15 [“Sandwich”] Let f, g, h be defined in a punctured neighbor-
hood U of a. Suppose that

(∀x ∈ U) ∶ (f(x) ≤ g(x) ≤ h(x)),
and

lim
a

f = lim
a

h = `.
Then

lim
a

g = `.

Proof : For every U ⊃ (xn)→ a,

f(xn) ≤ g(xn) ≤ h(xn),
and by Heine’s characterization,

lim
n→∞f(xn) = lim

n→∞h(xn) = `.
It follows from the sandwich theorem for sequences that

lim
n→∞ g(xn) = `.
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Since this holds for every such sequence (xn), it follows from Heine’s charac-
terization that

lim
a

g = `.
n —

36h(2017)—

Definition 4.16 Let f ∶ A→ B and let U ⊂ A. We say that f is (upper/lower)
bounded in U if the set {f(x) ∶ x ∈ U}
is (upper/lower) bounded.

Definition 4.17 Let f ∶ A → B and a ∈ A an interior point. We say that
f is locally bounded (�;*/&8/ %/&2() near a if there exists a punctured
neighborhood U of a, such that f is bounded in U . Equivalently, there exists
a � > 0 such that the set

{f(x) ∶ x ∈ B○(a, �)}
is bounded.

Comment: As in the previous section, we consider punctured neighborhoods
of a point, and we don’t even care if the function is defined at that point.

Proposition 4.18 Let f be defined in a punctured neighborhood U of a. If the
limit

lim
a

f = `
exists, then f is locally bounded near a.

Proof : Immediate from the definition of the limit. n

Proposition 4.19 Let f be defined in a punctured neighborhood of a point a.
Then,

lim
a

f = ` if and only if lim
a
(f − `) = 0.

Proof : Very easy. n
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Proposition 4.20 Let f and g be defined in a punctured neighborhood of a
point a. Suppose that

lim
a

f = 0
whereas g is locally bounded near a. Then,

lim
a
(fg) = 0.

Proof : Very easy. n

Comment: Note that we do not require g to have a limit at a.

With the above tools, here is another way of proving the product property
of the arithmetic of limits (this time without " and �).

Proposition 4.21 [Arithmetic of limits, product] Let f, g be defined in a punc-
tured neighborhood of a point a, and

lim
a

f = ` and lim
a

g =m.

Then
lim
a
(fg) = `m.

Proof : Write
fg − `m = (f − `)����������������

limit zero

g�
loc. bdd���������������������������������������������������������������������

limit zero

− ` (g −m)�����������������������
limit zero���������������������������������
limit zero

.

n

4.8 Continuity

Intuitively, we think of a function as continuous if “we can draw its graph
without lifting the pencil”. This is a very naive approach, as we will see lots
of delicate examples of continuity.
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Definition 4.22 A function f ∶ A → R is said to be continuous (�%5*79) at
an inner point a ∈ A, if it has a limit at a, and

lim
a

f = f(a).
Comment: If f has a limit at a and the limit di↵ers from f(a) (or that f(a) is
undefined) , then we say that f has a removable discontinuity (;&5*79 *!
�%8*-2) at a.

Examples:

1. We saw that the function f(x) = x2 has a limit at 3, and that this limit
was equal 9. Hence, f is continuous at x = 3.

2. We saw that the function f(x) = 1�x has a limit at any a > 0 and that
this limit equals 1�a. By a similar calculation we could have shown that
it has a limit at any a < 0 and that this limit also equals 1�a. Hence, f
is continuous at all x ≠ 0. Since f is not even defined at x = 0, then it
is not continuous at that point.

3. The function f(x) = x sin 1�x is continuous at all x ≠ 0. At zero it is
not defined, but if we rather define

f(x) = �������
x sin 1�x x ≠ 0
x x = 0,

then f is continuous for all x ∈ R (by the bounded times limit zero
argument).

4. The function

f ∶ x� �������
x x ∈ Q
0 x �∈ Q,

is continuous at x = 0, however it is not continuous at any other point,
because the limit of f at a ≠ 0 does not exist.

5. The elementary functions sin and cos are continuous everywhere. To
prove that sin is continuous, we need to prove that for every " > 0 there
exists a � > 0 such that

� sinx − sina� < " whenever x ∈ B○(a, �).
We will take it for granted at the moment.
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Our theorems on limit arithmetic imply right away similar theorems for con-
tinuity:

Theorem 4.23 If f ∶ A→ R and g ∶ A→ R are continuous at a ∈ A then f + g
and f ⋅ g are continuous at a. Moreover, if f(a) ≠ 0 then 1�f is continuous
at a.

Proof : Obvious. n

Comment: Recall that in the definition of the limit, we said that the limit of
f at a is ` if for every " > 0 there exists a � > 0 such that

�f(x) − `� < " whenever x ∈ B○(a, �).
There was an emphasis on the fact that the point x itself is excluded. Con-
tinuity is defined as that for every " > 0 there exists a � > 0 such that

�f(x) − f(a)� < " whenever x ∈ B○(a, �).
Note that we may require that this be true whenever x ∈ B (a, �). There is
no need to exclude the point x = a. In other words,

f is continuous at a ⇐⇒ (∀" > 0)(∃� > 0)(∀x ∈ B (a, �))(f(x) ∈ B (f(a), ")).

With that, we have all the tools to show that a function like, say,

f(x) = sin2 x + x2 + x4 sinx

1 + sin2 x

is continuous everywhere in R. But what about a function like sinx2. Do
we have the tools to show that it is continuous. No. We don’t yet have a
theorem for the composition of continuous functions.

Theorem 4.24 Let g ∶ A→ B and f ∶ B → C. Suppose that g is continuous at
an inner point a ∈ A, and that f is continuous at g(a) ∈ B, which is an inner
point. Then, f ○ g is continuous at a.
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Proof : Since g is continuous at a and f is continuous at g(a), for all " > 0
(∃�1 > 0)(∀y ∈ B (g(a), �1))(f(y) ∈ B (f(g(a)), ")),

and (∃�2 > 0)(∀x ∈ B (a, �2))(g(x) ∈ B (g(a), �1)).
It follows that

(∀x ∈ B (a, �2))(f(g(x)) ∈ B (f(g(a)), ")),
i.e., f ○ g is continuous at a. n

Definition 4.25 A function f is said to be right-continuous (�0*/*/ %5*79)
at a if

lim
a+ f = f(a).

A similar definition is given for left-continuity ( �-!/:/ %5*79).

So far, we have only dealt with continuity at points. Usually, we are interested
in continuity on intervals.

Definition 4.26 A function f is said to be continuous on an open interval(a, b) if it is continuous at all x ∈ (a, b). It is said to be continuous on a
closed interval [a, b] if it is continuous on the open interval, and in addition
it is right-continuous at a and left-continuous at b.

Comment: We usually think of continuous function as “well-behaved”. One
should be careful with such interpretations; see for example

f(x) = �������
x sin 1

x x ≠ 0
0 x = 0.

Example: Here is another “crazy function” due to Johannes Karl Thomae
(1840-1921):

r(x) = �������
1�q x = p�q
0 x �∈ Q,

where x = p�q assumes that x is rational in reduced form. This function has
the wonderful property of being continuous at all x �∈ Q and discontinuous
at all x ∈ Q (this is because its limit is everywhere zero). It took some more
time until Vito Volterra proved in 1881 that there can be no function that is
continuous on Q and discontinuous on R �Q. ▲▲▲—

38h(2017)—
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4.9 Theorems about continuous functions

Theorem 4.27 Suppose that f is continuous at a and f(a) > 0. Then there
exists a neighborhood of a in which f(x) > 0. That is,

(∃� > 0)(∀x ∈ B (a, �))(f(x) > 0).

Comment: An analogous theorem holds if f(a) < 0. Also, a one-sided version
can be proved, whereby if f is right-continuous at a and f(a) > 0, then

(∃� > 0)(∀x ∈ B+(a, �))(f(x) > 0).

Comment: Note that continuity is only required at the point a.

Proof : Let V be a neighborhood of f(a) that does not contain zero, i.e., all
its elements are positive. Since f is continuous at a, there exists a � > 0 such
that (∀x ∈ B (a, �))(f(x) ∈ V ).

n

This theorem can be viewed as a lemma for the following important theorem:

Theorem 4.28 [Intermediate value theorem �.**1*"% +93 )5:/] Suppose f is
continuous on an interval [a, b], with f(a) < 0 and f(b) > 0. Then, there
exists a point c ∈ (a, b), such that f(c) = 0.

Comment: Continuity is required on the whole intervals, for consider f ∶[0,1]→ R:

f(x) = �������
−1 0 ≤ x < 1

2+1 1
2 ≤ x ≤ 1.
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Comment: If f(a) > 0 and f(b) < 0 the same conclusion holds for just replace
f by (−f).
Proof : Consider the set

A = {x ∈ [a, b] ∶ f(y) < 0 for all y ∈ [a, x]}.
The set is non empty for it contains a. The previous theorems guarantees the
existence of a � > 0 such that [a, a + �) ⊆ A. This set is also upper bounded
by b. The previous theorem guarantees the existence of a � > 0 such that
b − � is an upper bound for A. By the axiom of completeness, there exists a
number c ∈ (a, b) such that

c = supA.

f!a"

bc

f!b"

a

A

Suppose it were true that f(c) < 0. By the previous theorem, there exists a
� > 0 such that

f(x) < 0 whenever c ≤ x ≤ c + �,
Because c is the least upper bound of A it follows that also

f(x) < 0 whenever x < c,
i.e., f(x) < 0 for all x ∈ [a, c + �], which means that c + � ∈ A, contradicting
the fact that c is an upper bound for A.

Suppose it were true that f(c) > 0. By the previous theorem, there exists a
� > 0 such that

f(x) > 0 whenever c − � ≤ x ≤ c,
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which implies that c − � is an upper bound for A, i.e., c cannot be the least
upper bound of A. By the trichotomy property, we conclude that f(c) = 0.
n

Proof :[Alternative proof] Suppose, by contradiction, that f does not vanish
in [a, b]. Construct a sequence of segments [an, bn] as follows: first,

[a1, b1] = [a, b].
Then,

[an+1, bn+1] =
�������
[an, (an + bn)�2] f((an + bn)�2) > 0[(an + bn)�2, bn] f((an + bn)�2) < 0.

By construction, for all n ∈ N,
f(an) < 0 and f(bn) > 0.

By Cantor’s lemma, the sequence an and bn converge to the same limit, say,
c. Since f is continuous,

lim
n→∞f(an) = lim

n→∞f(bn) = f(c).
However,

lim
n→∞f(an) ≤ 0 and lim

n→∞f(bn) ≥ 0,
from which we obtain that f(c) = 0, contradicting our assumption. n

Corollary 4.29 If f is continuous on a closed interval [a, b], and ↵ ∈ R sat-
isfies

f(a) < ↵ < f(b),
then there exists a point c ∈ (a, b) at which f(c) = ↵.

Proof : Apply the previous theorem for g(x) = f(x) − ↵. n

Lemma 4.30 If f is continuous at a, then there is a � > 0 such that f has an
upper bound on the interval (a − �, a + �).
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Proof : This is obvious, for by the definition of continuity, there exists a � > 0,
such that

f(x) ∈ B (f(a),1) whenever x ∈ B (a, �) ,
i.e., f(x) < f(a) + 1 on this interval. n

Theorem 4.31 [Karl Theodor Wilhelm Weierstraß] If f is continuous on[a, b] then it is bounded from above of that interval, that is, there exists a
number M , such that f(x) <M for all x ∈ [a, b].

Comment: Here too, continuity is needed on the whole interval, for look at
the “counter example” f ∶ [−1,1]→ R,

f(x) = �������
1�x x ≠ 0
0 x = 0.

Comment: It is crucial that the interval [a, b] be closed. The function f ∶(0,1] → R, f ∶ x � 1�x is continuous on the semi-open interval, but it is not
bounded from above.

Proof : Let

A = {x ∈ [a, b] ∶ f is bounded from above on [a, x]}.
By the previous lemma, there exists a � > 0 such that a + � ∈ A. Also A is
upper bounded by b, hence there exists a c ∈ (a, b], such that

c = supA.
We claim that c = b, for if c < b, then by the previous lemma, there exists a
neighborhood of c in which f is upper bounded, and c cannot be an upper
bound for A.

We have thus shown that for every � > 0, f is bounded on the interval [a, b−�].
It remains to show that f is bounded on [a, b]. Indeed, there exists an ⌘ > 0
such that f is bounded on (b − ⌘, b]. In addition, f is bounded on [a, b − ⌘],
which concludes the proof. n
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Proof :[Alternative proof] Suppose that f were not upper bounded on [a, b].
This means that there exists a sequence (xn) ⊂ [a, b] such that (f(xn)) tends
to infinity. By Bolzano-Weierestrass, there exists a converging subsequence,
yk = xnk

,
lim
k→∞yk = c.

We first argue that c ∈ [a, b]. Indeed, since a ≤ yk ≤ b, then by the properties
of limits and order a ≤ c ≤ b. Since f is continuous on [a, b] it follows that

∞ = lim
k→∞f(yk) = f(c),

which is a contradiction. n

Comment: In essence, this theorem is based on the fact that if a continuous
function is bounded up to a point, then it is bounded up to a little farther. To
be able to take such increments up to b we need the axiom of completeness.

Comment: With very little adaptation, this proof holds also for functions
Rn → R. —

40h(2017)—

Theorem 4.32 [Weierstraß, Maximum principle (�.&/*28/% 0&983)] If f is
continuous on [a, b], then there exists a point c ∈ [a, b] such that

f(x) ≤ f(c) for all x ∈ [a, b].
(Of course, there is a corresponding minimum principle.)

Proof : We have just proved that f is upper bounded on [a, b], i.e., the set

A = {f(x) ∶ a ≤ x ≤ b}
is upper bounded. This set is non-empty for it contains the point f(a). By
the axiom of completeness it has a least upper bound, which we denote by

↵ = supA.
We need to show that this supremum is in fact a maximum; that there exists
a point c ∈ [a, b], for which f(c) = ↵.
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Suppose, by contradiction, that this were not the case, i.e., that f(x) < ↵ for
all x ∈ [a, b]. We define then a new function g ∶ [a, b]→ R,

g = 1

↵ − f .
This function is defined everywhere on [a, b] (since we assumed that the de-
nominator does not vanish), it is continuous and positive. We will show that
g is not upper bounded on [a, b], contradicting thus the previous theorem.
Indeed, since ↵ = supA:

For all M > 0 there exists a y ∈ [a, b] such that f(y) > ↵ − 1�M.

For this y,

g(y) > 1

↵ − (↵ − 1�M) =M,

i.e., for every M > 0 there exists a point in [a, b] at which f takes a value
greater than M . n

Proof :[Alternative proof] By the property of the supremum, there exists a se-
quence (xn) ⊂ [a, b] such that (f(xn)) tends to ↵. By Bolzano-Weierestrass,
there exists a converging subsequence, yk = xnk

,

lim
k→∞yk = c.

Once again, we claim that c ∈ [a, b]. Since f is continuous on [a, b] it follows
that

↵ = lim
k→∞f(yk) = f(c),

which proves that c is a maximum point. n

Comment: Here too we needed continuity on a closed interval, for consider
the “counter examples”

f ∶ [0,1)→ R f(x) = x2,

and

f ∶ [0,1]→ R f(x) = �������
x2 x < 1
0 x = 1 .

These functions do not attain a maximum in [0,1].
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Theorem 4.33 If n ∈ N is odd, then the equation

f(x) = xn + an−1xn−1 + . . . a1x + a0 = 0
has a root (a solution) for any set of constants a0, . . . , an−1.

Proof : The idea it to show that existence of points a, b for which f(b) > 0
and f(a) < 0, and apply the intermediate value theorem, based on the fact
that polynomials are continuous. The only technical issue is to find such
points a, b in a way that works for all choices of a0, . . . , an−1.
Let

M =max(1,2n�a0�, . . . ,2n�an−1�).
Then for �x� >M ,

f(x)
xn
= 1 + an−1

x
+ ⋅ ⋅ ⋅ + a0

xn

(u + v ≥ u − �v�) ≥ 1 − �an−1��x� − ⋅ ⋅ ⋅ − �a0��xn�
(�xn� > �x�) ≥ 1 − �an−1��x� − ⋅ ⋅ ⋅ − �a0��x�
(�x� > �ai�) ≥ 1 − �an−1�

2n�an−1� − ⋅ ⋅ ⋅ −
�a0�

2n�a0�
= 1 − n ⋅ 1

2n
> 0.

Since the sign of xn is the same as the sign of x, it follows that f(x) is positive
for x ≥M and negative for x ≤ −M , hence there exists a a < c < b such that
f(c) = 0. n

The next theorem deals with the case where n is even:

Theorem 4.34 Let n be even. Then the function

f(x) = xn + an−1xn−1 + . . . a1x + a0 = 0
has a minimum. Namely, there exists a c ∈ R, such that f(c) ≤ f(x) for all
x ∈ R.
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Proof : The idea is simple. We are going to show that there exists a b > 0
for which f(x) > f(0) for all �x� ≥ b. Then, looking at the function f in the
interval [−b, b], we know that it assumes a minimum in this interval, i.e., that
there exists a c ∈ [−b, b] such that f(c) ≤ f(x) for all x ∈ [−b, b]. In particular,
f(c) ≤ f(0), which in turn is less than f(x) for all x �∈ [−b, b]. It follows that
f(c) ≤ f(x) for all x ∈ R.
It remains to find such a b. Let M be defined as in the previous theorem.
Then, for all �x� >M , using the fact that n is even,

f(x) = xn �1 + an−1
x
+ ⋅ ⋅ ⋅ + a0

xn
�

≥ xn �1 − �an−1��x� − ⋅ ⋅ ⋅ − �a0��xn��
≥ xn �1 − �an−1��x� − ⋅ ⋅ ⋅ − �a0��x� �
≥ xn �1 − �an−1�

2n�an−1� − ⋅ ⋅ ⋅ −
�a0�

2n�a0��
= 1

2
xn.

Let then b > max(M, n
�
2�f(0)�), from which follows that f(x) > f(0) for�x� > b. This concludes the proof. n

Corollary 4.35 Consider the equation

f(x) = xn + an−1xn−1 + . . . a1x + a0 = ↵
with n even. Then there exists a number m such that this equation has a
solution for all ↵ ≥m but has no solution for ↵ <m.

Proof : According to the previous theorem there exists a c ∈ R such that f(c)
is the minimum of f . If ↵ < f(c) then for all x, f(x) ≥ f(c) > ↵, i.e., there
is no solution. For ↵ = f(c), c is a solution. For ↵ > f(c) we have f(c) < ↵
and for large enough x, f(x) > ↵, hence, by the intermediate value theorem
a root exists. n—

42h(2017)—
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4.10 Infinite limits and limits at infinity

In this section we extend the notions of limits discussed in previous sections
to two cases: (i) the limit of a function at a point is infinite, and (ii) the
limit of a function at infinity is either finite or infinite. Before we start
recall: infinity is not a real number!.

Definition 4.36 (The limit at a point is infinite) Let f ∶ A → B be a func-
tion. We say that the limit of f at a is infinity, denoted

lim
a

f =∞,

if (∀M ∈ R)(∃� > 0)(∀x ∈ B○(a, �))(f(x) >M).
Similarly,

lim
a

f = −∞
if (∀M ∈ R)(∃� > 0)(∀x ∈ B○(a, �))(f(x) <M).
Example: Consider the function

f ∶ x� �������
1��x� x ≠ 0
17 x = 0.

The limit of f at zero is infinity. Indeed, for every M > 0 let � = 1�M . Then

(∀x ∶ 0 < �x� < �)(f(x) = 1��x� > 1�� =M).
▲▲▲

Definition 4.37 (The limit at infinity is finite) Let f ∶ R → R and let ` ∈ R.
We say that

lim∞ f = `,
if (∀" > 0)(∃M ∈ R)(∀x >M)(f(x) ∈ B (`, ")).
Similarly,

lim−∞ f = `
if (∀" > 0)(∃M ∈ R)(∀x <M)(f(x) ∈ B (`, "))
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Example: Consider the function f ∶ x � 3 + 1�x2. Then the limit of f at
infinity is 3. Indeed, for all " > 0 let M = 1�√". Then,

(∀x >M)(�f(x) − 3� = 1�x2 < 1�M2 = ").
▲▲▲

Comment: These definitions are in full agreement with all previous definitions
of limits, if we adopt the idea that “neighborhoods of infinity” are sets of the
form (M,∞).
Finally,

Definition 4.38 (The limit at infinity is infinite) Let f ∶ R→ R. We say that

lim∞ f =∞,

if (∀K ∈ R)(∃M ∈ R)(∀x >M)(f(x) >K).
Comment: All those definitions have their natural analog with ∞ replaced
by (−∞).

4.11 Monotonic functions

(To be addressed in tutoring session.)

4.12 Inverse functions

Suppose that f ∶ A → B is one-to-one and onto. This means that for every
b ∈ B there exists a unique a ∈ A, such that f(a) = b. This property defines a
function from B to A. In fact, this function is also one-to-one and onto. We
call this function the function inverse to f ( �;*,5&% %*781&5), and denote
it by f−1 (not to be mistaken with 1�f). Thus, f−1 ∶ B → A,

f−1(y) = (!x ∈ A ∶ f(x) = y).
Di↵erently stated,

f−1(y) = x ⇐⇒ f(x) = y.
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Definition 4.39 If a function f ∶ A→ B has an inverse f−1 ∶ B → A then it is
called invertible (�%,*5%).

Proposition 4.40 Let f ∶ A→ B be one-to-one and onto. Then,

f−1 ○ f = IdA and f ○ f−1 = IdB.

Proof : This is immediate from the definition. Let x ∈ A, then
f−1(f(x))

is the number if A, which is mapped by f to f(x). This number is of course
x. n

Comment: Recall that a function f ∶ A → B can be defined as a subset of
A ×B,

Graph f = {(a, b) ∶ f(a) = b}.
The inverse function can be defined as a subset of B ×A: it is all the pairs(b, a) for which (a, b) ∈ Graph f , or

Graph f−1 = {(b, a) ∶ f(a) = b} = {(b, a) ∶ (a.b) ∈ Graph f}.

Example: Let f ∶ [0,1] → R be given by f ∶ x � x2. This function is one-
to-one and its image is the segment [0,1]. Thus we can define an inverse
function f−1 ∶ [0,1]→ [0,1] by

f−1(y) = (!x ∈ [0,1] ∶ x2 = y),
i.e., it is the (positive) square root. ▲▲▲
Definition 4.41 A set I ⊂ R is called an interval ( �3)8/) if a, b ∈ I implies
that (a, b) ⊂ I.
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Theorem 4.42 Let I be an interval. If f ∶ I → R is continuous and one-to-one,
then f is either strictly monotonically increasing, or strictly monotonically
decreasing.

Comment: Continuity is crucial. The function f ∶ [0,2]→ R,

f(x) = �������
x 0 ≤ x ≤ 1
6 − x 1 < x ≤ 2

is one-to-one with image [0,1]∪[4,5), but it is not monotonic. The fact that
I is an interval is also crucial. The function g ∶ [0,1] ∪ [2,3]→ R,

g(x) = �������
x x ∈ [0,1]
−x x ∈ [2,3]

is continuous, but is not monotonic.

Proof : First, note that if f is one-to-one, then x ≠ y implies f(x) ≠ f(y).
We first prove that for every three points a < b < c, either

f(a) < f(b) < f(c), or f(a) > f(b) > f(c).
Suppose that f(a) < f(c) and that, by contradiction, f(b) < f(a) (see Fig-
ure 4.1). By the intermediate value theorem, there exists a point x ∈ (b, c)
such that f(x) = f(a), contradicting the fact that f is one-to-one. Similarly,
if f(b) > f(c), then there exists a point y ∈ [a, b] such that f(y) = f(c).
Thus, f(a) < f(c) implies that f(a) < f(b) < f(c). We proceed similarly if
f(a) > f(c).
It follows as once that for every four points a < b < c < d, either

f(a) < f(b) < f(c) < f(d) or f(a) > f(b) > f(c) > f(d).
Fix now a and b, and suppose w.l.o.g that f(a) < f(b) (they can’t be equal).
Then, for every x, y such that x < y, we apply the above arguments to the
four points a, b, x, y (whatever their order is) and conclude that f(x) < f(y).

n
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a b c

f!b"

f!a"

f!c"

Figure 4.1: Illustration of proof

Proposition 4.43 Let f ∶ [a, b]→ R be one-to-one and monotonically increas-
ing (a similar proposition holds if f is monotonically decreasing). Then,

Imagef = [f(a), f(b)].
In particular, f maps closed segments into closed segments2.

Proof : Since f is monotonically increasing, it assumes its minimum at a and
its maximum at b, i.e.,

Imagef ⊂ [f(a), f(b)].
It remains to prove the reverse inclusion [f(a), f(b)] ⊂ Imagef . This follows
from the intermediate-value theorem. n —
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Theorem 4.44 If f ∶ [a, b]→ R is invertible and continuous then so is f−1.

Proof : Let y ∈ Imagef and let x = f−1(y). We need to show that for every
neighborhood V of y there exists a neighborhood U of x such that

(∀y′ ∈ V )(f−1(y′) ∈ U).
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Let (y − �, y + �) be a neighborhood y. f is monotonic, and without loss of
generality we can assume it is increasing. Consider then the set

U = (f−1(y − �), f−1(y + �)).
Since monotonic continuous functions map open segments to open segments,
U is an open neighborhood of x. By monotonicity,

(∀y′ ∈ V )(f−1(y′) ∈ U).

f!x0 "=y0

f#1!y0"=x0

f!x0 +!"

f!x0 #!"

!

"

n

Example: The function f ∶ R → (0,∞), f(x) = ex = expx, is continuous and
invertible (it is monotonically increasing). Its inverse,

exp−1 ∶ (0,∞)→ R,

denoted log (or ln) is therefore also continuous. ▲▲▲
Example: The function f ∶ (−⇡�2,⇡�2) → R, f(x) = tanx, is continuous and
invertible (it is monotonically increasing). Its inverse,

tan−1 ∶ R→ (−⇡�2,⇡�2),
denoted also arctan is therefore also continuous. ▲▲▲
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4.13 Uniform continuity

Recall the definition of a continuous function: a function f ∶ (a, b) → R is
continuous on the interval (a, b), if it is continuous at every point in the
interval. That is, for every x ∈ (a, b) and every " > 0, there exists a � < 0,
such that (∀y ∈ (a, b) ∩B (x, �))(�f(y) − f(x)� < ").
In general, we expect � to depend both on x and on ". In fact, the way we
set it here, this definition applies for continuity on a closed interval as well
(i.e, it includes one-sided continuity as well). Let’s follows all the quantifiers:
f is continuous on [a, b] if
(∀x ∈ [a, b])(∀" > 0)(∃� > 0)(∀y ∈ [a, b] ∩B (x, �))(�f(y) − f(x)� < ").

Let us re-examine two examples:

Example: Consider the function f ∶ (0,1) → R, f ∶ x � x2. This function is
continuous on (0,1). Why? Because for every x ∈ (0,1), and every y ∈ (0,1),

�f(y) − f(x)� = �y2 − x2� = �y − x��y + x� ≤ (x + 1)�y − x�.
Thus, given x and " > 0, if we choose � = �(", x) = "�(x + 1), then
�f(y) − f(x)� < " whenever �x − y� < �(", x) and y ∈ (0,1).

Thus, � depends both on " and x. However, it is always legitimate to replace
� by a smaller number. If we take � = "�2, then the same � fits all points x.▲▲▲
Example: Consider next the function f ∶ (0,1) → R, f ∶ x � 1�x. This
function is also continuous on (0,1). Why? Given x ∈ (0,1) and y ∈ (0,1),

�f(x) − f(y)� = �x − y�
xy

= �x − y�
x[x + (y − x)] .

If we take �(", x) =min(x�2, "x2�2), then
�x − y� < � implies �f(x) − f(y)� < �

x(x − �) < ".
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Here, given ", the closer x is to zero, the smaller is �(", x). There is no way
we can find a � = �(") that would fit all x. ▲▲▲
Thus, there is a fundamental di↵erence between these two examples. In the
first, we could choose � independently of x. If this is the case, then we can
set x after having chosen � and get

(∀" > 0)(∃� > 0)(∀x ∈ [a, b])(∀y ∈ [a, b] ∩B (x, �))(�f(y) − f(x)� < "),
which amounts to

(∀" > 0)(∃� > 0)(∀x, y ∈ [a, b] ∶ �x − y� < �)(�f(y) − f(x)� < ").
These two examples motivate the following definition:

Definition 4.45 f ∶ A→ B is said to be uniformly continuous on A (%5*79
�%&&: %$*/") if for every " > 0 corresponds a � > 0, such that

(∀x, y ∈ [a, b] ∶ �x − y� < �)(�f(y) − f(x)� < ")
Note that x and y play here symmetric roles. (The adjective “uniform” means
that the same number can be used for all points.)

What is the essential di↵erence between the two above examples? The func-
tion x� x2 could have been defined on the closed interval [0,1] and it would
have been continuous there too. In contrast, there is no way we could have
defined the function x � 1�x as a continuous function on [0,1], even if we
took care of its value at zero. We have already seen examples where conti-
nuity on a closed interval had strong implications (ensures boundedness and
the existence of a maximum). This is also the case here. We will prove that
continuity on a closed interval implies uniform continuity :

Theorem 4.46 If f is continuous on [a, b] then it is uniformly continuous on
that interval.

Proof : Let’s proceed by contradiction. Suppose that f were not uniformly
continuous on [a, b]. Then,

(∃" > 0)(∀� > 0)(∃x, y ∈ [a, b] ∶ �x − y� < �)(�f(y) − f(x)� ≥ ").
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Let " > 0 be that number. Then, for every n ∈ N there exist xn, yn ∈ [a, b]
such that

�xn − yn� < 1

n
and �f(xn) − f(yn)� ≥ ".

Since xn is a bounded sequence, it has a converging subsequence (xnk
). Con-

sider now the subsequence (ynk
). Since it is bounded, it has a converging

sub-subsequence (ynk`
). Since (xnk`

) is a subsequence of a convergent se-
quence, it converges as well. Denote,

↵ = lim
`→∞xnk`

and � = lim
`→∞ynk`

.

Since

�xnk`
− ynk`

� < 1

nk`

,

it follows from limit arithmetic that ↵ = �. Thus, xnk`
and ynk`

both converge
to the same limit. On the other hand, since for all `

�f(xnk`
) − f(ynk`

)� > 0,
the sequences f(xnk`

) and f(ynk`
) cannot both converge to the same limit,

contradicting the continuity of f . n

Comment: In this course we will make use of uniform continuity only once,
when we study integration.

Examples:

1. Consider the function f(x) = sin(1�x) defined on (0,1). Even though
it is continuous, it is not uniformly continuous.

2. Consider the function Id ∶ R → R. It is easy to see that it is uniformly
continuous. The function Id ⋅ Id, however, is continuous on R, but
not uniformly continuous. Thus, the product of uniformly continuous
functions is not necessarily uniformly continuous.

3. Finally the function f(x) = sinx2 is continuous and bounded on R, but
it is not uniformly continuous.

—
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