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Abstract

We consider a two-dimensional cellular vertex model, modeling the mechanics of
epithelial tissues. The energy of a planar configuration penalizes deviations in each
cell from a reference perimeter P0 and a reference area A0. We study the variational
limit of this model as the cell size tends to zero, obtaining a continuum variational
model. For P 2

0 /A0 below a critical threshold, which corresponds to an isoperimetric
constraint, the system is residually-stressed—there are no zero-energy states. For
P 2

0 /A0 above this threshold, the zero-energy states are highly degenerate, allowing
in particular for the formation of microstructures, which are not captured by formal
long-wavelength expansions.
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1 Introduction

Solid mechanics, and in particular the theory of elasticity, was developed orig-
inally to describe the statics and the dynamics of inanimate solids and struc-
tures. As a consequence, the classical theory does not capture many phenom-
ena occurring in natural and synthetic systems. For example, a fundamental
assumption in classical elasticity is the existence of a global stress-free ref-
erence configuration. There are, however, solids for which this assumption
fails—solids that are residually-stressed even in the absence of external loads.
Another class of materials which do not fall within the premises of classical
solid mechanics is materials having a degenerate family of stress-free configu-
rations, i.e., materials whose internal structure is non-rigid.

Each of these two classes of materials calls for a different generalization of
the theory of elasticity. In the former case, a geometric formulation of elastic-
ity generalizes classical elasticity by assuming the existence of local reference
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stress-free configurations, quantified in terms of local geometric fields (e.g. a
reference metric tensor). Geometric incompatibility emerges when these el-
ements are “sewed” together to form a macroscopic solid. Physical systems
with this property are torn plastics [SMS04], self-assembled macro-molecules
[AAMS14,ZGDS19], growing solids [Yav10,ZT18] and responsive elastic ma-
terials [KES07,KHHS12], to name only a few.

In the latter case, where each element of the structure may acquire multi-
ple local stress-free configurations, a continuum theoretical framework is still
not well-established. We emphasize that this class does not include plastic
deformations, which transform a material to new reference states via a irre-
versible deformation. Here, the transition between the multiple reference states
is reversible. Inanimate mechanical systems of this type include one- and two-
dimensional arrays of rigid elements coupled via hinges and pivots, forming for
example origami and kirigami metamaterials, as well as topological mechanics
in Maxwell lattices [KL14,CUV14,CLE+16,RB17,MES+19].

Many of the aforementioned systems that present peculiar mechanics are or-
ganic materials [SPM+05,DJW05,SLS+07]. Moreover, the lack of a unique
stress-free configuration is not the only premise that may be violated. For ex-
ample, a certain class of active solids not conserving mechanical energy was
shown to satisfy an anomalous Hooke law, which is not derived from an en-
ergy [SSB+19]. More generally, the activity of local elements breaks the time
reversal symmetry and leads to a rich and complex phenomenology [MJR+13].

In this paper, we consider a class of non-rigid systems motivated by the me-
chanics of epithelial tissues. An epithelium is an effectively two-dimensional
living cellular tissue, made of cells adhering to each other, leaving no gaps nor
voids (confluent phase). Experiments show that epithelia exhibit unusual me-
chanical properties including glassy dynamics, growth regulation via mechani-
cal stimuli, rigidity transitions, extreme dynamics, and more [AHT+10,AHT+11,Shr05,NMH+17,PKB+15,ABADP18,AP18,ABS+18];
see Figure 1.1. (Experiments on epithelial tissues serve here as a source of in-
spiration; the model under consideration is not meant to provide a realistic
description of such tissues.)

Like for many other biological systems, the mechanics of epithelia were mod-
eled both in the framework of continuum mechanics and in the framework
of discrete models. Continuum models have been proposed based on elastic
and viscoelastic theories to explain epithelia wrinkled pattern [HPJ11], fold
structures [KZ15] and fluidization [RBE+10]. These models were not derived
from microscopic mechanisms and are therefore purely phenomenological.

On the other hand, there are epithelial vertex models, in which the tissue is
modeled as a polygonal tiling of a two-dimensional domain, with each poly-
gon representing a cell. Biological and mechanical properties are encoded in
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Fig. 1.1. Polygonal modeling of Epithelial tissue. A soft jigsaw phase (A) and a
rigid polygonal phase (B) of Trichoplax adherence Epithelial tissue, adopted with
permission from Ref. [ABADP18]. Cadherin molecules are distributed along cells’
interfaces and induce negative line tension, which is balanced by cell contractility,
leading to a preferred cell perimeter P0. The preferred three-dimensional shape
of each cell as illustrated in bottom of panel (B) is reflected via a preferred cell
area A0 in the two-dimensional effective model. Upon defining the shape parameter
η ≡ P0/

√
A0, the rigid phase in (B) corresponds to small value of η for which no cell

can satisfy its reference area and perimeter simultaneously, and a polygonal phase
is obtained. An ordered rigid polygonal phase is observed in the Drosophila wing
epithelial cells (D,E), adopted with permission from Ref. [CAME05]. An illustration
of the triangulation of each cell is shown in (F). The phenomenology of hexagonal
(E) and triangular (F) tissue is qualitatively similar, justifying the reduction to the
triangular model.

a simplified energy function penalizing each cell for deviations from a ref-
erence area A0 and a reference perimeter P0, encoding microscopic proper-
ties as Cadherin molecules concentration and three-dimensional cell geometry
[FRA+07,SFR+10]. This energy, which depends on the network structure and
the position of the vertices will be referred to as the discrete mechanical energy.

Equilibrium configurations of the cellular model are postulated to be mini-
mizers of the discrete elastic energy [SFR+10]. Since living epithelial tissue
are in principle out of equilibrium, this assumption is still debatable. Nev-
ertheless, numerical implementations of epithelial vertex models have been
used to explain various phenomena, including tissue mechanics, the relation
between cell shape and rearrangements in the developing Drosophila embryo
[FRA+07,SFR+10,HTR+07] and fluidization in bronchial epithelium [PKB+15].
It was observed, in particular, that the dimensionless shape parameter η0 =
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P0/
√
A0 controls a phase transition, which can be interpreted as a transition

from a residually-stressed solid to an anomalously-soft phase.

Despite its success, the current study of epithelial vertex models is almost
exclusively limited to numerical simulations. A natural question is, whether
these vertex models have a continuum limit, and if they do, how do they
compare with other continuum models in material science. In the first at-
tempt to study the continuum model of the discrete epithelial vertex model
(with uniform hexagonal tiling) it was shown that in the stiff phase the lim-
iting linearized model (in the absence of cell-network remodeling) coincides
with elasticity theory of plates and shells [MHK+15]. In a more recent work
[MBM18], a continuum model for a quasi-static epithelial vertex models with
a similar geometry was derived using a formal long-wavelength expansion, and
successfully recovered the mechanics of both stiff and soft phases. Its outcome
can be viewed as a generalization of incompatible elasticity, where rather than
being endowed with one reference metric, the body manifold is endowed with
two smooth families of admissible reference metrics.

The goal of this paper is to study rigorously the homogenization problem
presented in [MBM18]. For the discrete model, we assume a regular triangular
graph of fixed topology (no cell remodeling)—triangles are the most rigid
polygons, hence the most convenient to work with. We formulate a family of
discrete models parametrized by a parameter ε > 0 representing the linear
size of a cell. Using the classical methods of the calculus of variations (e.g.,
[Dac08,Rin18]), we prove that the discrete models converge, as ε → 0, to a
limiting continuum model, which like the discrete models, penalizes deviations
in area and perimeter.

We show that the shape parameter η0 controls a transition from a residually-
stressed phase to a soft phase. In the soft phase, every state which preserves the
reference area and does not increase the reference perimeter has zero energy;
the ability to sustain perimeter-shortening deformations at no energetic cost
results from the occurrence of microstructures, which are not captured in a
formal long-wavelength expansion. Thus, even a triangular lattice model is less
rigid than one would naively expect; polygonal models of higher degree are
expected to exhibit even more floppiness provided that η0 is above a critical
threshold. Some further directions and some open question are presented in
the Discussion.

The analysis presented in this work relies on the theory of the calculus of vari-
ations, and specifically on the notion of variational convergence (also known as
Γ-convergence). While a research article cannot provide all the required back-
ground, we tried to our best to explain all the major steps in the analysis, and
interpret the results in a way that is accessible to a broad readership.
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2 The discrete cellular model

2.1 Geometric setting

In this section, we present the discrete cellular model. The formulation is cast
in a geometric framework, which will facilitate the derivation of the continuum
limit.

Let Ω ⊂ R2 be a compact domain with smooth boundary; we denote the
Euclidean metric on R2 by e, and use the same notation for the restriction of
the Euclidean metric in Ω. The Euclidean metric e is not viewed here as an
intrinsic metric of a solid body; its role is to induce base lengths and areas,
with respect to which other lengths and areas are defined. Inner-products and
norms with respect to e are denoted by (·, ·) and | · |, respectively.

Let a, b, c ∈ R2 be unit vectors forming angles of 120 degrees. In particular,

a + b + c = 0.

For later use, we note that for any linear map B ∈ Hom(R2,R2),

|B|2 =
2

3

(
|B(a)|2 + |B(b)|2 + |B(c)|2

)
,

where the norm on the left-hand side is the Frobenius norm (i.e., |B|2 =
Tr(BTB)). Since for every α, β, γ ≥ 0, α2 + β2 + γ2 ≤ (α + β + γ)2 ≤ 3(α2 +
β2 + γ2), it follows that

√
3√
2
|B| ≤ |B(a)|+ |B(b)|+ |B(c)| ≤ 3√

2
|B|. (2.1)

Throughout this work, we use the symbols . and & to denote inequalities up
to a multiplicative constant, i.e.,

f(x) . g(x)

means that there exists a constant C > 0 such that f(x) ≤ C g(x) for all
x. Whenever needed, we will specify on which parameters the multiplicative
constant depends. Thus, (2.1) takes the form

|B| . P(B) . |B| or P(B) ' |B|, (2.2)

where

P(B) = |B(a)|+ |B(b)|+ |B(c)| (2.3)
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Fig. 2.1. A triangle t ∈ Tε.

is the perimeter of an equilateral triangle of unit side length after being de-
formed by the linear transformation B.

For every ε > 0, let (Vε ⊂ Ω, Eε) be a regular graph forming equilateral
triangles of edge length ε. The edges are parallel to the vectors a,b and c. The
graph is assumed to be maximal (i.e., cannot be extended without exceeding
the boundaries of Ω). Thus, the Hausdorff distance between Ω and Vε is of
order ε (i.e., every point in Ω is at a distance of at most O(ε) from he nearest
point in Vε).

We denote by Tε the set of two-dimensional simplexes defined by the graph
structure, and by Ωε their union; by the maximality of Vε,

Area(Ω \ Ωε) . ε.

For a triangle t ∈ Tε, we denote its barycenter by xC(t) ∈ Ωε. We denote its
area by

Arearef(t) =
∫
t
dArea =

√
3ε2

4
, (2.4)

where dArea is the area form of e, and we denote by

Perimref(t) = 3ε (2.5)

its perimeter.

By construction, if p, q, r ∈ Ωε are the vertices of a triangle t ∈ Tε, where the
segment from p to q is along a, the segment from q to r is along b and the
segment from r to p is along c, then

q = p+ εa r = q + εb and p = r + εc (2.6)

(see Figure 2.1).
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2.2 The model

Fix ε > 0. A discrete configuration of the cellular structure is a mapping
fε : Vε → R2. Every discrete configuration fε induces distances between the
vertices Vε, and consequently, induces an actual area and actual perimeter
on every triangle t ∈ Tε. To every discrete configuration fε we associate two
energy contributions: a discrete area energy EA

ε (fε) and a discrete perimeter
energy EP

ε (fε), each penalizing for a different form of metric distortion.

The actual (signed) area of a triangle t with vertices p, q, r is given by

Area(t) =
(fε(q)− fε(p)) ∧ (fε(r)− fε(q))

2 e1 ∧ e2

, (2.7)

where {e1, e2} are the standard basis vectors in R2; the actual perimeter of
that triangle is given by

Perim(t) = |fε(q)− fε(p)|+ |fε(r)− fε(q)|+ |fε(p)− fε(r)|. (2.8)

Let A0 be a smooth positive function on Ω. The discrete area energy is of the
form

EA
ε (fε) =

∑
t∈Tε

Ψ

(
Area(t)

A0(xC(t))Arearef(t)

)
Arearef(t), (2.9)

penalizing deviations of the actual area Area(t) from the reference areaA0(xC(t)) Arearef(t);
the penalty is weighted by the reference area of each triangle. Let p ≥ 2; the
real-valued function Ψ (generally, Ψ may depend on the triangle t) is assumed
to satisfy the following conditions:

(1) Regularity: Ψ is differentiable.
(2) Positivity: Ψ ≥ 0, and Ψ(x) = 0 if and only if x = 1.
(3) Growth condition:

Ψ(x) . 1 + |x|p/2. (2.10)

(4) Coercivity:

Ψ(x) & |x− 1|p/2 & |x|p/2 − 1, (2.11)

(5) Lipschitz continuity:

|Ψ(x)−Ψ(y)| . (1 + |x|+ |y|)p/2−1|x− y|. (2.12)

(6) Convexity: Ψ is convex.

For example, the function Ψ used in [MBM18] is

Ψ(x) = κAA0(x− 1)2,
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where κA is an elastic constant—the area modulus—and A0 = A0(xC(t)). This
choice satisfies the required conditions for p = 4.

Let P0 be a smooth positive function on Ω. The discrete perimeter energy is
of the form

EP
ε (fε) =

∑
t∈Tε

Φ

(
Perim(t)

P0(xC(t)) Perimref(t)

)
Arearef(t), (2.13)

penalizing deviations of the actual perimeter Perim(t) from the reference
perimeter P0(xC(t)) Perimref(t); once again, the penalty is weighted by the
reference area of each triangle. The function Φ : [0,∞) → R satisfies the
following requirements:

(1) Regularity: Φ is differentiable.
(2) Positivity: Φ ≥ 0 and Φ(x) = 0 if and only if x = 1.
(3) Growth condition:

Φ(x) . 1 + |x|p. (2.14)

(4) Coercivity:

Φ(x) & |x− 1|p & |x|p − 1. (2.15)

(5) Lipschitz continuity:

|Φ(x)− Φ(y)| . (1 + xp−1 + yp−1)|x− y|. (2.16)

(6) Convexity: Φ is convex.

For example, the function Φ used in [MBM18] is

Φ(x) = κPP0(x− 1)2,

where κP is another elastic constant—the perimeter modulus—and P0 =
P0(xC(t)). This choice satisfies the above conditions for p = 2.

Finally, the total discrete energy is given by

Eε(fε) = EA
ε (fε) + EP

ε (fε). (2.17)

2.3 Piecewise-affine extension

A discrete configuration fε : Vε → R2 can be extended naturally into an
R2-valued piecewise-affine function

Fε : Ωε → R2.
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Specifically, let p, q and r be the vertices of a triangle t as in (2.6). The interior
of this triangle can be parameterized as

t = {p+ (αa− βc) : 0 ≤ α, β, α + β ≤ ε}.

We define Fε|t : t→ R2 as follows:

Fε(p+ (αa− βc)) = fε(p) + α
f(q)− f(p)

ε
− β f(p)− f(r)

ε
.

The extension Fε is affine in the sense that its derivative is piecewise-constant:
dFε|t : TΩ|t → R2 is determined by

dFε(a) =
fε(q)− fε(p)

ε

dFε(b) =
fε(r)− fε(q)

ε

dFε(c) =
fε(p)− fε(r)

ε
.

(2.18)

We further extend Fε into a function Fε ∈ W 1,∞(Ω;R2) such that,

‖dFε‖L∞(Ω;R2) . ‖dFε‖L∞(Ωε;R2)

‖dFε‖Lp(Ω;R2) . ‖dFε‖Lp(Ωε;R2),
(2.19)

where the constant of proportionality is independent of ε. Such a construction
is always possible; see [KM18] for details.

The role of the extension fε 7→ Fε is to embed discrete configurations for
different values of ε into a common function space. Though purely technical,
this construction is key for defining convergence as ε→ 0.

We next write the discrete energy Eε(fe) in terms of the extension Fε. The
actual (signed) area (2.7) of a triangle t can be rewritten as

Area(t) =
∫
Fε(t)

dArea =
∫
t
det dFε dArea. (2.20)

Note that det dFε is constant in t, which implies that

Area(t)

Arearef(t)
= det dFε|t.

Denoting by
A0,ε =

∑
t∈Tε

A0(xC(t))1t

the piecewise-constant function satisfying A0,ε|t ≡ A0(xC(t)), the discrete area
energy (2.9) can be written in integral form:

EA
ε (fε) =

∫
Ωε

WA
ε (dFε) dArea, (2.21)
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where WA
ε : T ∗Ω⊗ R2 → R is given by

WA
ε (B) = Ψ

(
detB

A0,ε

)
. (2.22)

The actual perimeter (2.8) of a triangle t with edges p, q, r can be rewritten
as

Perim(t)
(2.18)
= ε (|dFε(a)|+ |dFε(b)|+ |dFε(c)|)

(2.3)
= εP(dFε). (2.23)

In view of (2.5),
Perim(t)

Perimref(t)
=

P(dFε)

3
,

which is piecewise-constant. Denoting by

P0,ε =
∑
t∈Tε

P0(xC(t))1t

the piecewise-constant function satisfying P0,ε|t ≡ P0(xC(t)), the discrete
perimeter energy (2.13) can be rewritten in integral form,

EP
ε (fε) =

∫
Ωε

W P
ε (dFε) dArea, (2.24)

where W P
ε : T ∗Ω⊗ R2 → R is given by

W P
ε (B) = Φ

(
P(B)

3P0,ε

)
. (2.25)

Thus, the total discrete energy takes the form

Eε(fε) =
∫

Ωε

Wε(dFε) dArea, (2.26)

where

Wε(B) = WA
ε (B) +W P

ε (B). (2.27)

The energy (2.26) is a function of mappings Vε → R2. To prepare the grounds
for the discrete-to-continuum analysis, we extend Eε into functionals Iε on
Lp(Ω;R2): For a discrete configuration fε we denote its extension by Fε =
ι(fε) ∈ W 1,∞(Ω;R2), which is piecewise-affine on Ωε, and denote by Lp

ε(Ω;R2) ⊂
Lp(Ω;R2) the image of ιε. The functionals

Iε : Lp(Ω;R2)→ R ∪ {∞}
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are given by

Iε(F ) =


∫
Ωε
Wε(dF ) dArea F ∈ Lp

ε(Ω;R2)

∞ F ∈ Lp(Ω;R2) \ Lp
ε(Ω;R2).

. (2.28)

3 Gamma convergence

We now study the convergence of the family of functionals Iε given by (2.28)
as ε→ 0. Define the functional

F : Lp(Ω;R)→ R ∪ {∞}

by

F(F ) =


∫
Ω QW (dF ) dArea F ∈ W 1,p(Ω;R2)

∞ F ∈ Lp(Ω;R2) \W 1,p(Ω;R2),
. (3.1)

where for k ≥ 0 and p ≥ 1, W k,p(Ω;R2) is the Sobolev space of k-times
weakly-differentiable configurations whose derivatives are all in Lp, and

W (B) = WA(B) +W P (B), (3.2)

with

WA(B) = Ψ

(
detB

A0

)
and W P (B) = Φ

(
P(B)

3P0

)
, (3.3)

and QW is the quasi-convex envelope of W (i.e., the largest quasi-convex
function bounded from above by W ) [Dac08, p. 271]. It should be noted that
while convexity is a widely-known property, quasi-convexity, which is a weaker
condition, is used mostly in the context of variational calculus, where it is a
sufficient and necessary condition for the existence of minimizers.

In this section, we prove that Iε Γ-converges to F in the Lp(Ω;R2)-topology.
The general approach is quite standard: let I∞ be the Γ-limit of a (not-
relabeled) subsequence of Iε; such a subsequence exists by the general com-
pactness theorem of Γ-convergence (see Theorem 8.5 in [dal93] for the clas-
sical result, or Theorem 4.7 in [KS08] for the case where each functional is
defined on a different space). It is sufficient to prove that I∞ = F. Indeed,
since every sequence has a Γ-converging subsequence, the Urysohn property
of Γ-convergence (Proposition 8.3 in [dal93]) implies that if all converging sub-
sequences converge to the same limit, then the original sequence converges to
that limit.

11



For the sake of the non-experts in variational calculus, Γ-convergence is the
weakest form of convergence for functionals which guarantees that minimizers
of functionals in a sequence converge to a minimizer of the limit. Γ-convergence
satisfies a compactness property, whereby every sequence of functionals has
a converging subsequence. Γ-convergence also satisfies the Urysohn property
whereby a sequence converges if and only if there is a unique functional, such
as every subsequence has a sub-subsequence converging to it.

3.1 Properties of Wε and W

We start by establishing a number of properties satisfied by the energy densi-
ties Wε and W , which are all consequences of the properties of Φ and Ψ.

Lemma 3.1 (Uniform coercivity) The energy densities Wε and W given
by (2.27) and (3.2) are uniformly coercive:

Wε(B),W (B) & |B|p − 1, (3.4)

where the constant of proportionality does not depend on ε.

Proof : Using the coercivity of Φ,

Wε(B) ≥ W P
ε (B) = Φ

(
P(B)

3P0,ε

)
(2.15)

&

(
P(B)

3P0,ε

)p

− 1
(2.2)

& |B|p − 1,

where we used the fact that the infimum of P0,ε is independent of ε. The proof
for W follows the exact same lines. 2

Lemma 3.2 In two dimensions,

| detB| . |B|2. (3.5)

Proof : Using the well-known identity

Cof BBT = detB I,

and the fact that in two dimensions |Cof B| = |B| = |BT |,

2| detB| = |Cof BBT | ≤ |Cof B||B| = |B|2. (3.6)

2

Lemma 3.3 (Uniform boundedness) The energy densities Wε and W given
by (2.27) and (3.2) are uniformly bounded:

Wε(B),W (B) . 1 + |B|p, (3.7)

where the constant of proportionality does not depend on ε.
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Proof : By the boundedness of Φ,

W P
ε (B)

(2.14)

. 1 +

(
P(B)

3P0,ε

)p (2.2)

. 1 + |B|p.

Likewise, by the boundedness of Ψ,

WA
ε (B)

(2.10)

. 1 +

(
| detB|
A0,ε

)p/2 (3.5)

. 1 + |B|p.

Adding up the two contributions, we obtain the desired result. The same
analysis applies for W . 2

Lemma 3.4 The following inequality holds,

|W (B)−Wε(B)| . ε(|B|+ |B|p). (3.8)

Proof : By the triangle inequality,

|W (B)−Wε(B)| ≤ |W P (B)−W P
ε (B)|+ |WA(B)−WA

ε (B)|.

By the Lipschitz continuity of Φ,

|W P (B)−W P
ε (B)| =

∣∣∣∣∣Φ
(

P(B)

3P0

)
− Φ

(
P(B)

3P0,ε

)∣∣∣∣∣
(2.16)

.

1 +

(
P(B)

3P0,ε

)p−1

+

(
P(B)

3P0

)p−1
 ∣∣∣∣∣P(B)

3P0,ε

− P(B)

3P0

∣∣∣∣∣
. (P(B) + (P(B))p)

∣∣∣∣∣ 1

P0,ε

− 1

P0

∣∣∣∣∣
(2.2)

. (|B|+ |B|p)
∣∣∣∣∣ 1

P0,ε

− 1

P0

∣∣∣∣∣ .
Similarly, by the Lipschitz continuity of Ψ,

|WA(B)−WA
ε (B)| =

∣∣∣∣∣Ψ
(

detB

A0

)
−Ψ

(
detB

A0.ε

)∣∣∣∣∣
(2.12)

.

1 +

∣∣∣∣∣detB

A0,ε

∣∣∣∣∣
p/2−1

+

∣∣∣∣∣detB

A0

∣∣∣∣∣
p/2−1

 ∣∣∣∣∣detB

A0,ε

− detB

A0

∣∣∣∣∣
.
(
| detB|+ | detB|p/2

) ∣∣∣∣∣ 1

A0,ε

− 1

A0

∣∣∣∣∣
(3.5)

.
(
|B|2 + |B|p

) ∣∣∣∣∣ 1

A0,ε

− 1

A0

∣∣∣∣∣ .
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Using the fact that∣∣∣∣∣ 1

P0,ε

− 1

P0

∣∣∣∣∣ . ε and

∣∣∣∣∣ 1

A0,ε

− 1

A0

∣∣∣∣∣ . ε,

as well as the fact that x2 ≤ max(x, xp), we obtain the desired result. 2

Lemma 3.5 For every A,B ∈ Hom(R2,R2),

| detA− detB| ≤ (|A|+ |B|)|A−B|. (3.9)

Proof : Using again the identity

Cof AAT = detAI,

we obtain

(detA− detB)I = Cof A(A−B)T + Cof(A−B)BT ,

which together with the fact that |A| = |AT | = |Cof A| yields the desired
result. 2

Lemma 3.6 For every A,B ∈ T ∗Ω⊗ R2,

|P(A)−P(B)| . |A−B|. (3.10)

Proof : We have

|P(A)−P(B)| = |A(a) + A(b) + A(c)−B(a)−B(b) +B(c)|
≤ |A(a)−B(a)|+ |A(b)−B(b)|+ |A(c)−B(c)|

= P(A−B)
(2.2)

. |A−B|.

2

Lemma 3.7 Let Fε ∈ W 1,p(Ω;R2) converge to F ∈ W 1,p(Ω;R2) strongly in
W 1,p(Ω;R2) as ε→ 0. Then,

lim
ε→0

∫
Ω
|W (dFε)−W (dF )| dArea = 0.

Proof : By the Lipschitz continuity of Φ,

|W P (A)−W P (B)|
(2.16)

.

1 +

(
P(A)

3P0

)p−1

+

(
P(B)

3P0

)p−1
 |P(A)−P(B)|

(3.10)

. (1 + |A|p−1 + |B|p−1)|A−B|.
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Similarly, by the Lipschitz continuity of Ψ,

|WA(A)−WA(B)|
(2.12)

.

1 +

(
detA

A0

)p/2−1

+

(
detB

A0

)p/2−1
 | detA− detB|

(3.9)

.
(
1 + |A|p−2 + |B|p−2

)
(|A|+ |B|)|A−B|

.
(
1 + |A|p−1 + |B|p−1

)
|A−B|,

where in the last step we used Young’s inequality (i.e., ab < ap/p + bq/q for
1/p+ 1/q = 1). Adding the two and using Hölder’s inequality (i.e., ‖fg‖L1 =
‖f‖Lp‖g‖Lq for 1/p+ 1/q = 1),∫

Ω
|W (dFε)−W (dF )| dArea .

(
Area1−1/p(Ω) + ‖dFε‖p−1

Lp(Ω;R2) + ‖dF‖p−1
Lp(Ω;R2)

)
× ‖dFε − dF‖Lp(Ω;R2),

which converges to zero as ε→ 0. 2

3.2 Lower and upper bounds

After these preliminaries, we proceed to show that every Γ-limit I∞ of Iε equals
F given by (3.1).

Proposition 3.8 (Infinite case) Let I∞ : Lp(Ω;R2)→ R∪{∞} be a Γ-limit
of Iε as ε→ 0. For every F ∈ Lp(Ω;R2) \W 1,p(Ω;R2),

I∞(F ) =∞ = F(F ).

Proof : Assume by contradiction that I∞(F ) < ∞. Take a recovery sequence
Fε → F in Lp(Ω;R2); without loss of generality, we may assume that the
sequence Iε(Fε) is bounded, and in particular Fε ∈ Lp

ε(Ω;R2). Hence,

1 & Iε(Fε)

=
∫

Ωε

Wε(dFε) dArea

(3.4)

&
∫

Ωε

(|dFε|p − 1) dArea

& ‖dFε‖pLp(Ωε;R2) − Area(Ω)

(2.19)

& ‖dFε‖pLp(Ω;R2) − Area(Ω).

It follows that dFε is uniformly bounded in Lp. Since Fε converges in Lp(Ω;R2),
it is bounded inW 1,p(Ω;R2), hence has a convergent subsequence inW 1,p(Ω;R2).
By the uniqueness of the limit, F ∈ W 1,p(Ω;R2), which contradicts the as-
sumption. 2
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Proposition 3.9 (Finite case: lower bound) Let I∞ : Lp(Ω;R2) → R ∪
{∞} be a Γ-limit of Iε as ε→ 0. For every F ∈ W 1,p(Ω;R2),

I∞(F ) ≥ F(F ).

Proof : We may assume that I∞(F ) < ∞, otherwise the statement is triv-
ial. Like in the infinite case, we construct a recovery sequence Fε → F in
Lp(Ω;R2), where Fε ∈ Lp

ε(Ω;R2), and extract a subsequence (not relabeled)
that converges to F weakly in W 1,p(Ω;R2). Thus, for every Ω̃ ⊂ Ω having
positive Hausdorff distance from ∂Ω,

I∞(F ) = lim
ε→0

∫
Ωε

Wε(dFε) dArea

≥ lim inf
ε→0

∫
Ωε

W (dFε) dArea− lim sup
ε→0

∫
Ωε

|Wε(dFε)−W (dFε)| dArea

(3.8)

& lim inf
ε→0

∫
Ωε

W (dFε) dArea− lim sup
ε→0

ε
∫

Ωε

(|dFε|+ |dFε|p) dArea

≥ lim inf
ε→0

∫
Ω̃
W (dFε) dArea

≥ lim inf
ε→0

∫
Ω̃
QW (dFε) dArea

≥
∫

Ω̃
QW (dF ) dArea.

In the passage to the fourth line we restricted the domain of integration to
Ω̃, which is contained in Ωε for small enough ε, and we used the fact that
Fε is uniformly bounded in W 1,p. In the passage to the fifth line we used the
fact that W ≥ QW . In the passage to the sixth line we used the fact that
an integral functional with a quasi-convex integrand is lower-semicontinuous
with respect to the weak W 1,p(Ω;R2) topology [Dac08, Sect. 8.2]. The proof
is complete by letting Ω̃→ Ω, along with dominated convergence. 2

Proposition 3.10 (Upper bound) Let I∞ : Lp(Ω;R2) → R ∪ {∞} be a
Γ-limit of Iε as ε→ 0. Then, for every F ∈ Lp(Ω;R2),

I∞(F ) ≤ F(F ).

Proof : If F ∈ Lp(Ω;R2)\W 1,p(Ω;R2), the inequality is trivial because F(F ) =
∞ by definition. Let then F ∈ W 1,p(Ω;R2), and take a sequence Fε ∈ Lp

ε(Ω;R2)
converging to F strongly in W 1,p(Ω;R2); such a sequence exists by [KM18,
Proposition 4.2]. By the lower-semicontinuity of the Γ-limit and by the defi-
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nition of Iε(F ) for F ∈ Lp
ε(Ω;R2),

I∞(F ) ≤ lim inf
ε→0

Iε(Fε)

= lim inf
ε→0

∫
Ωε

Wε(dFε) dArea

≤
∫

Ω
W (dF ) dArea

+ lim sup
ε→0

∫
Ω
|Wε(dFε)−W (dFε)| dArea

+ lim sup
ε→0

∫
Ω
|W (dFε)−W (dF )| dArea.

(3.11)

The second term on the right-hand side vanishes by Lemma 3.4, and the fact
that Fε is uniformly bounded in W 1,p(Ω;R2). The third term vanishes by
Lemma 3.7.

Thus,

I∞(F ) ≤
∫

Ω
W (dF ) dArea,

and we would be done if we could replace W by QW .

Unfortunately, the inequality between W and QW is in the “wrong” direction.
Instead, we proceed by the method used by Le Dret and Raoult [LR95]. We
define the functional J : W 1,p(Ω;R2)→ R,

J(G) =
∫

Ω
W (dG) dArea,

and extend it into a functional J̃ : Lp(Ω;R2)→ R ∪ {∞},

J̃(G) =

J(G) G ∈ W 1,p(Ω;R2)

∞ G ∈ Lp(Ω;R2) \W 1,p(Ω;R2)
.

We denote by ΓJ̃ the lower-semicontinuous envelope of J̃ with respect to the
strong Lp topology, and we denote by ΓwJ the lower-semicontinuous envelope
of J with respect to to weak W 1,p(Ω;R2) topology.

Thus, I∞ ≤ J in W 1,p(Ω;R2) and therefore I∞ ≤ J̃ in Lp(Ω;R2). Since I∞ is
a Γ limit, it is lower-semicontinuous, therefore

I∞ ≤ ΓJ̃ = Γ̃wJ

where the equality is by [LR95, Lemma 5] (see also [KM18, Prop. 4.6]). In
particular, for F ∈ W 1,p(Ω;R2),

I∞(F ) ≤ ΓwJ(F ).
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But by [AF84] (see also [KM18, Prop. 4.6]),

ΓwJ(F ) =
∫

Ω
QW (dF ) dArea

hence

I∞(F ) ≤
∫

Ω
QW (dF ) dArea = F(F ).

2

3.3 Compactness

The last step is to show that every sequence of approximate minimizers of Iε
has a subsequence that strongly converges in the strong Lp topology. This,
together with the Γ-convergence implies that every sequence of approximate
minimizers of Iε has a subsequence converging (modulo a rigid motion) to a
minimizer of F.

Let Fε be a sequence of approximate minimizers, i.e.,

lim
ε→0

(Iε(Fε)− inf Iε) = 0.

We first show that the sequence inf Iε is bounded: Choose an arbitrary F ∈
W 1,p(Ω;R2), and a recovery sequence ϕε for F . Then,

lim sup
ε→0

inf Iε ≤ lim
ε→0

Iε(ϕε) = F(F ) <∞

Since

lim
ε→0

(Iε(Fε)− inf Iε) = 0,

it follows that the sequence Iε(Fε) is bounded too. Then,

1 & Iε(Fε) =
∫

Ωε

Wε(dFε) dArea

(3.4)

&
∫

Ωε

(|dFε|p − 1) dArea & ‖dFε‖pLp(Ω;R2) − Area(Ω),

implying that dFε is bounded in Lp.

Since we only care about configurations modulo rigid transformations, we may
assume without loss of generality, that

∫
Ω Fε dArea = 0. From the Poincaré

inequality we deduce that Fε is bounded in W 1,p(Ω;R2). It therefore has a
weakly converging subsequence in W 1,p, which by Sobolev embedding strongly
converges in Lp.
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4 Relation to strain energies

Energies of integral form, where the integrand is a function of the configuration
gradient are ubiquitous in elasticity theory. One of the characteristics of an
elastic energy density W : T ∗Ω⊗ R2 → R is that W (A) ≥ 0, with W (A) = 0
if and only if A ∈ T ∗Ω⊗R2 is an isometry (i.e., preserves lengths and angles).
Obviously, for such a clause to have a meaning, Riemannian metrics must be
specified for both Ω and R2. For the space manifold R2, the natural metric is
the Euclidean one, e. For the body manifold Ω, one has to explicitly assume
the existence of an intrinsic metric, so that any linear map TΩ→ R2 can be
associated with a notion of deformation, or strain.

In the present context, the manifold Ω is not endowed with an intrinsic metric,
but only with intrinsic notions of area and perimeter (recall that the Euclidean
metric on Ω has for only role to serve as a reference for area and perimeter).
Thus, the energy density W given by (3.2) or its quasi-convex envelope QW
are not elastic energy densities. In this section we derive a representation of W
as a minimum over elastic energy densities. To this end, we need the following
definition:

Definition 4.1 Let G be a Riemannian metric on Ω. A function W : T ∗Ω⊗
R2 → R is called G-elastic if W ≥ 0 and

W (B) = 0 if and only if B ∈ O(G, e),

where O(G, e) denotes the bundle of isometries (TΩ, G) → (R2, e) (i.e., the
set of pairs (p,A), where p ∈ Ω and A : TpΩ→ R2 is a linear isometry). It is
called orientation-preserving G-elastic if W ≥ 0 and

W (B) = 0 if and only if B ∈ SO(G, e),

where SO(G, e) ⊂ O(G, e) is the sub-bundle of orientation-preserving isome-
tries (i.e., the set of pairs (p,A), where p ∈ Ω and A : TpΩ → R2 is a linear
isometry having a positive determinant).

Throughout this section, let

u1 = a, u2 = b and u3 = c.

Note that a metric G on Ω is uniquely defined by the three lengths |ui|G,
i = 1, 2, 3, provided that they satisfy the triangle inequality,

|ui|G ≤ 1
2

3∑
i=1

|ui|G ≡ sG.
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4.1 The perimeter energy

Definition 4.2 Given the perimeter function P0, we denote by G [P0] the space
of smooth metrics G on Ω satisfying

2sG =
3∑

i=1

|ui|G = 3P0. (4.1)

Proposition 4.3 The perimeter energy density can be represented as

W P (B) = min
G∈G [P0]

W P
G (B), (4.2)

where

W P
G (B) =

3∑
i=1

Φ

(
|B(ui)|
|ui|G

)
|ui|G
2sG

(4.3)

is a G-elastic energy density.

Proof : This is an immediate consequence of the convexity of Φ and Jensen’s
inequality (i.e., Φ(

∑
i pixi) ≤

∑
i piΦ(xi)), where pi are non-negative and sum

up to 1): for every G ∈ G [P0], since 2sG = 3P0,

W P (B) = Φ

(
3∑

i=1

|ui|G
2sG

|B(ui)|
|ui|G

)
≤ W P

G (B).

An equality is obtained by choosing G satisfying

|a|G
|B(a)|

=
|b|G
|B(b)|

=
|c|G
|B(c)|

.

Note that |B(a)|, |B(b)| and |B(c)| satisfy the constraint that the sum of every
two is larger than the third, hence so do |a|G, |b|G and |c|G, thus defining indeed
a metric. Finally, W P

G (B) = 0 if and only if |B(ui)| = |ui|G for i = 1, 2, 3, that
is if and only if B ∈ O(G, e), proving that W P

G is G-elastic. 2

4.2 The area energy

A metric G on Ω is also uniquely defined by the quantities,

AG
|a|G
2sG

, AG
|b|G
2sG

, AG
|c|G
2sG

,

where
AG =

√
sG(sG − |a|G)(sG − |b|G)(sG − |c|G)

is the area of a triangle of edge sizes |a|G, |b|G and |c|G (Heron’s formula).
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Definition 4.4 Given the area function A0, we denote by G [A0] the space of
smooth metrics G on Ω satisfying

AG =

√
3

4
A0.

Note that WA given by (3.3) can be rewritten as

WA(B) = Ψ

sgn(B)
AB?e√

3
4
A0

3∑
i=1

|ui|B?e

2sB?e

 . (4.4)

where sgnB is short-hand notation for sgn(detB).

Proposition 4.5 The area energy density can be represented as

WA(B) = min
G∈G [A0]

WA
G (B), (4.5)

where

WA
G (B) =

3∑
i=1

Ψ

detB

A0

|ui|B?e

2sB?e

|ui|G
2sG

 |ui|G
2sG

is an orientation-preserving G-elastic energy density.

Proof : We use the convexity of Ψ with Jensen’s inequality: for every G ∈
G [A0],

WA(B) = Ψ

 3∑
i=1

|ui|G
2sG

detB

A0

|ui|B?e

2sB?e

|ui|G
2sG

 ≤ WA
G (B).

An equality is obtained by choosing

|a|G
|B(a)|

=
|b|G
|B(b)|

=
|c|G
|B(c)|

,

which yields
|a|B?e/2sB?e

|a|G/2sG
=
|b|B?e/2sB?e

|b|G/2sG
=
|c|B?e/2sB?e

|c|G/2sG
.

Finally, WA
G (B) = 0 if and only if |B(ui)| = |ui|G for i = 1, 2, 3 and detB > 0,

that is if and only if B ∈ SO(G, e), proving that WA
G is orientation-preserving

G-elastic 2

5 Properties of QW

The explicit calculation of quasi-convex envelopes is a difficult task. This state-
ment is not special to the present work, but ubiquitous in the theory of elas-
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ticity. Thus, rather than obtaining an explicit expression for QW , one derives
properties that are key in understanding the energetics and the mechanical re-
sponse of the system. For example, in order to determine how “soft” a system
is, it is often sufficient to identify the zero set of QW . Generally, the zero set
of QW is larger than the zero set of W , which means that in the continuum
limit there may be more zero energy states than suggested when considering
the unrelaxed energy density W .

To this end we define the following bundles of maps:

K [P0] = {B ∈ T ∗Ω⊗ R2 : P(B) = 3P0}
K≤[P0] = {B ∈ T ∗Ω⊗ R2 : P(B) ≤ 3P0}
K [A0] = {B ∈ T ∗Ω⊗ R2 : detB = A0}

K [P0, A0] = K [P0] ∩K [A0]

K≤[P0, A0] = K≤[P0] ∩K [A0].

(5.1)

Note that W (B) = 0 if and only if B ∈ K[P0, A0].

The sets K [P0, A0] and K≤[P0, A0] are left-SO(2)-invariant, and can be rep-
resented in explicit form. Specifically:

Proposition 5.1 For η0 = P0/
√
A0 ≥ 1,

K[P0, A0] = SO(2)×


√
A0

α ±β(α)

0 1/α

 : α ∈ [αmin, αmax]

 ,
where

β(α) = (3η0 − α)

√
η0α2(3η0 − 2α)− 1
√

3η0

√
3η0 − 2α

,

and αmin, αmax are the positive roots of η0α
2(3η0 − 2α) − 1 = 0. If η0 =

P0/
√
A0 < 1 then

K [P0, A0] = K≤[P0, A0] = ∅,

corresponding to the isoperimetric inequality for triangles.

Proof : Since K[P0, A0] is left-SO(2)-invariant, any element in that set can be
represented in the form

SO(2)×
√
A0

α β

0 γ

 .
The condition on the determinant yields γ = 1/α. The condition on the
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perimeter yields

|α|+

(−α
2

+

√
3β

2

)2

+

(√
3

2α

)2
1/2

+

(α
2

+

√
3β

2

)2

+

(√
3

2α

)2
1/2

=
3P0√
A0

,

from which we extract the two values of β for η0 > 1; for η0 = 1 the unique
solution is α = 1, β = 0; for η0 < 1 there is no solution. 2

By a similar analysis we obtain:

Proposition 5.2 For P0/
√
A0 ≥ 1,

K≤[P0, A0] = SO(2)×


√
A0

α γ

0 1/α

 : α ∈ [αmin, αmax], |γ| ≤ β(α)

 .

To proceed to relate W P , WA and W to distance from the sets (5.1).

Proposition 5.3 The following inequality holds,

W P (B) & distp(B,K [P0]).

Proof : Suppose that B 6= 0 and consider B̃ ∈ K[P0] given by

B̃ =
3P0

P(B)
B.

Then,

distp(B,K[P0]) ≤ |B − B̃|p '
∣∣∣∣∣P(B)

3P0

− 1

∣∣∣∣∣
p |B|p

(P(B))p

(2.15)

. W P (B).

If B = 0, then we can perturb it, noting that both sides of the inequality are
continuous in B. 2

Proposition 5.4 If P(B) > 3P0 then QW (B) > 0.

Proof : By the previous proposition,

W (B) ≥ W P (B) & distp(B,K [P0]) ≥ distp(B,K≤[P0]),

where the latter inequality follows from the inclusion K [P0] ⊂ K≤[P0]. Since
K≤[P0] is a convex set, the function B 7→ distp(B,K≤[P0]) is convex, and in
particular quasi-convex, which implies that

QW & Qdistp(·,K≤[P0]) = distp(·,K≤[P0]),

and the right-hand side vanishes only if P(B) ≤ 3P0. 2
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Proposition 5.5 If detB 6= A0 then QW (B) > 0.

Proof : The energy density WA is poly-convex (i.e., a convex function of the
minors of its argument), being a convex function of the determinant, hence it
is also quasi-convex [Dac08, Theorem 5.3] (convexity, implies poly-convexity,
which implies quasi-convexity, which implies and even weaker form of convex-
ity known as rank-1-convexity); it follows that

QW (B) ≥ QWA(B) = WA(B),

and the right-hand side vanishes if and only if detB = A0, 2

Combining Proposition 5.4 and Proposition 5.5 we obtain:

Corollary 5.6 If B 6∈ K≤[P0, A0] then QW (B) > 0.

We will next show that in fact QW (B) = 0 if and only if B ∈ K≤[P0, A0].

Proposition 5.7 The following inequality holds,

W P (B) . dist(B,K [P0]) + distp(B,K [P0]).

Proof : By the Lipschitz continuity of Φ and the fact that Φ(1) = 0,

W P (B) =

∣∣∣∣∣Φ
(

P(B)

3P0

)
− Φ(1)

∣∣∣∣∣
(2.16)

.

1 +

∣∣∣∣∣P(B)

3P0

∣∣∣∣∣
p−1
 ∣∣∣∣∣P(B)

3P0

− 1

∣∣∣∣∣
.
(
1 + |P(B)− 3P0|p−1

)
|P(B)− 3P0| .

Finally, for every B̃ ∈ K[P0],

|P(B)− 3P0| =
∣∣∣P(B)−P(B̃)

∣∣∣
≤ ||B(a)| − |B̃(a)||+ ||B(b)| − |B̃(b)||+ ||B(c)| − |B̃(c)||
≤ |B(a)− B̃(a)|+ |B(b)− B̃(b)|+ |B(c)− B̃(c)|
. |B − B̃|,

hence
|P(B)− 3P0| . dist(B,K[P0]). (5.2)

2

Proposition 5.8 The following inequality holds,

WA(B) . dist(B,K [A0]) + distp(B,K [A0])

+ dist(B,K [P0]) + distp(B,K [P0]).
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Proof : By the Lipschitz continuity of Ψ and the fact that Ψ(1) = 0,

W P (B) =

∣∣∣∣∣Ψ
(

detB

A0

)
−Ψ(1)

∣∣∣∣∣
(2.12)

.

1 +

∣∣∣∣∣detB

A0

∣∣∣∣∣
p/2−1

 ∣∣∣∣∣detB

A0

− 1

∣∣∣∣∣
.
(
1 + |detB − A0|p/2−1

)
|detB − A0| .

For every B̃ ∈ K[A0],

|detB − A0| =
∣∣∣detB − det B̃

∣∣∣ (3.5)

. (|B|+ |B̃|)|B − B̃| . (|B|+ |B − B̃|)|B − B̃|,

hence
|detB − A0| ≤ |B| dist(B,K[A0]) + dist2(B,K[A0]).

However,

|B|
(2.2)

. P(B) . 1 + |P(B)− 3P0|
(5.2)

. 1 + dist(B,K[P0]),

hence

|detB − A0| . dist(B,K[A0]) + dist2(B,K[A0]) + dist2(B,K[P0]),

and in the last step we used the inequalities ab . a2 + b2 and xq . x+ xp for
every 1 < q < p. Combining everything we recover the desired result. 2

Combining the last two propositions:

Corollary 5.9 The following inequality holds,

W (B) . dist(B,K [P0, A0]) + distp(B,K [P0, A0]).

The set K [P0, A0] is not convex. The calculus of variations literature exhibits
various types of convex hull of sets. The convex hull KC of a set K is the
smallest convex set containing that set. The quasi-convex hull KQC of a set K
is defined (there are other equivalent definitions) as the zero set of the related
function Qdist(·, K). Finally, the laminate convex hull KLC [Rin18, p. 229] of
K is defined recursively as follows,

KLC =
∞⋃
i=0

KLC
i ,

where KLC
0 = K and for every i ∈ N,

KLC
i+1 = {θA+ (1− θ)B : A,B ∈ KLC

i , rank(A−B) = 1, θ ∈ [0, 1]}.
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Theorem 5.10 (Bhattacharya and Dolzmann, [BD01]) If K ⊂ K[A0]
is compact and left-SO(2)-invariant, then

KQC = KLC .

(See also [Rin18, p. 239].)

It follows that the zero set of QW is the laminate-convex hull of K[P0, A0].
The latter can be calculated rather directly:

Proposition 5.11 The following equality holds:

(K[P0, A0])LC = K≤[P0, A0].

Proof : If P 2
0 < A0 then both sides are empty. Otherwise, since K≤[P0] is

convex, it is closed under convex combinations. Likewise, K[A0] is closed under
convex combinations of rank-1-connected elements. It follows that

(K[P0, A0])LC ⊂ K≤[P0, A0].

To prove equality, we note that for every α ∈ [αmin, αmax],

√
A0

α β(α)

0 1/α

 and
√
A0

α −β(α)

0 1/α

 ,
are rank-1-connected, hence for every θ ∈ [0, 1],

√
A0

α (2θ − 1)β(α)

0 1/α

 ∈ (K[P0, A0])LC1 ,

but by Proposition 5.2, every element in K≤[P0, A0] is of this form. 2

We have thus shown:

Corollary 5.12 QW (B) = 0 if and only if B ∈ K≤[P0, A0]. In particular, let
P 2

0 ≥ A0; then, for every

B ∈ K≤[P0, A0],

the linear map

F (x) = Bx

is a zero energy state, F[F ] = 0.

The fact that the relaxed energy density is insensitive to deformations that
shorten the perimeter of triangles can be explained easily. Take for example
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Fig. 5.1. Left: the reference configuration of the lattice. Right: a 1-laminate config-
uration; each triangle has been deformed to a triangle having the same area and a
longer perimeter, such that the boundary of the domain remains (asymptotically,
as the discretization is refined) unchanged.

A0 = 1 and P0 > 1 and consider the map B = Id, which is the map for which
P(B) is minimal. That is, P(B) = 1 < P0, which implies that

B ∈ K±[P0, A0] \K[P0, A0].

To illustrate why QW (B) = 0, we need to show that a “macroscopic” collec-
tion of equilateral triangles can be deformed into triangles having the same
area but a longer perimeter, such that the boundary of the domain remains
unchanged. The illustration in Figure 5.1 shows how this may occur for any
value of P0 > 1. The boundary of the domain can be held constant at the
price of violating the area/perimeter constraints along the boundary, which is
energetically negligible as the discretization is refined.

6 Isoperimetric obstruction

We have seen that the zero set of QW is the empty set if A0 > P 2
0 , which is

an isoperimetric constraint (i.e., an inequality relating area and perimeter).
If A0 and P0 fail to satisfy this isoperimetric inequality in some region of Ω,
then there are no zero-energy configurations. While this observation follows
from the previous section, we can provide a direct proof, which does not rely
on advanced results in the calculus of variations:

Proposition 6.1 Suppose that A0 and P0 are smooth and that there exists a
point q ∈ Ω where

A0(q) > P 2
0 (q).

Then,

min
F∈Lp(Ω;R2)

F(F ) > 0. (6.1)
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Proof : First, note that the minimum in (6.1) exists because F is a Γ-limit. We
use the property of the Γ limit,

min
F∈Lp(Ω;R2)

F(F ) = lim
ε→0

inf
Fε∈Lp

ε(Ω;R2)
Iε(Fε) = lim

ε→0
inf

fε∈Lp(Vε;R2)
Eε(fε).

By the smoothness of A0 and P0, there exist open sets Ω′′ ⊂ Ω′ ⊂ Ω such that

A0 ≥ ζP 2
0 in Ω′

for some ζ > 1. Moreover, for ε small enough all triangles t ∈ Tε intersecting
Ω′′ are contained in Ω′.

Let t ∈ Tε be a triangle intersecting Ω′′. By the isoperimetric inequality for
triangles,

(Perim(t))2 ≥ 12
√

3Area(t).

Since by (2.4) and (2.5),

(Perimref(t))
2 = 12

√
3Arearef(t),

it follows that
(Perim(t))2

(Perimref(t))2
≥ Area(t)

Arearef(t)
,

and as xC(t) ∈ Ω′,

(Perim(t))2

P 2
0 (xC(t)) (Perimref(t))2

≥ ζ
Area(t)

A0(xC(t)) Arearef(t)
.

Since Ψ and Φ are continuous and only vanish when their argument is one,
there exists a constant C > 0 (depending on ζ but not on ε), such that

Ψ

(
Area(t)

A0(xC(t))Arearef(t)

)
+ Φ

(
Perim(t)

P0(xC(t)) Perimref(t)

)
≥ C.

It follows that for ε small enough and every fε : Vε → R2,

Eε(fε) ≥ C Area(Ω′′),

hence
min

F∈Lp(Ω;R2)
F(F ) ≥ C Area(Ω′′) > 0.

2

7 Summary and Discussion

Motivated by the recent growing interest in epithelial vertex models, we de-
rived the continuum limit of a family of discrete models whose energy func-
tion penalizes area and perimeter discrepancies. The continuum limit, very
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much like the discrete model, penalizes certain area and perimeter deviations
from their reference values. When expressed in terms of actual and refer-
ence metrics, our continuum vertex model generalizes incompatible-elasticity
in that its elastic energy measures metric deviations from two distinct sets
of local reference configurations, one representing perimeter constraints and
the other representing area constraints. The generalized continuum model ex-
hibits a rigidity transition governed by a ratio between reference values of area
and perimeter. The transition is from an elastic-like phase in which area and
perimeter are incompatible with each other, to an anomalously soft phase in
which area and perimeter are compatible with multiple reference configura-
tions [MBM18]. This transition is consistent with experimental observations
on epithelial tissue and with numerical investigations of active epithelial vertex
models [PKB+15].

While in the present work we focused on a simple prototypical case of tri-
angular network, a future direction is to generalize the analysis to polygons
of higher degree and to disordered tilings. We expect the discrete model to
converge to an effective continuum model of functional form similar to that
obtained in the present work. An open question in this context is whether
the rigidity transition described above exists in disordered epithelial vertex
models.

An important property of the generalized model is that it forms a unifying
framework in which classical elastic solids and cellular tissue are special cases
of a more general theory. Classical elasticity corresponds to a single reference
configuration associated with each material element, whereas tissue mechanics
corresponds to a continuum of reference states associated with each material
element. Intermediate cases, e.g., structures with a discrete or a finite number
of reference states, form potentially a new type of mechanical metamaterials
with properties in between simple solids and biological tissue.

The present work does not account for body forces, surface tractions and
other forms of boundary constraints. While “compatible elastostatics” is triv-
ial without forcing or constraints, this is not the case for incompatible systems,
which may exhibit non-trivial states also in the absence of constraints. The
incorporation of forces to the present model can be done like in other mechan-
ical model; for example, surface tractions are accounted for by adding to the
energy a term depending on the displacement of the boundary.

A natural question is the relation between the current rigorous analysis and
the long wavelength approximation in [MBM18]. The latter approximation
applies in every situation in which the relaxed energy density QW equals the
unrelaxed energy density W , i.e., in every situation in which microstructure
formation is not energetically favorable. Examples or such situations are tensile
boundary conditions; on the other hand, the two models are not equivalent in
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the presence of contractive forces.

From a theoretical perspective, the continuum theory derived in this work
has the potential to explain observed phenomena. For example, topological
transformations of structure networks are fundamental stress-relaxation modes
both in elastic solids and in cellular tissue mechanics. However, with no con-
tinuum theory in hand, the theoretical analysis of defects in cellular tissue is
largely limited. The generalized elastic theory presented in this work opens a
new route for theoretical analysis of topological defects in cellular tissue using
concepts and tools used for studying topological defects in classical elastic-
ity [MSK15]. Likewise, the continuum model obtained in this work may form
a basis for studying some of the classical elastic phenomena, such as waves
dynamics, cracks, generalized plates and shells, and more.

Looking forward, we suggest that the relevance of the continuum model goes
beyond the scope of cellular tissue mechanics. For example, under-constrained
and critically-constrained lattices of harmonic springs, which form the basis
for topological mechanics [KL14,CUV14], are structures whose elements have
multiple stress-free configurations. Therefore, the technique presented in this
paper can in principle be adapted to derive a nonlinear geometric continuum
theory of such structures. This will allow, as in the tissue case, to port knowl-
edge from, and to, discrete lattice mechanics and make another step toward a
unifying mechanical theory.
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influence of cell mechanics, cell-cell interactions, and proliferation on
epithelial packing, Current Biol. 17 (2007), 2095–2104.

[HPJ11] E. Hannezo, J. Prost, and J.-F. Joanny, Instabilities of monolayered
epithelia: shape and structure of villi and crypts, Phys. Rev. Lett. 107
(2011), 078104.

[HTR+07] L. Hufnagel, A.A. Teleman, H. Rouault, S.M. Cohen, and B.I.
Shraiman, On the mechanism of wing size determination in fly
development, Proc. Nat. Acad. Sci. USA 104 (2007), 3835–3840.

[KES07] Y. Klein, E. Efrati, and E. Sharon, Shaping of elastic sheets by
prescription of non-Euclidean metrics, Science 315 (2007), 1116 – 1120.

31



[KHHS12] J. Kim, J.A. Hanna, R.C. Hayward, and C.D. Santangelo, Thermally
responsive rolling of thin gel strips with discrete variations in swelling,
Soft Matter 8 (2012), 2375–2381.

[KL14] C.L. Kane and T.C. Lubensky, Topological boundary modes in isostatic
lattices, Nature Phys. 10 (2014), 39.

[KM18] R. Kupferman and C. Maor, Variational convergence of discrete
geometrically-incompatible elastic models: II. non-symmetric lattice
structures, Calc. Var. PDEs 57 (2018), 39.

[KS08] K. Kuwae and T. Shioya, Variational convergence over metric spaces,
Trans. Amer. Math. Soc. 360 (2008), 35–75.

[KZ15] M. Krajnc and P. Ziherl, Theory of epithelial elasticity, Phys. Rev. E
92 (2015), 052713.

[LR95] H. Le Dret and A. Raoult, The nonlinear membrane model as a
variational limit of nonlinear three-dimensional elasticity, J. Math.
Pures Appl. 74 (1995), 549–578.

[MBM18] M. Moshe, M.J. Bowick, and M.C. Marchetti, Geometric frustration
and solid-solid transitions in model 2D tissue, arXiv:1708.07848v4
[cond-mat.soft], 2018.

[MES+19] M. Moshe, E. Esposito, S. Shankar, B. Bircan, I. Cohen, D.R. Nelson,
and M.J. Bowick, Kirigami mechanics as stress relief by elastic charges,
Phys. Rev. Lett. 122 (2019), 048001.

[MHK+15] N. Murisic, V. Hakim, I.G. Kevrekidis, S.Y. Shvartsman, and
B. Audoly, From discrete to continuum models of three-dimensional
deformations in epithelial sheets, Biophys. J. 109 (2015), 154–163.

[MJR+13] M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost,
M. Rao, and R.A. Simha, Hydrodynamics of soft active matter, Rev.
Mod. Phys. 85 (2013), 1143.

[MSK15] M. Moshe, E. Sharon, and R. Kupferman, Elastic interactions between
two-dimensional geometric defects, Phys. Rev. E 92 92 (2015), 062403.

[NMH+17] N. Noll, M. Mani, I. Heemskerk, S.J. Streichan, and B.I. Shraiman,
Active tension network model suggests an exotic mechanical state
realized in epithelial tissues, Nature Phys. 13 (2017), 1221.

[PKB+15] J.-A. Park, J.H. Kim, D. Bi, J.A. Mitchel, N.T. Qazvini, K. Tantisira,
C.Y. Park, M. McGill, S.-H. Kim, B. Gweon, J. Notbohm, R. Steward
Jr, S. Burger, S.H. Randell, A.T. Kho, D.T. Tambe, C. Hardin, S.A.
Shore, E.Israel, D.A. Weitz, D.J. Tschumperlin, E.P. Henske, S.T.
Weiss, M.L. Manning, J.P. Butler, J.M. Drazen, and J.J. Fredberg,
Unjamming and cell shape in the asthmatic airway epithelium, Nature.
Mat. 14 (2015), 1040.

32



[RB17] A. Rafsanjani and K. Bertoldi, Buckling-induced kirigami, Phys. Rev.
Lett. 118 (2017), 084301.

[RBE+10] J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, and F. Jülicher,
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