
Chapter 1

Introduction

1.1 The volume of sets in Rn

One of the oldest problems in mathematics is that of assigning a measure ( �%$*/)
to a geometric shape, quantifying its length (in 1D), its area (in 2D) or its volume
(in 3D); in other applications, one may want to assign subsets of R3 a mass, a
charge and other physical attributes. More generally, we would like to assign a
measure to arbitrary subsets of Rn; that is, to define a function

µ ∶P(Rn)→ R̄,
where for a set X, P(X) denotes its power set (�%8'(% ;7&"8), i.e., the collection
of all of its subsets, and R̄ = R∪{±∞} (length, area and volume might be infinite).
Such a function should satisfy a collection of natural requirements, such as:

1. Finite additivity: If E1, . . . ,Ek are disjoint, then

µ� k�
i=1

Ei� = k�
i=1
µ(Ei),

where throughout these notes � denotes a disjoint union.

2. Invariance under rigid motion: For every U ⊂ Rn and every rigid motion,
f (x) = Qx + b, where Q ∈ Hom(Rn,Rn) is orthogonal and b ∈ Rn,

µ( f (U)) = µ(U).



2 Chapter 1

Throughout these notes, for a function f ∶ A→ B and a set U ⊂ A, we denote

f (U) = { f (x) ∶ x ∈ U}.
3. Normalization:

µ([0,1]n) = 1.

The finite additivity is too restrictive. Think for example of the area of a disc or
the area under the graph of a function: you would like to calculate these areas by
covering the domains with a countable number of disjoint boxes. Therefore, the
first condition may have to be replaced by:

1’. Countable additivity: If E1,E2 . . . is a countable collection of disjoint sets,
then

µ� ∞�
i=1

Ei� = ∞�
i=1
µ(Ei).

These plausible conditions on µ turn out, however, to be inconsistent. To see why,
we will examine a classical example for n = 1.

Example: Endow R with an equivalence relation,

x ∼ y if and only if x − y ∈ Q.
Then, construct a set N ⊂ [0,1), which consists of exactly one representative of
each equivalence class (this construction relies on the axiom of choice). That is,

∀x ∈ [0,1) ∃!r ∈ Q, such that x + r ∈ N.

For every r ∈ [0,1) ∩Q define

Nr = N + r mod 1.

We start by noting that if r,q ∈ [0,1) ∩Q and r ≠ q, then Nr ∩ Nq = �1. Secondly,
every Nr is a translated copy of N, of which a part is then translated again. That
is,

Nr = (N ∩ [0,1 − r) + r) � (N ∩ [1 − r,1) + r − 1) .
1 Indeed, suppose that x ∈ Nr ∩ Nq for r ≠ q. Then, by definition

x − r ∈ N and x − q ∈ N,

however, (x − q) ∼ (x − r), contradicting the minimality condition in the definition of N.
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By the desired properties of the measure,

µ(Nr) = µ(N ∩ [0,1 − r) + r) + µ(N ∩ [1 − r,1) + r − 1)
= µ(N ∩ [0,1 − r)) + µ(N ∩ [1 − r,1))
= µ(N).

Finally, by the maximality of N,

[0,1) = �
r∈QNr.

If the length measure µ satisfied the desired properties, we would have

1 = µ([0,1)) =�
r∈Q
µ(Nr) =�

r∈Q
µ(N).

Now, either µ(N) = 0, in which case we get that 1 = 0, or µ(N) > 0, in which case
we get that 1 =∞. Thus, the defining assumptions on µ are inconsistent. ▲▲▲
One could argue that countable additivity was too much of a requirement, yet
without it, much of the limiting processes of calculus could not be carried out. It
turns out that even finite-additivity would run us into problems. In 1924, Banach
and Tarski proved what has become known as the Banach-Tarski paradox. They
showed that the unit ball B(0,1) in R3 can be partitioned into five disjoint sets
E1, . . . ,E5, and there exist rigid maps fk ∶ Ek → R3, such that

5�
i=1

fk(Ek) = B(x,1) � B(y,1),
for a pair of points x, y ∈ R3. This would imply that the volume of the unit ball
equals twice itself. (It should be pointed out that these sets are very strange and
that their construction relies on the axiom of choice.)
Thus, the di�culty in defining a measure for subsets of Rn is not related to the
countable additivity requirement, but rather to the possibility of constructing very
peculiar sets. The remedy to this problem is restricting the collection of sets to
which a measure can be assigned—sets that we shall call measurable (�.*$*$/).

1.2 Integration theory

In the first calculus courses, you learned about the concept of integration, fol-
lowing the construction of Riemann (or the equivalent construction of Darboux).
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Integration, as defined by Riemann has several shortcomings. One of them, is that
it is not continuous under pointwise limits. For example, let (qn) be an enumera-
tion of (0,1) ∩Q, and for every n ∈ N define the function

fn ∶ (0,1)→ R fn(x) =
�������

1 x ∈ {q1, . . . ,qn}
0 otherwise.

In terms of Riemann integration, for every n,

� 1

0
fn(x)dx = 0,

whereas ( fn) converges pointwise to

f (x) = �������
1 x ∈ Q
0 otherwise,

which isn’t even Riemann-integrable.
We have very good reasons to expect the integral of the Dirichlet function to be
zero. For example, we may cover (0,1) ∩Q with open sets,

∞�
n=1
(qn − "�2n,qn + "�2n).

These (possibly overlapping) segments have a total length of ", and since this
holds for every " > 0, we would expect the integral of the Dirichlet function to
vanish.
Moreover, we tend to think of integration and di↵erentiation as opposite opera-
tions. Namely, if f is integrable and

F(x) = � x

a
f (t)dt,

then F is di↵erentiable and F′ = f . This is not quite so if f is not continuous. As
an example, consider the function

F(x) = �������
x2 sin(1�x2) x ≠ 0
0 x = 0.
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This function is di↵erentiable, with

f (x) = F′(x) = �������
−(1�x) cos(1�x2) x ≠ 0
0 x = 0,

however f , despite being a derivative is not even integrable.
Ideally, we would like a notion of integration that is truly inverse to di↵erentiation
and behaves well under limits. A sound concept of integration turns out to be
intimately related to the above notion of measure.

1.3 Historical notes


