
Chapter 3

Vector Spaces

The subject of this course is a theory of sets for which there is a notion of
linear combinations of elements. We have already encountered linear combi-
nations of equations and linear combinations of matrices; we are now going
to formalize axiomatically such sets, which we call vector spaces. Vector
spaces are abundant in mathematics (and its applications in all branches
of science), and their theory is foundational to that branch of mathematics
called algebra.

3.1 Definitions and examples

Definition 3.1 Let F be a field. A vector space ( �*9&)8& "(9/) over F is

a non-empty set V (whose elements we call vectors) on which are defined

two operations: vector addition (�*9&)8& 9&"*(),

+ ∶ V × V → V,

taking every u,v ∈ V to an element u + v ∈ V , and scalar multiplication
(�9-82" -5,), ⋅ ∶ F × V → V,

taking every a ∈ F and u ∈ V to an element au ∈ V .

Vector addition satisfies the following properties:

(a) Commutativity: for every u,v ∈ V , u + v = v + u.
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(b) Associativity: for every u,v,w ∈ V , (u + v) +w = u + (v +w).
(c) Neutral element: there exists a vector 0V ∈ V (or just 0 in short) such

that for all u ∈ V , u + 0V = u.
(d) Additive inverse: every u ∈ V has an element (−u), such that u+(−u) =

0V .

Scalar multiplication satisfies the following properties:

(e) Identity element: For every u ∈ V , 1F ⋅ u = u.
(f) Associativity: for every a, b ∈ F and every u ∈ V , a(bu) = (ab)u (note

the distinction between the products ⋅ ∶ F × F→ F and ⋅ ∶ F × V → V ).

Finally, the two operations satisfy the distributive laws:

(g) For every a ∈ F and u,v ∈ V , a(u + v) = au + av.
(h) For every a, b ∈ F and u ∈ V , (a + b)u = au + bu.

(Note the distinction between the sums + ∶ F × F→ F and + ∶ V × V → V .)

Comments:

(a) A vector space hinges on two structures, a set of vectors and a field.
Formally, a vector field is a four-tuple, (V,+,F, ⋅).

(b) Vector spaces are also called linear spaces ( �.**9!1*- .*"(9/).

(c) Be careful not to confuse 0F ∈ F and 0V ∈ V , although we often denote
them by the same symbol, 0.

(d) There is no meaning to a product ua, with u ∈ V and a ∈ F (even
though we could have defined it by commutativity).

(e) Vector spaces don’t have a canonical notion of products of vectors.
For those who are acquainted with scalar and vector products, these
products assume additional structure.

(f) Inductively, a vector space is closed under any finite linear combination
of vectors. That is, for every v1, . . . ,vn ∈ V and a1, . . . , an ∈ F,

a
1v1 + ⋅ ⋅ ⋅ + anvn ∈ V.



Vector Spaces 87

We will often write such sums using our notation for matrix multipli-
cation,

a
1v1 + ⋅ ⋅ ⋅ + anvn = �v1 . . . vn�

�������
a1⋮
an

�������
.

The interpretation is that the column of scalars “acts” on the row
of vectors to produce a linear combination. At this stage, the role
of matrices enclosed by square bracket becomes “operators” forming
linear combinations. Note that we obtain products such as v1a

1, which
we interpret as a1v1.

(g) Physicists often describe vectors as entities having a “magnitude” and
a “direction”; at this stage (and throughout this course) vectors have
neither magnitudes nor directions.

Example: Let F be any field. A set comprising just one element, V = {0V },
is a vector space with vector addition and scalar multiplication defined the
only possible way, namely

0V + 0V = 0V and a0V = 0V .
Such a vector space is called the zero space ( �25!% "(9/), even though strictly
speaking, the vector space ({0V },+,F, ⋅) is a di↵erent space for each field F.▲▲▲
Example: For any field F and every n ∈ N, the set V = Fn is a vector space
over F with respect to vector addition,

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn),
and scalar multiplication

a(u1, . . . , un) = (au1, . . . , aun).
The zero vector of this space is

0Fn = (0F, . . . ,0F),
and the additive inverse of a vector is given by

−(v1, . . . , vn) = (−v1, . . . ,−vn).
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All the vector space axioms follow from the properties of the field F (which
you should verify). Thus, (Fn,+,F, ⋅) is a vector space. The same applies if
we rather consider Fn

row
or Fn

col
. ▲▲▲

Example: In particular, setting n = 1, F is a vector space over itself! That
is, for every field F, (F,+,F, ⋅) is a vector space. This is quite confusing as
the same set plays two di↵erent roles. ▲▲▲
Example: Consider the vector space (F2,+,F, ⋅) and let v1 = (2,3) and
v2 = (4,5). The linear combination 8v1 + 9v2 is written using the action of a
matrix,

�(2,3) (4,5)� �8
9
� .

▲▲▲
Example: The space of m × n matrices with entries in F is a vector space
over F with respect to vector addition

(A +B)i
j
= ai

j
+ bi

j

and scalar multiplication (�A)i
j
= �ai

j
.

The zero element of this space is 0m×n. And don’t be confused: in this vector
space, the vectors are matrices. ▲▲▲
Example: Let S be any non-empty set and let V = Func(S,F ) be the space
of functions f ∶ S → F (you will learn about functions in depth in the calculus
course, but let’s just think of a function as a “machine” which when fed with
an element in S, returns an element in F). Then, V is a vector space over F
with respect to vector addition

(f + g)(s) = f(s) + g(s)
and scalar multiplication

(af)(s) = af(s).
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The zero element of this space is the function returning 0 ∈ F for all s ∈ S.
The additive inverse (−f) of a function f is the function

(−f)(s) = −f(s).
Thus, (Func(S,F),+,F, ⋅) is a vector space. Once again don’t be confused:
in this vector space, the vectors are functions. ▲▲▲
Example: Another example is that of polynomial spaces ( �.*/&1*-&5 *"(9/).
Let F be a field and let X be a symbol. We denote by F[X] the set of
expressions of the form

P = p0 + p1X + p2X2 + pnXn
,

where p0, . . . , pn are scalars and pn ≠ 0. We call pn the leading coe�cient
( �-*"&/ .$8/) and we call pnXn the leading term ( �-*"&/ 9"*!). To this set
we also add the scalar 0F. If pn is the leading coe�cient, we say that P is of
degree ( �%#9$) n, and write

degP = n.
The degree of P = 0F is set to be −∞.

Let

P = n�
i=1

piX
i and Q = m�

i=1
qiX

i
,

where without loss of generality, m ≤ n. Then, we define

P +Q = m�
i=1
(pi + qi)X i + n�

i=m+1
piX

i
,

and P + 0F = P . Likewise, we define scalar multiplication by

cP = n�
i=1
(cpi)X i

.

It is readily checked that F[X] forms a vector space over F with respect to
these operations. ▲▲▲
Example: The complex numbers C are a field, hence C is a vector space over
C under the natural operations of addition and multiplication by scalars. On
the other hand, C is also a vector space over R, which is a totally di↵erent
vector space, despite the fact that the elements of the space (i.e., the vectors)
are the same. More generally, C is a vector space over any subfield of C (e.g.,
the complex rationals). ▲▲▲
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3.2 Basic properties

Like fields, vector spaces satisfy a number of generic properties:

Proposition 3.2 Let V be a vector space over F. Then,

(a) Every vector v ∈ V has a unique additive inverse.

(b) For every a ∈ F, a0V = 0V .
(c) For every u ∈ V , 0Fu = 0V .
(d) If a ∈ F and u ∈ V satisfy au = 0V , then either a = 0F or u = 0V .
(e) For every u ∈ V , (−1F)u = −u.

Proof :

(a) Suppose that u+v = 0V and w +v = 0V . It follows from the first three
properties of vector addition that

u = 0V + u = (w + v) + u =w + (v + u) =w + (u + v) =w + 0V =w.

(b) By the properties of 0V and distributivity,

a0V = a(0V + 0V ) = a0V + a0V .
Adding −(a0V ) to both sides and using the properties of vector addi-
tion,

0V = a0V + (−(a0V ))= (a0V + a0V ) + (−(a0V ))= a0V + (a0V + (−(a0V )))= a0V + 0V= a0V ,
proving that a0V = 0V .
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(c) Similarly,
0Fu = (0F + 0F)u = 0Fu + 0Fu.

Adding −(0Fu) to both sides,

0V = 0Fu + (−(0Fu))= (0Fu + 0Fu) + (−(0Fu))= 0Fu + (0Fu + (−(0Fu)))= 0Fu + 0V= 0Fu,
proving that 0Fu = 0V .

(d) Suppose that au = 0V . If a ≠ 0F, then using the fact that a has a
multiplicative inverse,

u = 1F ⋅ u = (a−1a)u = a−1(au) = a−10V = 0V ,
i.e., either a = 0F or u = 0V .

(e) We have
0V = 0Fu = (1F + (−1F))u = u + (−1F)u,

and it follows from the uniqueness of the inverse that (−1F)u = −u.
n

Comment: The fourth item has an important consequence: suppose that
v ∈ V is non-zero and there exist a, b ∈ F, such that av = bv. Then, (a− b)v =
0, from which we deduce that a = b.
We now come to the raison d’être of vector spaces—the formation of linear
combinations:

Definition 3.3 Let V be a vector space over a field F and let (u1, . . . ,un) ⊂
V be a sequence of n vectors. A vector v ∈ V is said to be a linear combi-
nation of (u1, . . . ,un), if there exists a sequence of scalars (a1, . . . , an) ∈ Fn,

such that

v = a1u1 + ⋅ ⋅ ⋅ + anun,

or in matrix form, if there exists an a ∈ Fn

col, such that

v = �u1 . . .un�a.
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Some notations: Let (V,+,F, ⋅) be a vector space. For every v ∈ V , we denote
by

Fv = {av ∶ a ∈ F}
the set of scalar multiples of v. For S,T ⊂ V we denote by

S + T = {u + v ∶ u ∈ S, v ∈ T}
the set of vectors obtained by sums of elements of S and T .

Exercises

(easy) 3.1 What is a vector? Let S be any non-empty set and let x ∈ S.
How can we tell whether x is a vector?

(easy) 3.2 In what sense is every field a vector space? Is it true that every
vector space is a field?

(easy) 3.3 Let S be any non-empty set and let V = Func(S,F). Prove that
it is indeed a vector space with respect to the vector addition and scalar
multiplication defined above.

(easy) 3.4 Let V = R2 be the set of pairs of real number and let F = R.
Define (x, y) + (w, z) = (x +w,0)

a(x, y) = (ax,0).
Is V a vector space over R under these operations?

(easy) 3.5 What is the smallest vector space containing more than one vec-
tor?

(easy) 3.6 Show that any vector space over R is either the zero space, or
contains infinitely-many vectors.

(intermediate) 3.7 Let V be a vector space over F. Prove that for every
v,w ∈ V and 0 ≠ a ∈ F there exists a unique u ∈ V satisfying

au + v =w.

Hint: you’ve done something very similar in the context of fields.



Vector Spaces 93

(intermediate) 3.8 Use the result of Exercise 3.7 to deduce the uniqueness
of the additive inverse.

(intermediate) 3.9 Let

V = {x ∈ R ∶ x > 0}.
For x, y ∈ V and a ∈ R define

x⊕ y = xy and a⊙ x = xa
.

Prove that (V,⊕,R,⊙) is a vector space.

(intermediate) 3.10 Consider the vector space (R2,+,R, ⋅). Let
w = (2,−1) ∈ R2

,

and define on R2 the following two operations,

u � v = (u + v) +w and a � v = av + (a − 1)w.

(a) Is there an element in R2 neutral to �? If yes, what is it? (b) Does any
element in R2 have an additive-inverse with respect to �? If yes, what is it?
(c) Are the operations distributive, namely,

a � (u � v) = a � u � a � v ?

(intermediate) 3.11 Consider the vector space (C3,+,C, ⋅). Which vectors
are linear combinations of the vectors (1,0,−1), (0,1,1) and (1,1,1)?

3.3 Subspaces

3.3.1 Definitions and examples

A recurring theme in mathematics is to consider a subset of a structure,
which inherits the properties of the structure it is part of. This leads us to
the definition of a linear subspace of a vector space.
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Let W ⊆ V . Since every vector in W is a vector in V , we can add together
vectors in W . The restriction of the operation + ∶ V × V → V to pairs of
vectors in W is denoted by

+�W×W ∶W ×W → V.

The sum of two vectors in W is not necessarily a vector in W , but it is
necessarily a vector in V . Likewise, the restriction of the operation ⋅ ∶ F×V →
V to pairs of vectors in W is denoted by

⋅�F×W ∶ F ×W → V.

A scalar multiple of a vector in W is not necessarily a vector in W , but it is
necessarily a vector in V .

Definition 3.4 Let V be a vector space over F. A subspace (or linear
subspace) (�*9&)8& "(9/ ;;) of V is a non-empty subset W ⊆ V , which is

closed under vector addition and scalar multiplication, namely, for all u,v ∈
V and a ∈ F,

u + v ∈W and av ∈W.

We denote the relation of W being a linear subspace of V by W ≤ V .

The following proposition asserts that a linear subspace of a vector space is
a vector space in its own right:

Proposition 3.5 Let V be a vector space over a field F and let W ≤ V .

Then, (W,+�W×W ,F, ⋅�F×W ) is a vector space.

Proof : Since W is not empty, it contains at least one element w. Then,

(−1)w ∈W and (−1)w +w ∈W,

i.e., W includes 0V . Likewise, for every w ∈W ,

(−1)w + 0V ∈W,

i.e., every element of W has its additive inverse in W . It remains to show
that all eight axioms are satisfied, but this follows from the axioms in V . For
example, for every u,v ∈W , since u,v ∈ V , it follows that u + v = v + u. n
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Example: Let V be a vector space over F. The subset {0V } ⊂ V is a linear
subspace of V . It is called the zero subspace of V , {0V } ≤ V , ▲▲▲
Example: Every vector space is a subspace of itself, V ≤ V . We will refer to
a proper subspace to emphasize that W is a strict subset of V , i.e., that
V �W is not empty. We denote this relation by W < V . ▲▲▲
Example: Consider the vector space (Mn(F),+,F, ⋅). A matrix A ∈Mn(F)
is called symmetric if ai

j
= aj

i
for all i, j ∈ 1, . . . , n. It is easy to see that the

subset of symmetric matrices is a linear subspace of Mn(F). ▲▲▲
Example: Consider the vector space V = (Fn

col
,+,F, ⋅). Let A ∈ Mm×n(F)

and let

W = {x ∈ Fn

col
∶ Ax = 0}

be the set of solutions of the corresponding homogeneous system of equations.
By Theorem 2.40, W ≤ V . ▲▲▲
Example: Let V be a vector space and let w ∈ V . Consider the subset of
V ,

W = Fw.

We claim that W is not just a subset of V ; it is a linear subspace. Why?
It is not-empty as it includes 1F ⋅w = w. Moreover, let u,v ∈ W . By the
definition of W , there exist a, b ∈ F, such that

u = aw and v = bw.

Then,

u + v = aw + bw = (a + b)w ∈W.

Let c ∈ F, then
cu = c (aw) = (ca)w ∈W,

proving W is a linear subspace of V . ▲▲▲
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Exercises

(easy) 3.12 Let V be a vector space over F. Prove that W ≤ V and U ≤W
implies that U ≤ V .

(easy) 3.13 Consider the vector space (V,⊕,R,⊙) in Exercise 3.9. Is it a
linear subspace of the vector space (R,+,R, ⋅)?
(intermediate) 3.14 Consider the vector space (R2,+,R, ⋅).
(a) Find a subset W ⊂ R2 including the zero vector, which is closed under

scalar multiplication but not closed under vector addition.

(b) Find a subset U ⊂ R2 including the zero vector, which is closed under
vector addition but not closed under scalar multiplication.

(c) Does there exist a non-empty subset V ⊂ R2 which does not include
the zero vector, which is closed under scalar multiplication?

(intermediate) 3.15 In each of the following items is given a subset W of
a vector space (V,+,F, ⋅). Determine whether W ≤ V .

(a) V = (C2,+,C, ⋅) and
W = {(z,w) ∶ 2z = 3w} .

(b) V = (M2×2(R),+,R, ⋅) and
W = ��a b

c d
� ∶ ad = 0� .

(c) V = (R[X],+,R, ⋅) and
W = {p(X) ∈ R[X] ∶ p(0) = p(2)}.

(d) V = (R3,+,R, ⋅) and
W = {(x, y, z) ∶ 2x − y + z = 0, y − 2z = 0} .

(e) V = (R3,+,R, ⋅) and
W = {(x, y, z) ∶ xy = z} .
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(f) V = Func(R,R) over R, and
W = {f ∶ R→ R ∶ f(2) = f(3)}.

(g) V = Func(R,R) over R, and
W = {f ∶ R→ R ∶ f(0) = f 2(1)}.

(intermediate) 3.16 Let V = Func(R,R) over R. Which of the following
subsets is a linear subspace?

(a) The functions f satisfying f(−1) + f(1) = 0.
(b) The functions f satisfying f(0) + f(1) = 1.
(c) The functions f satisfying f(0) ⋅ f(1) = 0.
(d) The functions f satisfying f(−x) + f(x) = 0 for all x ∈ R.

(intermediate) 3.17 Consider the vector space (Cn,+,C, ⋅). Let W ≤ Cn

and consider the set U ⊆ Cn,

U = �(z̄1, . . . , z̄n) ∶ (z1, . . . , zn) ∈W� ,
where z̄ is the complex conjugate of z. Show that U ≤ Cn.

(intermediate) 3.18 Consider the vector space (Rn,+,R, ⋅) for some n ≥ 3.
Which of the following subsets of Rn is a linear subspace?

(a) All x = (x1, . . . , xn) satisfying x1 ≥ 0.
(b) All x = (x1, . . . , xn) satisfying x1 + 3x2 = x3.

(c) All x = (x1, . . . , xn) satisfying x2 = x2

1
(here the superscript 2 is a

square).

(d) All x = (x1, . . . , xn) satisfying x1x2 = 0.
(e) All x = (x1, . . . , xn) such that x2 is rational.

(harder) 3.19 Let V be a vector space over a field F and let

S = {v↵ ∶ ↵ ∈ I}
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be a non-empty subset of V ; here I is an index set (which could be infinite).
Consider the subset U ⊂ V comprising all linear combinations of vectors in
S,

U = ��
↵∈J

a
↵v↵ ∶ J ⊂ I is finite, a↵ ∈ F, v↵ ∈ S� .

Prove that U ≤ V .

3.3.2 The subspace generated by a set

A vector space may have many linear subspaces. The following proposition
asserts that the intersection of any collection of linear subspaces is again a
linear subspace:

Proposition 3.6 Let V be a vector space over F. Let C be a (possibly

infinite) collection of linear subspaces of V (i.e., C is a set whose elements

are linear subspaces of V ). Then,

W =�C

is a linear subspace of V .

Proof : First, let’s interpret the statement of this proposition. There is a
collection of linear subspaces of V ; this collection could be finite (e.g., seven
subspaces, which we could denote by W1, . . . ,W7); this collection could be
countable ( �%**1/ ;"), i.e., form a sequence ( �%9$2) (which we could denote
by W1,W2, . . . ); this collection could also be uncountably infinite. The set

W =�C

comprises all those elements in V which are elements in U for every U ∈ C ,
i.e., w ∈W if and only if w ∈ U for all U ∈ C . The claim is that this set is a
linear subspace of V .

By definition, we need to show that W is not empty, and that for every
u,v ∈W and a ∈ F,

u + v ∈W and au ∈W.
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Each of the U ∈ C is a linear subspace of V , hence

0V ∈ U for every U ∈ C ,

from which follows that 0V ∈W .

Let u,v ∈W . By the very definition of W ,

u,v ∈ U for every U ∈ C ,

Since every such U is a linear subspace,

u + v ∈ U for every U ∈ C ,

from which follows that u + v ∈W .

Likewise for a ∈ F and u ∈ V ,

au ∈ U for every U ∈ C ,

from which follows that au ∈W . This concludes the proof. n

This proposition has an important consequence, whose likes are recurring
in many branches of mathematics. Let S ⊂ V be a collection of vectors,
which could be finite, countably infinite, uncountable infinite or even empty.
Consider the collection of all linear subspaces of V which contain all those
vectors, namely,

C = {W ≤ V ∶ S ⊆W}.
This collection is not empty, because V itself is a linear subspace of V con-
taining all vectors in S, i.e.,

V ∈ C .

Whatever this collection of linear subspaces is, its intersection is a linear
subspace of V . We call it the linear subspace generated ( �97&1 "(9/ ;;) by
the vectors in S, and denote it by

�S� =�{W ≤ V ∶ S ⊆W}. (3.1)

The following two lemmas provide a useful characterization of the generated
subspace:
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Lemma 3.7 Let V be a vector space over F, and let S ⊆ V . If S ⊆W ≤ V ,

then �S� ≤W .

Proof : This is really a direct consequence of the definition (3.1). If W ≤ V
contains S, i.e.,

W ∈ {W̃ ≤ V ∶ S ⊂ W̃},
then, �{W̃ ≤ V ∶ S ⊂ W̃} ⊂W,

as an intersection of any collection of sets is contained in any set in that
intersection, but this is exactly what we have to prove. n

Lemma 3.8 Let V be a vector space over F, and let S ⊆ V . If T ⊆ V

satisfies that T ⊆W for every W ≤ V containing S, then

T ∈ �S� .

Proof : Once again, this is a direct consequence of the definition of the gen-
erated subspace. If

T ⊆W for all W ∈ {W̃ ≤ V ∶ S ⊂ W̃},
then

T ⊆�{W̃ ≤ V ∶ S ⊂ W̃}.
n

Example: Let V be a vector space over F. Let w ∈ V and let S = {w}. As
a matter of convenience, we write �w� rather than �{w}�. We will show that

�w� = Fw,

that is, the linear subspace generated by a single vector is the subspace
obtained by all multiples of that vectors by scalars. If w = 0V , then this
subspace is the zero subspace. Otherwise, it is a line.
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We have already seen that
Fw ≤ V.

Since {w} ⊂ Fw ≤ V , if follows from Lemma 3.7 that

�w� ⊆ Fw.

Conversely, every vector in Fw must be included in any linear subspace
containing w, namely

Fw ⊆W for all W ∈ {W̃ ≤ V ∶ {w} ⊂ W̃},
and by Lemma 3.8,

Fw ⊆ �w� .
▲▲▲

The following properties of the generated subspace follow almost directly
from the definition.

Proposition 3.9 In every vector space

��� = {0V }.

Proof : Since {0V } ≤ V contains the empty set, it follows from Lemma 3.7
that ��� ⊆ {0V }.
Conversely, since {0V } is contained in every linear subspace of V , it follows
that {0V } ⊆W for all W ∈ {W̃ ≤ V ∶ � ⊂ W̃},
and by Lemma 3.8, {0V } ⊆ ��� .

n

Proposition 3.10 Let V be a vector space over F and let S ⊆ T ⊆ V . Then,

�S� ≤ �T � .
(Note that we write �S� ≤ �T � rather than �S� ⊆ �T � because these are linear

subspaces.)



102 Chapter 3

Proof : Since S ⊆ T , it follows that
{W ≤ V ∶ T ⊆W} ⊆ {W ≤ V ∶ S ⊆W}.

Intersecting over more sets can only reduce the intersection, hence

�T � =�{W ≤ V ∶ T ⊂W} ⊇�{W ≤ V ∶ S ⊆W} = �S� .
n

More properties of generated subspaces are derived in the exercise section.

Exercises

(easy) 3.20 Let W1,W2 ≤ V . Prove directly (i.e., without recurring to the
general theorem proved above) that W1 ∩W2 ≤ V .

(intermediate) 3.21 Let V be a vector space over a field F and let W ≤ V .
Show that �W � =W.

(intermediate) 3.22 Let V be a vector space over a field F and let S ⊆ V .
Show that ��S�� = �S� .
(intermediate) 3.23 Let V be a vector space over F. Let S1, S2 ⊆ V be
non-empty subsets. Suppose that

S1 ⊆ �S2� and S2 ⊆ �S1� .
Show that �S1� = �S2� .
(intermediate) 3.24 Let V be a vector space over F. Let S1, S2 ⊆ V be
non-empty subsets. For each of the following statements, determine whether
it is true or not:

(a) If �S1� ⊆ �S2� then S1 ⊆ S2.

(b) If S2 ⊆ S1 and �S1� ⊆ �S2�, then �S1� = �S2�.
(c) If S2 ⊆ S1 and �S2� ≠ �S1�, then for every v ∈ S1 � S2 we have v �∈ �S2�.
(d) If S2 ⊆ S1 and �S2� ≠ �S1�, then there exists v ∈ S1 � S2 such that

v �∈ �S2�.
(e) If S1 ∩ S2 = �, then �S1� ∩ �S2� = {0}.
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3.3.3 The linear span of a set of vectors

The definition of the linear subspace generated by a collection of vectors is
quite implicit. We will now provide a more explicit characterization.

Definition 3.11 Let V be a vector space over a field F and let S ⊆ V be a

non-empty collection of vectors. Then, the linear span (�*9!1*-% 2&95%) of

S is the set of all (finite) linear combinations of elements of S,

SpanS = �a1v1 + ⋅ ⋅ ⋅ + anvn ∶ n ∈ N, ai ∈ F, vi ∈ S� . (3.2)

In the particular case where S = � we define SpanS = {0V }.
Example: Let w ∈ V . Then, the only linear combinations of {w} are scalar
multiples of w,

Span{w} = Fw.

Note that Span{w} = �w�. We will shortly see that this is a general identity
(note also that we defined the span such that Span� = {0V } = ���). ▲▲▲
Example: Let V = (R2,+,R, ⋅) and let

S = {(1,1), (−1,1)}.
Then,

SpanS = {a(1,1) + b(−1,1) ∶ a, b ∈ R} = {(a − b, a + b) ∶ a, b ∈ R}.
It is not hard to see that for every (x, y) ∈ R2,

(x, y) = (a − b, a + b),
where

a = 1

2
(y + x) and b = 1

2
(y − x),

proving that SpanS = R2. ▲▲▲
Proposition 3.12 Let V be a vector space over a field F and let S ⊆ V .

Then SpanS ≤ V . (Note that this was already mentioned in Exercise 3.19.)
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Proof : If S = �, then SpanS = {0V } ≤ V by convention. Otherwise, it su�ces
to show that for every u,v ∈ SpanS and c ∈ F,

u + v ∈ SpanS and cu ∈ SpanS.
If u,v ∈ SpanS, then there exist vectors u1, . . . ,un,v1, . . . ,vm ∈ S and scalars
a1, . . . , an, b1, . . . , bm ∈ F, such that

u = a1u1 + ⋅ ⋅ ⋅ + anun and v = b1v1 + ⋅ ⋅ ⋅ + bmvm.

Then
u + v = a1u1 + ⋅ ⋅ ⋅ + anun + b1v1 + ⋅ ⋅ ⋅ + bmvm ∈ SpanS.

Likewise,
cu = c a1u1 + ⋅ ⋅ ⋅ + c anun ∈ SpanS,

proving that SpanS ≤ V . n

Theorem 3.13 Let V be a vector space over a field F and let S ⊂ V . Then,

SpanS = �S� .

Proof : If S = �, then this holds by definition. Otherwise, since

SpanS ∈ {W ≤ V ∶ S ⊆W},
it follows from Lemma 3.7 that

�S� ⊆ SpanS.
Conversely, since every W ≤ V containing S must contain every vector in
SpanS, i.e.,

SpanS ⊆W for all W ∈ {W̃ ≤ V ∶ S ⊆ W̃},
it follows by Lemma 3.8 that

SpanS ⊆ �S� ,
which completes the proof. n
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Corollary 3.14 Let W ≤ V . Then,

SpanW =W.

Proof : This corollary asserts that linear subspaces are closed under linear
combinations. We can prove it directly, but we can get this as a consequence
of the last theorem, recalling that �W � =W (see Exercise 3.21). n

Example: Let V = R5 and let

v1 = (1,2,0,3,0)
v2 = (0,0,1,4,0)
v3 = (0,0,0,0,1).

A vector v ∈ R5 is in the linear span of v1,v2,v3 if and only if there exist
scalar a, b, c, such that

v = av1 + bv2 + cv3,

i.e., if there exist such scalars such that

v = (a,2a, b,3a + 4b, c).
We can relate this to linear systems: Span{v1,v2,v3} is the set of all x ∈ R5,
such that

x
2 = 2x1 and x

4 = 3x1 + 4x3
.

▲▲▲
Exercises

(easy) 3.25 Let V be a vector space over the field F2 and let v ∈ V be a
non-zero vector. Write explicitly all the vectors in Span{v}.
(easy) 3.26 Consider the vector space (F3,+,F, ⋅). Find two vectors u,v ∈
F3, such that

Span{u,v} = {(0F, a, b) ∶ a, b ∈ F} .
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(easy) 3.27 Consider the vector space (R4,+,R, ⋅). Find two di↵erent sets
S,T ⊂ R4, such that

SpanS = SpanT = {(a, a − b, b, a + b) ∶ a, b ∈ R} .
(intermediate) 3.28 Consider the vector space (R4,+,R, ⋅), and let

v1 = (2,−1,3,2)
v2 = (−1,1,1,−3)
v3 = (1,1,9,−5).

Is (3,−1,0,−1) ∈ Span{v1,v2,v3}?
(intermediate) 3.29 Let V be a vector space over R and let u,v,w ∈ V .

(a) Is Span{u − v,v −w,w} = Span{u,v,w}?
(b) Is Span{u − v,v −w,w − u} = Span{u,v,w}?
(c) Is it possible that u,v,w are distinct and Span{u − v,v −w,w − u} =

Span{u,v,w}?
(harder) 3.30 Let W ⊂ R5 be the set of all solutions to the linear system

2X1 −X2 +4

3
X3 −X4 = 0

X1 +2

3
X3 −X5 = 0

9X1 −3X2 +6X3 −3X4 −3X5 = 0.
Find a set of three vectors spanning W .

(intermediate) 3.31 Prove that the only linear subspaces of R (the field R
as a vector space over itself) are R and {0}.
(intermediate) 3.32 Let V be a vector space over F and let W ≤ V . Let
S ⊆ V satisfying SpanS = V . Prove or disprove: there exists a subset T ⊆ S,
such that SpanT =W .

(intermediate) 3.33 Let V be a vector space over F. Let W ≤ V and let
u,v ∈ V �W . Show that

u ∈ Span(W ∪ {v}) if and only if v ∈ Span(W ∪ {u}).



Vector Spaces 107

(harder) 3.34 Prove that the only linear subspaces of R2 are R2, {0} or
sets of the form

Rv
for some v ∈ R2.

(harder) 3.35 What are all the linear subspaces of (C,+,R, ⋅)?
(harder) 3.36 Let W1,W2 ≤ V . Suppose that W1 ∪W2 ≤ V . Prove that
either W1 ⊆W2 or W2 ⊆W1.

3.3.4 The row space of a matrix

Let A ∈Mm×n(F). The rows of A,

{Rowi(A) ∶ i = 1, . . . ,m}
are a subset of Fn

row
, which is a vector space over F. Their linear span is

called the row space ( �;&9&:% "(9/) of A, denoted by

R(A) = Span�Rowi(A) ∶ i = 1, . . . ,m� .
We can express linear combinations of the rows of A using matrix notation,

m�
i=1

ciRow
i(A) = �c1 � cm�

�������
Row1(A)⋮
Rowm(A)

�������
.

Namely,
R(A) = {cA ∶ c ∈ Fm

row
} .

Example: Consider the case where m < n, and

A =
���������

1 0 0
1 0 0� ⋮ ⋮

1 0 0

���������
.

Then
R(A) = {x ∈ Fn

row
∶ xm+1 = � = xn = 0} .

▲▲▲
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Example: Consider the case where m > n, and

A =

����������������

1
1 �

1
0 0 . . . 0⋮ ⋮ . . . ⋮
0 0 . . . 0

����������������

.

Then,
R(A) = Fn

row
.

▲▲▲

Lemma 3.15 Let A ∈Mm×n(F) and B ∈Mn×k(F). Then,
R(AB) ≤R(B).

Proof : We can think of the product AB as

AB =
�������
Row1(A)⋮
Rowm(A)

�������
B =
�������
Row1(A)B⋮
Rowm(A)B

�������
,

so that each row of AB is a linear combination of the rows of B. That is,

�Rowi(AB) ∶ i = 1, . . . ,m� ⊂R(B),
from which follows that

R(AB) ≤R(B).
n

The following theorem connects the notion of row-equivalence to the row
spaces of matrices:
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Theorem 3.16 Two matrices A,B ∈ Mm×n(F) are row-equivalent if and

only if R(A) = R(B). In particular, the row space of every matrix is equal

to the row space of its row-reduced form.

Proof : Recall that A and B are row-equivalent if and only if there exist
matrices P,Q ∈Mm(F), such that

B = PA and A = QB.

By Lemma 3.15, if A and B are row-equivalent, then

R(B) ≤R(A) and R(A) ≤R(B),
hence R(A) =R(B).
Conversely, if R(A) =R(B), then every row of A is a linear combination of
the rows of B and vice-versa, i.e., there exist matrices P,Q ∈ Mm(F) such
that

B = PA and A = QB,

hence they are row-equivalent. n

Exercises

(intermediate) 3.37 Consider the vector space (R3,+,R, ⋅) and the sets

S = {(1,2,3), (2,2,1)} and T = {(2,3,−1), (3,0,−2)}.
Is SpanS = SpanT?
Hint: find matrices A,B such that SpanS =R(A) and SpanT =R(B). Re-
duce these matrices and base your answer on those reduced representations.

3.3.5 The column space of a matrix

Let A ∈Mm×n(F). The columns of A,

{Coli(A) ∶ i = 1, . . . , n}
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are a subset of Fm

col
, which is a vector space over F. Their linear span is called

the column space ( �;&$&/3% "(9/) of A, denoted by

C (A) = Span{Coli(A) ∶ i = 1, . . . , n}.
We can express linear combinations of the columns of A using matrix nota-
tion,

n�
i=1

c
iColi(A) = �Col1(A) . . . Coln(A)�

�������
c1⋮
cn

�������
.

Namely,
C (A) = {Ac ∶ c ∈ Fn

col
} .

Example: Consider the case where m < n, and

A =
���������

1 0 0
1 0 0� ⋮ ⋮

1 0 0

���������
Then

C (A) = Fm

col
.

▲▲▲
Example: Consider the case where m > n, and

A =

����������������

1
1 �

1
0 0 . . . 0⋮ ⋮ . . . ⋮
0 0 . . . 0

����������������
Then,

C (A) = �x ∈ Fm

col
∶ xn+1 = � = xm = 0� .

▲▲▲
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Example: Let A ∈M2×2(R) be given by

A = �1 1
0 0
� .

Then,
R(A) = Span{[1,1]} = ��c c� ∶ c ∈ R� ,

whereas

C (A) = Span��1
0
�� = ��c

0
� ∶ c ∈ R� .

▲▲▲
Lemma 3.17 Let A ∈Mm×n(F) and B ∈Mn×k(F). Then,

C (AB) ≤ C (A).

Proof : We can think of the product AB as

AB = A �Col1(B) . . . Coln(B)� = �ACol1(B) . . . AColn(B)� ,
so that each column of AB is a linear combination of the columns of A, from
which follows that

C (AB) ≤ C (A).
n

The following theorem connects the column space of a matrix with the con-
sistency of associated non-homogeneous systems:

Theorem 3.18 Let A ∈Mm×n(F). Then, the non-homogenous system AX =
b is consistent if and only if

b ∈ C (A).

Proof : If you think of it, there is nothing to prove. b ∈ C (A) if and only if
there exists an x ∈ Fn

col
, such that Ax = b, which by definition amounts to

the system AX = b being consistent. n
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3.3.6 The sum of linear subspaces

Definition 3.19 Let V be a vector space over a field F and let S1, S2, . . . , Sn

be non-empty subset of V (not necessarily linear subspaces). We define their

sum

S1 + S2 + ⋅ ⋅ ⋅ + Sn = {v1 + v2 + ⋅ ⋅ ⋅ + vn ∶ vi ∈ Si ∀i}.
Be careful not to confuse S1 + S2 and S1 ∪ S2.

Example: Let V = (F2

col
,+,F, ⋅) and let

S1 = ��23� , �45�� ⊂ V,
and

S2 = ��23� , �78�� ⊂ V,
Then,

S1 ∪ S2 = ��23� , �45� , �78�� ,
whereas

S1 + S2 = ��46� , � 911� , �68� , �1113�� .
▲▲▲

Proposition 3.20 Let V be a vector space over a field F and let

W1,W2, . . . ,Wn be linear subspaces of V . Then,

W =W1 +W2 + ⋅ ⋅ ⋅ +Wn

is a linear subspace of V . Furthermore,

W = Span� n�
i=1Wi� .
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Proof : We need to show that W is closed under linear combinations. Let
u,v ∈W . By definition, they can be written in the form

u = a1u1 + ⋅ ⋅ ⋅ + anun and v = b1v1 + ⋅ ⋅ ⋅ + bnvn,

where ui,vi ∈Wi for every i = 1, . . . , n. Then,
u + v = (a1u1 + b1v1) + ⋅ ⋅ ⋅ + (anun + bnvn) ∈W,

and for every c ∈ F,
cu = c a1u1 + ⋅ ⋅ ⋅ + c anun ∈W,

thus proving that W ≤ V .

For the second part of the proposition, we observe that on the one hand,
every w ∈W is of the form

w =w1 + ⋅ ⋅ ⋅ +wn,

with wi ∈Wi, proving that

W ≤ Span� n�
i=1Wi� .

On the other hand, since W ≤ V contains the union of the Wi’s, it follows by
Lemma 3.7 that

� n�
i=1Wi� ≤W,

and by Theorem 3.13,

Span� n�
i=1Wi� ≤W,

which completes the proof. n

Exercises

(harder) 3.38 Let W1,W2 be linear subspaces of a vector space V , such
that

W1 +W2 = V and W1 ∩W2 = {0V }.
Prove that for every vector v ∈ V there exist unique vectors w1 ∈ W1 and
w2 ∈W2, such that

v =w1 +w2.
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3.4 Bases and dimensions

In the previous section we considered the linear subspace generated (or equiv-
alently, spanned) by a set of vectors. Clearly, the whole space spans itself.
A question of interest is to characterize minimal sets of vector spanning the
whole space, where minimality is in the sense that if any vector in the set is
removed, then the set no longer spans the entire space. As we will see, if there
exists a finite set of vectors spanning the space, then it is possible to define a
dimension for that space, in the same sense as a line is one-dimensional and
a plane is two-dimensional.

3.4.1 Linear dependence

Definition 3.21 Let V be a vector space over F. Let S ⊆ V . We say that

a vector v ∈ V is linearly-dependent (�;*9!1*- *&-;) on S if

v ∈ SpanS,
i.e., if we can compose v as a linear combination of vectors in S.

Example: It is always true that 0V is linearly dependent on any set S (even
empty), as 0V is in the span of every subset. ▲▲▲
Example: Let V = (R3,+,R, ⋅). Then, the vector v = (1,1,0) is linearly-
dependent on S = {(1,0,0), (0,1,0)}; it is also linearly-dependent on S ={(1,0,0), (0,1,0), (0,0,1)}, but it not linearly-dependent on {(1,0,0), (0,0,1)}.
Note also that (1,0,0) is dependent on S = {(0,1,0),v}. ▲▲▲
Example: Let V = (R2,+,R, ⋅) and consider the vectors

u = (1,0) v = (−1�2,√3�2) and w = (−1�2,−√3�2).

u

v

w
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Then, every vector is dependent on every two other. Furthermore, we note
that

1 ⋅ u + 1 ⋅ v + 1 ⋅w = 0.
▲▲▲

This last example motivates the following definition:

Definition 3.22 Let V be a vector space over F. A set (possibly infinite)

S ⊆ V is called linearly-dependent if there exists an n ∈ N, a sequence of

distinct vectors (v1, . . . ,vn) ⊂ S and a sequence of scalars (a1, . . . , an) ⊂ F
not all of which are 0F, such that

a
1v1 + ⋅ ⋅ ⋅ + anvn+ = 0V .

The set is called linearly-independent (�;*9!1*- *&-; *;-") if it is not

linearly-dependent.

Example: Let V = (R2,+,R, ⋅) and let

S = {(1,0), (0,1), (1,1)}.
This set is linearly-dependent because

1 ⋅ (1,0) + 1 ⋅ (0,1) + (−1) ⋅ (1,1) = (0,0) = 0V .
On the other hand, the set {(1,0), (0,1)} is linearly-independent because

a
1(1,0) + a2(0,1) = (a1, a2)

equals 0V only if a1 = a2 = 0. ▲▲▲
Comment: Be aware of the di↵erence between a set ( �%7&"8) and a se-
quence ( �%9$2). A set is a collection of elements with no notion of order
among them; moreover, every element only counts once, e.g., {1}∪{1} = {1}.
A sequence, on the other hand, is an assignment of an element of a set to
ordinal positions (first, second etc.). In particular, the same element may
appear repeatedly in di↵erent positions of that sequence.
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Comment: We can reformulate the properties of linear-dependence and
linear-independence using matrix notation. Given a sequence of vectors(v1, . . . ,vn), we may express linear combinations of that sequence via multi-
plication by a column vector c ∈ Fn

col
,

c
1v1 + ⋅ ⋅ ⋅ + cnvn = �v1 . . . vn�c.

Then, a set of vectors S is linearly-independent if for every sequence of dis-
tinct elements (v1, . . . ,vn) in S,

�v1 . . . vn�c = 0
if and only if c ∈ Fn

col
is the zero vector.

Proposition 3.23 Let V be a vector space over F. Let S ⊆ V . Then, the

following statements are equivalent:

(a) S is linearly-dependent.

(b) There exists a vector v ∈ S which is dependent on S � {v}.

Proof : (a)⇒ (b): Suppose that S is linearly-dependent. By definition, there
exists a sequence of distinct vectors (v1, . . . ,vn) in S and a sequence of scalars(a1, . . . , an), not all zero, such that

a
1v1 + ⋅ ⋅ ⋅ + anvn = 0.

Let j ∈ {1, . . . , n} be such that aj ≠ 0 (at least one such j exists). Then,

vj = −�
i≠j
(ai�aj)vi,

proving that vj ∈ SpanS � {vj}.
(b) ⇒ (a): Suppose that there exists a v ∈ S, such that v ∈ SpanS � {v}.
That is, there exists a sequence of distinct vectors (v1, . . . ,vn) ⊂ S �{v} and
a sequence of scalars (a1, . . . , an), such that

v = a1v1 + ⋅ ⋅ ⋅ + anvn.
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Setting vn+1 = v and an+1 = (−1), we obtain that (v1, . . . ,vn,vn+1) are distinct
vectors in S satisfying

a
1v1 + ⋅ ⋅ ⋅ + anvn + an+1vn+1 = 0,

i.e., S is linearly-dependent. n

What makes a set S ⊆ V linearly-independent? If for every sequence (v1, . . . ,vn) ⊂
S of distinct vectors and every sequence (a1, . . . , an) of scalars,

a
1v1 + ⋅ ⋅ ⋅ + anvn = 0

if and only if a1 = ⋅ ⋅ ⋅ = an = 0.
Proposition 3.24 Let V be a vector space over F. Let S ⊂ V . Then, the

following statements are equivalent:

(a) S is linearly-independent.

(b) Every v ∈ S is linearly-independent of S � {v}.

Proof : This is just a reformulation of the previous proposition in negated
form. n

The following claims are quite immediate:

Proposition 3.25 Let V be a vector space over F.

(a) A set containing a linearly-dependent subset is linearly-dependent.

(b) A subset of a linearly-independent set is linearly-independent.

(c) Any set containing 0V is linearly-dependent.

(d) A set S is linearly-independent if and only if every finite subset of S is

linearly-independent.

Proof :
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(a) Suppose that S ⊂ V contains a subset T ⊂ S which is linearly-dependent.
By definition, there exist distinct vectors (v1, . . . ,vn) ⊂ T and scalars(a1, . . . , an) ⊂ F, such that

a
1v1 + ⋅ ⋅ ⋅ + anvn = 0.

Since (v1, . . . ,vn) ⊂ S, it follows by definition that S is linearly-dependent.

(b) Let S be linearly-independent and let T ⊂ S be a non-empty subset. If
T was linearly-dependent, it would follows from the first item that S is
linearly-dependent, which is a contradiction. Hence every non-empty
subset of S is linearly-independent.

(c) Suppose that 0V ∈ S. Then, taking n = 1, v1 = 0V and a1 = 1F, we
obtain that

a
1v1 = 1F ⋅ 0V = 0V ,

hence S is linearly-dependent.

(d) By the second item, if S is linearly-independent, then any of its subsets,
whether finite or not, is linearly-independent. Conversely, suppose that
every subset of S is linearly independent. If S is linearly-dependent,
then there exist distinct (v1, . . . ,vn) ⊂ S and scalars (a1, . . . , an) ⊂ F,
not all of which are zero, such that

a
1v1 + ⋅ ⋅ ⋅ + anvn = 0.

This implies that the finite subset {v1, . . . ,vn} of S is linearly-dependent,
in contradiction. Hence, S is linearly-independent.

n

Exercises

(easy) 3.39 Why did we insist in Definition 3.22 that the vectors vi be
distinct?

(easy) 3.40 Let v ∈ V . Show that the set {v} is linearly-dependent if and
only if v = 0V .
(easy) 3.41 Show that if two vectors are linearly-dependent, then one is a
(scalar) multiple of the other.
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(intermediate) 3.42 Find three vectors in (R3,+,R, ⋅) that are linearly −
dependent, but every pair of them is linearly-independent.

(intermediate) 3.43 Let V = (R4,+,R, ⋅). Are the vectors

v1 = (1,1,2,4) v2 = (2,−1,−5,2)
v3 = (1,−1,−4,0) v4 = (2,1,1,6)

linearly-independent?

(intermediate) 3.44 Consider the set C2 and let

u = (1 − ı,3 + ı) and v = (1,1 + 2ı).
(a) Is {u,v} linearly-dependent in (C2,+,C, ⋅)?
(b) Is {u,v} linearly-dependent in (C2,+,R, ⋅)?

(intermediate) 3.45 Let V be a vector space over F and let U1, U2 ≤ V

such that U1 ∩ U2 = {0V }. Let L1 ⊆ U1 and L2 ⊆ U2 be linearly-independent
sets. Show that L1 ∪L2 is linearly-independent.

(intermediate) 3.46 In conjunction with the previous exercise, could we
omit the condition that U1 ∩U2 = {0V }?
(intermediate) 3.47 Consider the vector space (F2

col
,+,F, ⋅). Show that

the set

S = ��a
b
� , �c

d
��

is linearly-independent if and only if ad − bc ≠ 0.
3.4.2 Bases

Definition 3.26 Let V be a vector space over F. A subset S ⊆ V is called

a generating set (�;97&* %7&"8) if

SpanS = V.
It is called a basis (�2*2") for V if it is a linearly-independent generating set.

A vector space having a finite basis is called finite-dimensional ($/*//
�*5&2), or finitely-generated (�*5&2 97&1). Otherwise, it is called infinite-
dimensional.
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Example: Let V = (R2,+,R, ⋅). Then,
S = {(1,0), (0,1), (1,1)} ⊂ V

is not a basis because it is linearly-dependent; on the other hand, it spans
V , i.e., it is a generating set. Likewise,

T = {(1,0)} ⊂ V
is not a basis because it does not span V ; for example,

(1,1) �∈ SpanT.
▲▲▲

Example: Let V = (Rn,+,R, ⋅) for some n ∈ N. The set of vectors

e1 = (1,0,0, . . . ,0,0)
e2 = (0,1,0, . . . ,0,0)⋮ = ⋮
en = (0,0,0, . . . ,0,1)

is a basis called the standard basis ( �*)9$1)2% 2*2"%). We leave it as an
exercise to prove that this is indeed a basis. ▲▲▲
Example: Consider the vector space (C,+,C, ⋅). Then,

S = {1}
is a basis. Why? A singleton containing a non-zero vector is always linearly-
independent. On the other hand, SpanS = C, as every z ∈ C can be written
is

z = z ⋅ 1,
where z on the left-hand side is viewed as a vector, whereas z on the right-
hand side is viewed as a scalar. In fact, {1} is a basis for every field viewed
as a vector space over itself. ▲▲▲
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Example: Consider the vector space (C,+,R, ⋅). Then,
S = {1}

is not a basis because for example, ı �∈ Span{1}. On the other hand,

T = {1, ı}
is a basis. I recommend thinking again about the di↵erence between the last
two examples. ▲▲▲
Example: Let A ∈ GLn(F) and consider

S = {Coli(A) ∶ i = 1, . . . , n} ⊂ Fn

col
.

We claim that S is a basis for V = Fn

col
. There are two things to show: that

S is a linearly-independent set and that S spans Fn

col
(i.e., that the column

space of A is Fn

col
).

Let x ⊂ Fn

col
be such that

n�
i=1

x
iColi(A) = 0V .

Noting that for every j = 1, . . . , n,
� n�
i=1

x
iColi(A)�

j = n�
i=1

a
j

i
x
i = (Ax)j,

it follows that Ax = 0V . Since A is invertible, it follows that x = 0V , proving
that S is linearly-independent.

It remains to show that S spans V . Let c ∈ V . Since A is invertible, the
linear system Ax = c is solvable, i.e., there exists a linear combination of the
columns of A equal to c, proving that S spans V . ▲▲▲
Example: Thus far, all the vector spaces in this section were finitely-
generated. Consider now the vector space of polynomials F[X]. This space
is infinite-dimensional. Why? Let P1, . . . , Pn ∈ F[X] be a finite set of poly-
nomials; we will show that it cannot span F[X]. Let

N = n

max
i=1 degPi.
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Then, each Pi can be written as

Pi = N�
j=1

cijX
j
,

where some of the cij may be zero. For every scalars a1, . . . , an,

n�
i=1

a
i
Pi = N�

j=1
� n�
i=1

a
i
cij�Xj

,

It follows, for example, that XN+1 is not in the span of {P1, . . . , Pn}. ▲▲▲
We next provide two additional characterization to bases.

Definition 3.27 Let V be a vector space over F. A subset L ⊂ V is called

maximally linearly-independent (�;*-/*28/ %*&-; *;-") if it is linearly-

independent, and for every v ∈ V �L, L ∪ {v} is linearly-dependent.
Proposition 3.28 Every maximally linearly-independent set is a basis.

Proof : Let L ⊂ V be maximally linearly-independent. In order to show that
it is a basis, it only remains to show that it is a generating set. Suppose it
wasn’t a generating set. By definition, there exist a v �∈ SpanL. We claim
that L ∪ {v} is linearly-independent, in contradiction to L being maximally
linearly-independent. Indeed, if L∪{v} was linearly-dependent, there would
exist (v1, . . . ,vn) ⊂ L, (a1, . . . , an) ⊂ F and a ∈ F, such that (a1, . . . , an, a) are
not all zero, and

a
1v1 + ⋅ ⋅ ⋅ + anvn + av = 0V .

We argue that a ≠ 0, for otherwise, it would imply that L is not linearly-
independent. Thus,

v = n�
i=1
(−ai�a)vi,

in contradiction to v �∈ SpanL. We conclude that V = SpanL, hence L is a
basis. n

Definition 3.29 Let V be a vector space over F. A subset G ⊂ V is called

minimally-generating (�;*-/*1*/ ;97&*) if it is generating, and for every

v ∈ G, G � {v} is not generating.
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Proposition 3.30 Every minimally-generating set is a basis.

Proof : Let G ⊂ V be minimally-generating. Since it is a generating set, it
remains to prove that it is linearly-independent. Suppose it weren’t linearly-
independent. This implies the existence of a v ∈ G, such that

v = a1v1 + ⋅ ⋅ ⋅ + anvn

for some (v1, . . . ,vn) ⊂ G � {v} and (a1, . . . , an) ⊂ F. We claim that G � {v}
is a generating set in contradiction to the minimality of G. Indeed, since G

is a generating set, every u ∈ V can be written in the form

u = b1u1 + ⋅ ⋅ ⋅ + bmum,

for some (u1, . . . ,um) ⊂ G and (b1, . . . , bm) ⊂ F. Now either the ui do not
comprise v, in which case

u ∈ SpanG � {v},
or, if one of the ui equals v, we can substitute for v its expression as a linear
combination of element in G � {v}, so in either case

u ∈ SpanG � {v},
showing that G � {v} is a generating set—contradiction. n

Proposition 3.31 Let V be a vector space over F. Let G ⊂ V be a finite

generating set and let L ⊆ G be linearly-independent. Then, there exists a

basis B for V , such that

L ⊆ B ⊆ G.

In other words, every linearly-independent set which is partial to a generating

set, can be expanded into a basis contained that generating set. Alternatively,

every generating set containing a linearly-independent set can be reduced to

a basis containing that linearly-independent set.
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Proof : Start with L, and add to it vectors in G, as long as the set remains
linearly-independent. This process must terminate, as G is a finite set. Con-
sider the resulting set L ⊂ B ⊂ G. By construction, B is linearly-independent,
and for every v ∈ G � B we obtain that G ∪ {v} is linearly-dependent. It
follows that every such v is in the span of B, i.e.,

G � B ⊂ SpanB,
from which follows at once that

G ⊂ SpanB,
hence

V = SpanG ⊂ SpanB ⊂ V,
i.e., B is a generating set, hence a basis. n

Corollary 3.32 Every finitely-generated vector space has a basis (which in

particular is finite).

Proof : Apply the previous proposition with L = �. n

As it turns out, every vector space has bases; to show it in the general case
is much more involved, and relies on a fundamental axiom of set theory
called the axiom of choice ( �%9*("% ;/&*28!). You are welcome to read in
Wikipedia about Hamel bases.

Exercises

(easy) 3.48 Prove that for every field F, {1F} is a basis for (F,+,F, ⋅).
(easy) 3.49 Find a basis for (C2,+,C, ⋅).
(easy) 3.50 Find a basis for (C2,+,R, ⋅).
(intermediate) 3.51 Find a basis for the subspace of R4 spanned by the
four vectors of Exercise 3.43.
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(intermediate) 3.52 Show that the vectors

v1 = (1,0,−1) v2 = (1,2,1) v3 = (0,−3,2)
form a basis for (R3,+,R, ⋅). Write each of the standard basis vectors as a
linear combination of v1,v2,v3.

(intermediate) 3.53 Let V = (M2×2(F),+,F, ⋅) and consider the subsets

W1 = ��a −a
b c

� ∶ a, b, c ∈ F� ,
and

W2 = �� a b−a c
� ∶ a, b, c ∈ F� .

(a) Prove that W1,W2 ≤ V .

(b) Prove that W1 +W2 ≤ V (repeat the proof which was given for the
general case).

(c) Find bases for W1, W2, W1 +W2 and W1 ∩W2.

(intermediate) 3.54 Consider the matrix

A =
�������
1 0 1
0 1 0
1 1 1

�������
∈M3(R).

This matrix defines two subspaces of R3

col
: the column space and the space

of solutions to AX = 0. Find a basis for each subspace. Show that those
subspaces are di↵erent.

(intermediate) 3.55 Let S be a non-empty finite set and let V = Func(S,F)
(we saw that this is a vector space over F). For each t ∈ S, denote by ft ∶ S → F
the function defined by

ft(s) =
�������
1 s = t
0 otherwise.

Show that {ft ∶ t ∈ S}
is a basis for V .
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(harder) 3.56 Let V be a vector space over F. Let G ⊆ V be a generating
set and let L ⊆ V be linearly-independent. Show that for every u ∈ L � G
there exists a v ∈ G �L such that

(G � {v}) ∪ {u}
is generating, and (L � {u}) ∪ {v}
is linearly-independent. This fact is known as the exchange lemma.

(harder) 3.57 Let V be a vector space over F. A proper subspace W < V
is called a hyperplane ( �9&:*/ -3) if for every subspace W ≤ U ≤ V either
U =W or U = V . Show that if V is finitely-generated, dimF V ≥ 2, then there
exists a maximal hyperplane 0 <W < V . Show that for every v ∈ V �W ,

V = Fv +W.

3.4.3 The dimension of a vector space

We are now in measure to define the dimension of a finitely-generated vector
space:

Proposition 3.33 Let V be a finitely-generated vector space over F. Let

G = {v1, . . . ,vn} ⊂ V be a (finite) generating set for V . Then, any linearly-

independent set of vectors has no more than n elements.

Proof : Let S ⊂ V have more than n elements, and let {u1, . . . ,un+1} ⊂ S be
distinct vectors. By the definition of a generating set, each of the vectors ui

is in the span of that G, hence there exist (n + 1) × n scalars ai
j
such that

uj = a1jv1 + ⋅ ⋅ ⋅ + anj vn for every j = 1, . . . , n + 1.
(Since G is finite, we may always consider vectors in its span as a linear
combination of all vi, with some coe�cients being possibly zero.) For any
sequence of scalars (c1, . . . , cn+1),

n+1�
j=1

c
juj = n+1�

j=1
c
j � n�

i=1
a
i

j
vi� = n�

i=1
�n+1�
j=1

a
i

j
c
j�vi.
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Consider the n×(n+1) matrix A whose entries are ai
j
. It represents a system

of equations having more variables than equations. We know that for such a
system, the homogeneous equation has non-trivial solutions. That is, there
exists a c ≠ 0Fn+1

col
, such that

a
i

1
c
1 + ⋅ ⋅ ⋅ + ai

n+1cn+1 = 0 for all i = 1, . . . , n.
For that c,

c
1u1 + ⋅ ⋅ ⋅ + cn+1un+1 = 0V ,

proving that the set {u1, . . . ,un+1} ⊂ S is linearly-dependent, hence so is
S (which contains a linearly-dependent set). It follows that any linearly-
independent set of vectors contains at most n vectors.

We may rewrite this proof in matrix form. Let the sequence (v1, . . . ,vn) be
an ordered n-tuple containing the vectors in G, and let (u1, . . . ,um), m > n,
be any sequence of m vectors. Since the {vi} are a generating set, there
exists an n ×m matrix A, such that

�u1 . . . um� = �v1 . . . vn�A.
Since A has more columns than rows, there exists a non-zero c ∈ Fm

col
such

that Ac = 0, i.e.,
�u1 . . . um�c = �v1 . . . vn�Ac = 0V ,

proving that the vectors {ui} are linearly-dependent. n

Corollary 3.34 Let V be a finitely-generated vector space over F. Then,

every two bases have the same number of elements.

Proof : Let {v1, . . . ,vn} and {u1, . . . ,um} be two bases for V . By the pre-
vious theorem, since bases are by definition generating sets and linearly-
independent, m ≤ n and n ≤m, which completes the proof. n

This last corollary implies that we can associate with every non-zero finitely-
generated vector space a natural number which is the cardinality of any of
its bases. This number is called the dimension ( �$/*/) of V , and is denoted

dimF V.
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Note the explicit mention of the field F, as the same set of vectors may con-
stitute a vector space of di↵erent dimension depending on the field. The zero
space (which contains no independent sets of vectors) is assigned dimension
zero,

dimF{0V } = 0.
If follows from the last theorem that if dimV = n, then every set of vectors
containing more than n elements is linearly-dependent, and that no set of
vectors containing fewer than n elements can span V (see exercises).

Example: The vector space (C,+,C, ⋅) has dimension 1 (because {1} is a
basis),

dimC C = 1.
The vector space (C,+,R, ⋅) has dimension 2 (because {1, ı} is a basis),

dimR C = 2.
Generally, for any field F, the vector space (Fn,+,F, ⋅) has dimension n,

dimF Fn = n,
because the standard basis has n elements. ▲▲▲
Lemma 3.35 Let V be a vector space over F. Let S ⊂ V be linearly-

independent and let v �∈ SpanS. Then, S ∪ {v} is linearly-independent.
Proof : This was essentially proved in Proposition 3.28, but for the sake of
completeness, we repeat the proof. Suppose, by contradiction that S ∪ {v}
is linearly-dependent. Then, there exist distinct vectors v1, . . . ,vn ∈ S and
scalar c1, . . . , cn, c, not all zero, such that

c
1v1 + ⋅ ⋅ ⋅ + cnvn + cv = 0V .

If c = 0, then this contradicts the linear-independence of S. If on the other
hand c ≠ 0, then

v = n�
i=1
(−ci�c)vi,

in contradiction to v not being in the span of S. n
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Proposition 3.36 Let V be a finitely-generated vector space over F. Let

W ≤ V be a linear subspace. Then, every linearly-independent subset S ⊆W
is part of a basis for W . In particular, since V ≤ V , every basis for W can

be extended to a basis for V .

Proof : If S spans W then it is a basis for W and we are done. Otherwise,
there exists a vector

v1 ∈W � SpanS.
By the previous lemma, S ∪ {v1} is linearly-independent. If it spans W then
it is a basis for W and we are done. Otherwise, there exists a vector

v2 ∈W � Span(S ∪ {v1}).
By the previous lemma, S ∪ {v1,v2} is linearly-independent. We proceed
inductively. Eventually, after no more than dimF V steps (because there
exist at most dimF V linearly-independent vectors), we obtain a basis for W
containing S. n

Corollary 3.37 Let V be a finitely-generated vector space over F. Let W <
V be a proper linear subspace. Then,

dimFW < dimF V.

(In particular, W is finitely-generated.)

Proof : If W = {0V } then dimFW = 0 and we are done. Otherwise, there
exists a non-zero w ∈ W . By the previous proposition and its proof, there
exists a basis S forW containingw and having no more than dimV elements,
hence

dimFW ≤ dimF V.

Since W < V , there exists a vector v ∈ V �W , hence not in the span of S.
It follows that S ∪ {v} is linearly-independent (as a collection of vectors in
V ), hence a basis for V contains at least dimFW + 1 vectors, from which we
conclude that dimFW < dimF V . n

In fact, the following holds:
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Corollary 3.38 Let V be a finitely-generated vector space of dimension n

and let W ≤ V . Then,

dimFW = dimF V if and only if W = V.

Proof : One direction is immediate. For the other direction, suppose that
dimFW = dimF V . If W < V , then there exists a v ∈ V �W . Let L be a
maximally-independent set for W ; then L∪{v} is independent, proving that
L is not maximally-independent for V , hence dimFW < dimF V , which is a
contradiction. n

Finally, a statement reminiscent of the inclusion-exclusion principle:

Proposition 3.39 Let W1,W2 be finitely-generated linear subspaces of a

vector space V . Then, the linear subspace W1 +W2 is finitely-generated and

dimF(W1 +W2) = dimFW1 + dimFW2 − dimF(W1 ∩W2).

Comment: The example you should have in mind is V = R3, W1 being the
xy-plane and W2 being the xz-plane. Then, W1 +W2 = R3 and W1 ∩W2 is
the x-axis. In this case,

dimR(W1 +W2)�������������������������������������������������������������������������������������=3
= dimRW1�������������������������������=2

+dimRW2�������������������������������=2
−dimR(W1 ∩W2)�������������������������������������������������������������������������������������=1

.

Proof : Note that V may not be finitely-generated, but since W1 ∩W2 ≤
W1,W2, it follows from Corollary 3.37 that W1∩W2 is finitely-generated. Let

dimF(W1 ∩W2) = k dimFW1 = k + n and dimFW2 = k +m
(a priori, k, m and n may be zero). Let {u1, . . . ,uk} be a basis for W1 ∩W2.
By Proposition 3.36, it is part of a basis

{u1, . . . ,uk} ∪ {v1, . . . ,vn}
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for W1 and it is part of a basis

{u1, . . . ,uk} ∪ {w1, . . . ,wm}
for W2. Clearly, the set

S = {u1, . . . ,uk} ∪ {v1, . . . ,vn} ∪ {w1, . . . ,wm}
spans W1 +W2 (convince yourself that this is true). If we show that S is also
linearly-independent then, by definition, it is a basis for W1 +W2, in which
case dimF(W1 +W2) = k +m + n, proving the claim.

Suppose, by contradiction, that S is dependent. This implies that there exist
scalars a1, . . . , ak, b1, . . . , bn and c1, . . . , cm, not all of which are zero, such that

k�
i=1

a
iui + n�

i=1
b
ivi + m�

i=1
c
iwi = 0V .

Thus,
m�
i=1

c
iwi = − k�

i=1
a
iui − n�

i=1
b
ivi.

The left-hand side is in W2, whereas the right-hand side is in W1. Thus, both
sides are in W1∩W2. Moreover, they can’t be zero, otherwise either the {wi}
or the {ui}∪{vi} are not linearly-independent (recall that at least one of the
coe�cients is non-zero). Thus, we conclude that at least one of the {ci} is
non-zero.

Since the vectors {u1, . . . ,uk} form a basis for W1 ∩W2, it follows that there
exist scalars d1, . . . , dk, such that

m�
i=1

c
iwi = k�

i=1
d
iui,

or
m�
i=1

c
iwi − k�

i=1
d
iui = 0,

contradicting the fact that the vectors {u1, . . . ,uk}∪{w1, . . . ,wm} are linearly-
independent. Hence, S is linearly-independent, and therefore a basis. n

We end this section with a very important theorem:
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Theorem 3.40 Let A ∈Mn(F). Then, A is invertible if and only if its rows

form a linearly-independent set in Fn
row.

Proof : Suppose that the rows of A form a linearly-independent set in Fn
row

.
Since dimF Fn

row
= n, it follows that the rows of A form a basis, and in par-

ticular are a generating set. Thus, there exists for every i = 1, . . . , n a vector[xi

1
, . . . , xi

n
], such that

�xi

1
� xi

n
�
�������
Row1(A)�
Rown(A)

��������������������������������������������������������������
A

= �0 � 1 � 0� ,

where the right-hand side is a vector of zeros except for a 1 in the i-th column.
Then, �������

x1

1
� x1

n⋮ ⋮ ⋮
xn

1
� xn

n

�������
�������
Row1(A)�
Rown(A)

��������������������������������������������������������������
A

=
�������
1 �

1

�������
,

proving that A is invertible. Conversely, if A is invertible, let B = A−1.
Suppose that c ∈ Fn

row
satisfies cA = 0Fn

row
. Then,

c = c I = c (AB) = (cA)B = 0Fn
row

,

i.e., the only vanishing linear combination of the rows of A is the trivial one,
proving that the rows of A are linearly-independent. n

Exercises

(easy) 3.58 Show that the vector space (M2×2(F),+,F, ⋅) has dimension
four. More generally, show that the vector space (Mm×n(F),+,F, ⋅) has di-
mension mn.

(easy) 3.59 Let V be a vector space of dimension 3. Show that if U,W ≤ V
with dimFU = dimFW = 2, then U ∩W ≠ {0V }.
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(intermediate) 3.60 Let A ∈Mn(F). Show that A is invertible if and only
if its columns form a linearly-independent set in Fn

col
.

(intermediate) 3.61 Find a basis for the vector subspace

W =
�������������
x ∈ R5 ∶

x1 + x2 + x3 + x4 = 0
x3 + x4 + x5 = 0
x1 + x2 + x5 = 0
x1 + x3 = 0

�������������
What is its dimension?

(intermediate) 3.62 Let V be a finitely-generated vector space and let
U,W ≤ V . Which of the following assertions is true? Prove or find a counter
example.

(a) If 2 + dimF V ≤ dimFU + dimFW then V = U +W .

(b) If 2 dimF V ≤ dimFU + dimFW then V = U +W .

(c) If dimF V > dimFU + dimFW then V ≠ U +W .

(d) If dimF V > dimFU + dimFW then U ∩W = {0}.
(intermediate) 3.63 Consider the linear subspaces of R4,

U = Span{(1,0,−1,−2), (−1,−1,0,2), (1,2,1,−1)}
and

W = �x ∈ R4 ∶ x1 + 3x2 + x3 − x4 = 0
x2 − 3x3 + 2x4 = 0 � .

What is dimR(U +W )?
(harder) 3.64 Let V be a vector space over F, such that

dimF V = n.
Show that any set of vectors containing less than n vectors does not span V .

(harder) 3.65 Consider the vector space (R,+,Q, ⋅) (i.e. the vectors are
real numbers, the scalars are rational numbers, with the operations of vector
addition and scalar multiplication defined as usual in R). Prove that this
vector space is not finitely-generated. (Hint: start by convincing yourself
that {1} is not a basis for this space; the argument is based on the fact that
Q is countable, whereas R is not.)
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(harder) 3.66 Let V be a vector space of dimension n. What is the maximal
m for which there exists linear subspaces

W0 <W1 < ⋅ ⋅ ⋅ <Wm ?

3.4.4 The rank of a matrix

Let A ∈Mm×n(F). We defined for a matrix two vector spaces,

R(A) = Span{Rowi(A) ∶ i = 1, . . . ,m} ⊆ Fn

row

C (A) = Span{Colj(A) ∶ j = 1, . . . , n} ⊆ Fm

col
.

The row-rank ( �;&9&: *5- %#9$) of a matrix is the dimension of its row space,
whereas its column-rank ( �;&$&/3 *5- %#9$) is the dimension of its column
space. Even though these two spaces are seemlingly unrelated, it turns out
that

dimF R(A) = dimF C (A).
This joint dimension is called the rank ( �%#9$) of the matrix A.

We start with the row space:

Proposition 3.41 Let R be the row-reduced form of A. Then,

dimF R(A)
equals the number of non-zero rows in R.

Proof : Lemma 3.15 shows that

R(A) =R(R).
Let p be the number of non-zero rows in R. Then, the row space of R

(equivalently A) is spanned by the first p rows of R. These p rows are
linearly-independent because each an entry rj,kj = 1, while ri,kj = 0 for all
i ≠ j. It follows that

dimF R(R) = p.
n
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We proceed with the column space: let R = PA with P ∈ GLm(R). We
have seen that the non-homogeneous system AX = b is solvable if and only
if b ∈ C (A). But this system is solvable if and only if the system

RX = PAX = Pb

is solvable, i.e., if and only if Pb ∈ C (R). That is,
b ∈ C (A) if and only if Pb ∈ C (R).

Proposition 3.42 The column-rank of a matrix equals that of its row-

reduced form.

Proof : Let (v1, . . . ,vp) be an ordered basis for C (A). If we show that(Pv1, . . . , Pvp) is an ordered basis for C (R) then we are done. Letw ∈ C (R).
Then, P −1w ∈ C (A), and there exist scalars (a1, . . . , ap) such that

P
−1w = a1v1 + ⋅ ⋅ ⋅ + apvp,

from which we deduce that

w = P (a1v1 + ⋅ ⋅ ⋅ + apvp) = a1Pv1 + ⋅ ⋅ ⋅ + apPvp,

proving that (Pv1, . . . , Pvp) generates C (R).
Suppose then

a
1
Pv1 + ⋅ ⋅ ⋅ + apPvp = 0Fm

col
.

It follows that

P
−1(a1Pv1 + ⋅ ⋅ ⋅ + apPvp) = a1v1 + ⋅ ⋅ ⋅ + apvp = 0Fm

col
,

proving that (Pv1, . . . , Pvp) is independent, hence a basis for C (R). n

Proposition 3.43 Let R be the row-reduced form of A. Then,

dimF C (A)
equals the number of non-zero rows in R.
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Proof : Let p be the number of non-zero rows in R. By the previous propo-
sition it su�ces to show that dimF C (R) = p. Take the p columns Colkj(R),
j = 1, . . . , p. They are independent and spanning because the form together
the unit matrix. n

Example: Consider the matrix

A =
�������
0 0 1 4
2 4 2 6
3 6 2 5

�������
You may verify that

�������
1 2 0 −1
0 0 1 4
0 0 0 0

����������������������������������������������������������������������������������
R

=
�������
0 −1 1
1 0 0−2 −3 −2

������������������������������������������������������������������������������
P

�������
0 0 1 4
2 4 2 6
3 6 2 5

����������������������������������������������������������������������
A

,

and that �������
0 1 0
2 2 1
3 2 1

����������������������������������������������
Q=P−1

�������
1 2 0 −1
0 0 1 4
0 0 0 0

����������������������������������������������������������������������������������
R

=
�������
0 0 1 4
2 4 2 6
3 6 2 5

����������������������������������������������������������������������
A

.

Consider first the row space of R. It is spanned by two non-zero rows, hence
its dimension is at most 2; it is in fact equal to 2, because

a �1 2 0 −1� + b �0 0 1 4� = �0 0 0 0�
if and only if a = b = 0. Consider then the column space of R. It consists of
column vector of length 3 whose last entry is zero; this space has dimension
at most 2. Its dimension is 2 because the first and third columns are linearly-
independent. Thus,

dimR R(R) = dimR C (R) = 2.
The question is why these are also the dimensions of the row and column
spaces of A. The easier part to see is the row space. The rows of A and
linear combinations of the rows of R and vice-versa, hence,

{Rowi(A) ∶ i = 1,2,3} ⊂R(R) and {Rowi(R) ∶ i = 1,2,3} ⊂R(A),
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from which we deduce that R(A) =R(R), hence
dimR R(A) = 2.

The more surprising fact is that the column space of A has the same dimen-
sion as the column space of R, even though the two spaces are not identical.

The second column of R equals twice its first column,

Col2(R) = 2 Col1(R),
and the same holds for the column of A,

Col2(A) = 2 Col1(A).
Likewise,

Col4(R) = 4 Col3(R) − 5 Col1(R),
but also,

Col4(A) = 4 Col3(A) − 5 Col1(A).
In other words, the relations between the column of A are the same as the
relations between the columns of R.

Look again at the identity

�������
0 1 0
2 2 1
3 2 1

�������
�������
1 2 0 −1
0 0 1 4
0 0 0 0

����������������������������������������������������������������������������������
R

=
�������
0 0 1 4
2 4 2 6
3 6 2 5

����������������������������������������������������������������������
A

.

It states that the first and third columns of A are the first and third columns
of R, and that the other columns of A are linear combinations of those same
two columns of R. Hence dimR C (A) = 2. ▲▲▲

3.5 Coordinates

3.5.1 Motivation

Consider the vector space (R2,+,R, ⋅). It is not hard to verify that the set

S = {(1,2), (2,1)}
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is a basis for R2. The fact that S spans R2 implies that every vector (x, y) ∈ R2

can be written as a linear combination

(x, y) = a(1,2) + b(2,1)
for some a, b ∈ R. The fact that the vectors in S are independent, implies
that a and b are determined uniquely, as if the pairs of scalars a, b and c, d

satisfy
a(1,2) + b(2,1) = c(1,2) + d(2,1),

then (a − c)(1,2) + (b − d)(2,1) = (0,0),
which implies that a = c and b = d. This means that given the basis S, every
element in R2 can be identified with a pair of scalars, which are coe�cients
of the basis vectors. For example,

(8,7) = 2(1,2) + 3(2,1).
This is shown in the following plot, where the vector (8,7) is shown to be
twice the vector (1,2) plus three times the vector (2,1). Note also how the
two basis vectors define a grid.

(1,2)

(2,1)

(8,7)

Given the choice of a basis, every point in R2 can be characterized in a unique
way as a pair of scalars representing coe�cients of the two basis vectors. In
other words, after having chosen a basis S, we may identify the point (8,7)
with the pair of scalars 2 and 3. Note however, that these coe�cients cannot
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be viewed as an ordered pair unless we impose an order on the basis vectors.
Thus, for example, if we decided that the basis vector (1,2) is “first” and
the basis vector (2,1) is “second”, then we could have identified the points(8,7) ∈ R2 as the ordered pair of numbers [2,3]T , via

(8,7) = ((1,2), (2,1)) �2
3
� .

The column vector [2,3]T is called the coordinate matrix of (8,7) with re-
spect to the ordered basis ((1,2), (2,1)).
3.5.2 Ordered bases and coordinates

We defined a basis for a vector space as a set of vectors that are both gen-
erating and linearly-independent. We already mentioned the fact that a set
in not endowed with an order among its elements. If we want elements in a
set to be ordered, this requires an additional structure. This leads us to the
following definition:

Definition 3.44 Let V be a finitely-generated vector space. An ordered
basis (�9&$2 2*2") for V is a finite sequence (v1, . . . ,vn) of vectors, which is

linearly-independent and spans V .

Note that the only di↵erence between an ordered basis and any old basis
is that its elements are ordered... also, a priori, not all the elements of a
sequence have to be distinct, but linear-independence implies at once that
all the elements in the sequence are distinct.

Proposition 3.45 Let V be a finitely-generated vector space, and let B =(v1, . . . ,vn) be an ordered basis for V . Then, to every v ∈ V there corresponds

a unique a ∈ Fn

col, such that

v = a1v1 + ⋅ ⋅ ⋅ + anvn = �v1 . . . vn�
�������
a1⋮
an

�������
.
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Proof : Since a basis spans V , the existence of such scalars is guaranteed.
For uniqueness, let a,b ∈ Fn

col
be such that

v = a1v1 + ⋅ ⋅ ⋅ + anvn

v = b1v1 + ⋅ ⋅ ⋅ + bnvn.

Thus, (a1 − b1)v1 + ⋅ ⋅ ⋅ + (an − bn)vn = 0V ,
but since the vectors in B are independent, it follows that ai = bi for every
i = 1, . . . , n, proving the uniqueness of the representation. n

Since, on the other hand, every a ∈ Fn

col
defines a vector in V via linear

combinations of the vectors in the ordered basis, we have just discovered the
following fact:

Given an ordered basis B = (v1, . . . ,vn) for a finitely-generated vector space,
there exists a one-to-one correspondence between the elements of V and
elements of Fn

col
: every element in V can be identified with a unique a ∈ Fn

col
,

such that

v = a1v1 + ⋅ ⋅ ⋅ + anvn = �v1 � vn�
�������
a1⋮
an

�������
,

and vice-versa, every a ∈ Fn

col
can be identified with a unique v ∈ V . The

vector a ∈ Fn

col
is called the coordinate matrix ( �;&)1*$9&!&8% ;7*9)/) of v

relative to the basis B. We will denote by

[v]B ∈ Fn

col

the coordinates of v relative to the basis B, namely, for every basis B =(v1, . . . ,vn), the column vector

[v]B =
�������
a1⋮
an

�������
is the unique vector satsfying

v = �v1 . . . vn�
�������
a1⋮
an

�������
=B [v]B.
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Example: Let V = (Fn,+,F, ⋅) and let E = �e1 . . . en� be the standard
basis. Every x = (x1, . . . , xn) ∈ Fn can be represented as

x = x1e1 + ⋅ ⋅ ⋅ + xnen,

i.e., by definition

[x]E =
�������
x1

⋮
xn

�������
.

I.e., the i-th coordinate of x is xi, which is really what we would expect. In
other words, when we write the entries of a vector x ∈ Fn as a column vector,
we really write its coordinate matrix. ▲▲▲
Example: Let V = (R2,+,R, ⋅) and let

B = (v1,v2),
with v1 = (1,1) and v2 = (1,−1). B is an ordered basis for R2. Consider now
the vector

v = (3,5).
A direct calculation shows that

(3,5) = �(1,1) (1,−1)� � 4−1� ,
i.e., v =B [v]B, where

[v]B = � 4−1� .
See diagram below. ▲▲▲

(1,1)

(1,−1)

(3,5)
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The following proposition shows that operations on vectors correspond to
analogous operations on their coordinates:

Proposition 3.46 Let (V,+,F, ⋅) be a finitely-generated vector space, and

let B = (v1, . . . , vn) be an ordered basis for V . Then, for every u,v ∈ V and

c ∈ F, [u + v]B = [u]B + [v]B,
and [cu]B = c [u]B.

Comment: Note that u + v and cu are operations in (V,+,F, ⋅), whereas[u]B + [v]B and c [u]B are operations in (Fn

col
,+,F, ⋅).

Proof : By definition,

[u]B =
�������
a1⋮
an

�������
and [v]B =

�������
b1⋮
bn

�������
,

are the unique matrices satisfying

u =B [u]B and v =B [v]B.
That is,

u = a1v1 + ⋅ ⋅ ⋅ + anvn = �v1 . . . vn�
�������
a1⋮
an

�������
,

and

v = b1v1 + ⋅ ⋅ ⋅ + bnvn = �v1 . . . vn�
�������
b1⋮
bn

�������
.

Hence,

u + v = (a1 + b1)v1 + ⋅ ⋅ ⋅ + (an + bn)vn = �v1 . . . vn�
�������
a1 + b1⋮
an + bn

�������
,
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which we may also write as

u + v =B ([u]B + [v]B),
proving that [u + v]B = [u]B + [v]B. Likewise,

cu = c(a1v1 + ⋅ ⋅ ⋅ + anvn) = (c a1)v1 + ⋅ ⋅ ⋅ + (c an)vn,

which we may write as

cu = �v1 . . . vn�
�������
c a1⋮
c an

�������
=B (c [u]B),

proving that [cu]B = c [u]B. n

Example: Consider once again the vector space V = (R2,+,R, ⋅) with the
ordered basis

B = ((1,1), (1,−1)).
Let

u = (−1,0) and v = (3,5) hence u + v = (2,5).
We proceed the calculate the coordinates,

u = �(1,1) (1,−1)� �−1�2−1�2�
v = �(1,1) (1,−1)� � 4−1�
u + v = �(1,1) (1,−1)� � 7�2−3�2� ,

so that indeed [u + v]B = [u]B + [v]B.
▲▲▲

Before we end this section, we emphasize its main result. The choice of an
ordered basis allows us to view vectors in V as matrices of coordinates. Both
V and Fn

col
are vector spaces over the same field F, but they are di↵erent

spaces. What we have is an identification (which really is a one-to-one and
onto function) of elements in V with elements in Fn

col
. What we proved is

that vector addition and scalar multiplication “respect” this identification:
for example, the column vector representing the sum of two vectors is the
sum of the column vectors representing each vector.
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Exercises

(easy) 3.67 Let V = R2 and let

B = ((1,0), (1,1)) and C = ((1,2), (2,1))
be ordered bases.

(a) Find [v]B and [v]C for v = (3,3).
(b) Find v,w ∈ R2 for which [v]B = [w]C = [3,3]T .
(c) What are the coordinate matrices of (1,2) and (2,1) relative to the

basis C?

(easy) 3.68 Denote by R2[X] the space of polynomials of degree up to 2
with real coe�cients and let

B = (1,X,X
2) C = (X2

,X,1) and D = (X + 1,X2
,X − 1)

be ordered bases.

(a) Write [p]B, [p]C and [p]D for p = 4 + 2X − 6X2.

(b) Find polynomials p1, p2, p3 such that [p1]B = [p2]C = [p3]D = [1,1,1]T .
(intermediate) 3.69 Show that the vectors

v1 = (1,1,0,0) v2 = (0,0,1,1)
v3 = (1,0,0,4) v4 = (0,0,0,2)

form a basis for (R4,+,R, ⋅). What are the coordinate matrices of each of the
standard basis vectors e1,e2,e3,e4 is the ordered basis B = (v1,v2,v3,v4)?
(intermediate) 3.70 Let V = (C3,+,C, ⋅). What are the coordinates of the
vector (1,0,1) in the ordered basis

B = �(2ı,1,0) (2,−1,1) (0,1 + ı,1 − ı)� ?
(intermediate) 3.71 Let

B = �(1,0,−1) (1,1,1) (1,0,0)�
be an ordered basis for R3. calculate

[(a, b, c)]B
for arbitrary a, b, c ∈ R.
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(intermediate) 3.72 Let W ≤ C3 be the subspace generated by the vectors

v1 = (1,0, ı) and v2 = (1 + ı,1,−1).
(a) Show that (v1,v2) form an ordered basis for W .

(b) Show that

u1 = (1,1,0) and u2 = (1, ı,1 + ı)
form another basis for W .

(c) What are the coordinate matrices of v1,v2 in the ordered basis (u1,u2)?
(intermediate) 3.73 Let u = (u1, u2) and v = (v1, v2) be vectors in R2 such
that

u
2

1
+ u2

2
= v2

1
+ v2

2
= 1 and u1v1 + u2v2 = 0.

(a) Interpret the properties of those vectors geometrically.

(b) Show that {u,v} is a basis for R2.

(c) Find the coordinates of (x, y) in the ordered basis (u,v).
3.5.3 Transitions between bases

An ordered basis of n vectors enables us to view vectors (which are abstract
entities) as n-tuples of scalars, which are more concrete entities. But bear in
mind that we cannot say that a vector in a general finitely-generated vector
space is an n-tuple of scalars. This identification relies on the choice of a
basis. The same vector may have di↵erent coordinate matrices depending on
the ordered basis relative to which they are defined. A natural question is
the relation between coordinates of vectors relative to di↵erent bases.

Consider now a finitely-generated vector space, and let

B = �u1 . . . un� and C = �v1 . . . vn�
be two ordered bases. What can be said about the relation between coordi-
nates relative to both bases. In other words, for v ∈ V , what is the relation
between [v]B and [v]C?
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Since B is a basis, each of the vectors vi in the basis C has a unique repre-
sentation as a linear combination of the basis vectors ui. In other words, for
every i = 1 . . . , n, there exists n scalars p1

i
, . . . , pn

i
, such that

vi = p1iu1 + ⋅ ⋅ ⋅ + pni un,

i.e.,

vi = �u1 . . . un�
�������
p1
i⋮

pn
i

�������
.

In fact, that column vector is nothing but the coordinate matrix of vi relative
to the basis B,

Coli(P ) = [vi]B,
where P is the n × n matrix whose entries are pi

j
. Since this hold for every

i = 1 . . . , n,
�v1 . . . vn� = �u1 . . . un�

�������
p1
1

. . . p1
n⋮ ⋮ ⋮

pn
1

. . . pn
n

�������
,

namely
C =BP.

Symmetrically, denoting by Q the n×n matrix such that for every i = 1, . . . , n,
ui = q1i v1 + ⋅ ⋅ ⋅ + qni vn,

namely,
Coli(Q) = [ui]C,

we obtain that

�u1 . . . un� = �v1 . . . vn�
�������
q1
1

. . . q1
n⋮ ⋮ ⋮

qn
1

. . . qn
n

�������
,

or
B = CQ.

Combining the two, for every i = 1, . . . , n,
vi = n�

j=1
p
j

i
� n�
k=1

q
k

j
vk� = n�

k=1
� n�
j=1

p
j

i
q
k

j
�vk,
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namely,
C = C ⋅QP,

or
C ⋅ (QP − I) = 0.

Since the basis vectors in C are all independent, and since multiplication by(QP − I) yields n linear combinations of the basis vectors C, these combina-
tions vanish only if each column of QP − I is identically zero, form which we
deduce that

QP = I,
i.e., P ∈ GLn(F) and Q = P −1. That is, the transitions between bases is
through a right-multiplication by an invertible n×n matrix. The matrices P
and Q are called transition matrices ( �9"3/ ;&7*9)/).
Let now v ∈ V . By definition,

v =B [v]B and v = C [v]C
Since C =BP , it follows that

v = (BP ) [v]C =B (P [v]C),
which implies that [v]B = P [v]C.
Likewise, since B = CQ,

v = (CQ) [v]B = C (Q [v]B),
from which we deduce that

[v]C = Q [v]B.
Let’s summarize this as a theorem:

Theorem 3.47 Let V be an n-dimensional vector space over F. Let B =�u1 . . . un� and C = �v1 . . . vn� be two ordered bases for V . Then the

matrix P ∈Mn(F) given by

Coli(P ) = [vi]B.
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is invertible and Q = P −1 is given by

Coli(Q) = [ui]C.
Furthermore,

BP = C and CQ =B,

and for every v ∈ V ,

[v]B = P [v]C and [v]C = Q[v]B.

Example: Let V = R2 and consider two bases

B = �(1,2) (2,1)� and C = �(1,1) (1,−1)� .

(1,2)

(2,1)
(1,1)

(1,−1)
We verify that

[(1,1)]B = �1�31�3� and [(1,−1)]B = �−11 � ,
so that

�(1,1) (1,−1)������������������������������������������������������������������������������������������
C

= �(1,2) (2,1)���������������������������������������������������������������������������������
B

�1�3 −1
1�3 1

�
�����������������������������������������

P

,
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and

[(1,2)]C = � 3�2−1�2� and [(2,1)]C = �3�21�2� ,
so that

�(1,2) (2,1)���������������������������������������������������������������������������������
B

= �(1,1) (1,−1)������������������������������������������������������������������������������������������
C

� 3�2 3�2−1�2 1�2�����������������������������������������������������������
Q

.

Indeed,

�1�3 −1
1�3 1

�−1 = � 3�2 3�2−1�2 1�2� .
Let v = (3,4). A direct calculation shows that

[v]B = �5�32�3� and [v]C = � 7�2−1�2� .
You may verify that

�5�3
2�3��[v]B

= �1�3 −1
1�3 1

�
�����������������������������������������

P

� 7�2−1�2�������������������[v]C

.

▲▲▲
Example: Consider the vector space (R2,+,R, ⋅) and the ordered bases

B = �u1 u2� = �(cos↵, sin↵) (− sin↵, cos↵)� ,
and

C = �v1 v2� = �(cos�, sin�) (− sin�, cos�)� ,
for some ↵,� ∈ R (convince yourself geometrically that these are ordered
bases). You may verify that for every (x, y) ∈ R2,

[(x, y)]B = � x cos↵ + y sin↵−x sin↵ + y cos↵
� .

In particular,

[v1]B = � cos� cos↵ + sin� sin↵− cos� sin↵ + sin� cos↵
� = �cos(� − ↵)

sin(� − ↵)� ,
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and

[v2]B = �− sin� cos↵ + cos� sin↵
sin� sin↵ + cos� cos↵

� = �− sin(� − ↵)
cos(� − ↵) � .

That is, C =B ⋅ P , where

P = �cos(� − ↵) − sin(� − ↵)
sin(� − ↵) cos(� − ↵) � .

We know how to invert a 2 × 2 matrix,

P
−1 = � cos(� − ↵) sin(� − ↵)− sin(� − ↵) cos(� − ↵)� .

If follows that for every (x, y) ∈ R2,

[(x, y)]C = � cos(� − ↵) sin(� − ↵)− sin(� − ↵) cos(� − ↵)� [(x, y)]B.
▲▲▲

Exercises

(easy) 3.74 Consider Exercise 3.67.

(a) Find the matrix P whose columns are the coordinates of the vectors in
C relative to the basis B.

(b) Show directly that P is invertible and find its inverse.

(c) Find the matrix whose columns are the coordinates of the vectors in B
relative to the basis C.

(intermediate) 3.75 Let V be a vector space over F and letB = (v1,v2,v3)
be a sequence of linearly-independent vectors.

(a) Explain why is B an ordered basis for W = SpanB.

(b) Show that
C = (v1 + v2,v2 − v3,v1 + v2 + v3)

is also an ordered basis for W .

(c) Find the matrix P such that B = CP .


