
Chapter 4

Di↵erentiation

4.1 Signed measures

Measures, by definition, assign non-negative (possibly infinite) values to sets. We
now extend the notion of a measure to a set function—a signed measure—that
may return negative values as well. Signed measures will be helpful below, but
they are also natural in many applications. For example, electric charge can be
viewed as a signed measure, whereas mass can be viewed as a measure.

Definition 4.1 Let (X,⌃) be a measurable space. A signed measure (�;1/&2/ %$*/)
on (X,⌃) is a set function ⌫ ∶ ⌃→ [−∞,∞] satisfying the following conditions:

1. ⌫(�) = 0.

2. ⌫ assumes at most one of the values ±∞.

3. For every disjoint sequence An of measurable sets,

⌫� ∞�
n=1

An� = ∞�
n=1
⌫(An).

(Note that since only one of the values ±∞ is permitted, the right-hand side
converges absolutely in an extended sense.)

Comment: Every measure is a signed measure. Sometimes, to distinguish mea-
sures from signed measures we call the former positive measures.
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Comment: In the literature, one finds two slightly di↵erent concepts of a signed
measure, depending on whether or not one allows it to take infinite values. Since
signed measures are a particular example of complex measures—set functions
that may return complex values—one often defines them as set functions returning
only finite values. In some places, infinite values are allowed, thus distinguishing
between “finite signed measures” (�;&*5&2 ;&1/&2/ ;&$*/) and “extended signed
measures” (�;&--,&/ ;&1/&2/ ;&$*/).

Example: Let µ1 and µ2 be measures on (X,⌃), one of which is finite. Then,

⌫ = µ1 − µ2

is a signed measure. Clearly, ⌫(�) = 0 and ⌫ assumes at most one of the values±∞. It is countably-additive because µ1, µ2 are countably-additive. ▲▲▲
Example: Let µ be a measure on (X,⌃) and let f ∶ X→ [−∞,∞] be a measurable
function, such that either

�
X

f + dµ <∞ or �
X

f − dµ <∞.
We will called such functions extended-integrable (�--,&/ 05&!" ;*-*"9#)1*!).
The set function,

⌫ ∶ A� �
A

f dµ

is a signed measure. Indeed, we have seen that

⌫± ∶ A� �
A

f ± dµ

are both measures, one of which is finite; by the previous example, ⌫ = ⌫+ − ⌫− is
a signed measure. ▲▲▲
As we will shortly see, every signed measure is in some sense of one of these two
types.

Proposition 4.2 (Semicontinuity of signed measures) Let ⌫ be a signed measure
on (X,⌃). If An is an increasing sequence of measurable sets, then

⌫�∞�
n=1

An� = lim
n→∞ ⌫(An).
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Likewise, if Bn is a decreasing sequence of measurable sets and ⌫(B1) is finite,
then

⌫�∞�
n=1

Bn� = lim
n→∞ ⌫(Bn).

Proof : The proof is the same as for (positive) measures. Take for example the
increasing case. Define

E1 = A1 and En = An � An−1.

Then, the En are disjoint and satisfy�n
k=1 Ek = An and�∞k=1 Ek = ∪∞n=1An. Now,

⌫�∞�
n=1

An� = ⌫� ∞�
k=1

Ek� = ∞�
k=1
⌫(Ek) = lim

n→∞
n�

k=1
⌫(Ek) = lim

n→∞ ⌫�
n�

k=1
Ek� = lim

n→∞ ⌫(An).
In the case where the left-hand side is finite, the convergence is absolute. n

Let ⌫ be a signed measure and suppose that A ∈ ⌃ with ⌫(A) > 0. In principle, A
may have subsets that have negative measure. The next definition delineates sets
which are either positive or negative in a stronger sense:

Definition 4.3 Let ⌫ be a signed measure on (X,⌃). A measurable set E is called
⌫-positive (�)-(%" ;*"&*() if ⌫(F) ≥ 0 for all ⌃ ∋ F ⊂ E; we define similarly ⌫-
negative (�)-(%" ;*-*-:) and ⌫-null (�)-(%" %(*1') sets.

Comment: In a positive measure space (X,⌃, µ), every set is µ-positive and every
null set is µ-null.

Lemma 4.4 Every measurable subset of a ⌫-positive set is ⌫-positive, and so is
any countable union of ⌫-positive sets.

Proof : The first part is obvious. For the second part, let An be a sequence of
⌫-positive sets. Then,

B1 = A1 and Bn = An � An−1
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are ⌫-positive. Let C ⊂ �∞n=1 An be measurable; then,

⌫(C) = ⌫�∞�
n=1

An ∩C� = ⌫� ∞�
n=1

Bn ∩C� = ⌫� ∞�
n=1
(Bn ∩C)� = ∞�

n=1
⌫(Bn ∩C) > 0,

where we used the countable-additive property of the signed measure. n

The following theorem states that every space equipped with a signed measure ⌫
can be partitioned into a ⌫-positive set and a ⌫-negative set, and that this partition
is in a certain sense unique.

Theorem 4.5 (Hanh decomposition (�0!% 8&95)) Let ⌫ be a signed measure on(X,⌃). Then, there exists a ⌫-positive set P and a ⌫-negative set N, such that

X = P � N.

This partition is unique, in the sense that if P′ and N′ are another such pair of
sets, then

P�P′ = N�N′ is ⌫-null,

where � denotes symmetric di↵erence, A�B = (A � B) � (B � A).

Comment: Hans Hahn (1879–1934) was an Austrian mathematician; his most
celebrated contribution is the Hahn-Banach theorem in analysis.

Proof : Without loss of generality, assume that ⌫ does not assume the value +∞.
Let

m = sup{⌫(A) ∶ A is ⌫-positive}
(a priori, m may be infinite). By definition of the supremum, there exists a se-
quence Pn of positive sets such that

lim
n→∞ ⌫(Pn) = m.

Define
P = ∞�

n=1
Pn.

By Lemma 4.4, P is a positive set, and by the lower-semicontinuity of the signed
measure, ⌫(P) = m; in particular m <∞.—24h(2017)—
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Denote N = Pc and assume, by contradiction, that N is not ⌫-negative; i.e., there
exists a subset A ⊂ N such that ⌫(A) > 0. This implies that ⌫(P�A) = ⌫(P)+⌫(A) >
m. This is not yet a contradiction, because A may not be a ⌫-positive set (be careful
to distinguish ⌫-positive sets and sets of positive measure).
Thus, we have to proceed more carefully. First, we note that N cannot contain
a ⌫-positive set which has positive measure, because in this case we would have
obtained a contradiction.
Second, suppose that A ⊂ N and ⌫(A) > 0. Since A is not ⌫-positive. there exists a
set C ⊂ A such that ⌫(C) < 0, hence for B = A �C,

⌫(B) = ⌫(A) − ⌫(C) > ⌫(A).
In other words, every subset of N having positive measure has a subset having
larger measure.
So let A1 ⊂ N have positive measure and let n1 be the smallest integer satisfying

⌫(A1) > 1
n1
.

Then, A1 has a subset B of larger measure. Let n2 be the smallest integer for which
there exists an A2 ⊂ A1 such that

⌫(A2) > ⌫(A1) + 1
n2
.

We proceed inductively; let nk be the smallest integer for which there exists an
Ak ⊂ Ak−1 such that

⌫(Ak) > ⌫(Ak−1) + 1
nk
.

Set
A = ∞�

n=1
An.

Since the An are decreasing,

⌫(A) = lim
n→∞ ⌫(An) > ∞�

k=1

1
nk
,

and since ⌫(A) < ∞, the nk must be increasing to infinity. But then, by the same
argument, there exists B ⊂ A such

⌫(B) ≥ ⌫(A) + 1
n
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for some n. Since n < nk for some k, we obtain a contradiction on the construction
of the nk’s.
It remains to prove the uniqueness of the decomposition. Since P � P′ ⊂ P and
P � P′ ⊂ N′, P � P′ is both ⌫-positive and ⌫-negative, i.e., it is ⌫-null; the same
applies to all other di↵erences. n

. Exercise 4.1 Let ⌫ be a signed measure on the measurable space (X,⌃). Let A ∈ ⌃ such
that ⌫(A) > 0. Show that there exists a ⌫-positive set B ⊂ A, such that ⌫(B) ≥ ⌫(A).
Definition 4.6 Let µ and ⌫ be signed measures on (X,⌃). They are called mu-

tually singular (�%'- 2(*" %' .*9-&#1*2), denoted ⌫ ⊥ µ, if there exist disjoint
measurable A and B such that

X = A � B,

A is µ-null and B is ⌫-null (informally, µ and ⌫ “live” on di↵erent parts of X).

The following theorem states that every signed measure can be expressed as a
di↵erence of two (positive) measures that “live on di↵erent parts” of X:

Theorem 4.7 (Jordan decomposition) Let ⌫ be a signed measure. Then, there ex-
ist unique (positive) measures, ⌫+ and ⌫−. such that

⌫ = ⌫+ − ⌫− and ⌫+ ⊥ ⌫−.

Proof : LetX = P�N be the Hahn decomposition ofX; that is, P and N are disjoint
⌫-positive and ⌫-negative sets. Define

⌫+ ∶ A� ⌫(A ∩ P) and ⌫− ∶ A� −⌫(A ∩ N).
By construction, ⌫+ ⊥ ⌫− (N is ⌫+-null and P is ⌫−-null). Moreover, for every
A ∈ ⌃,

⌫(A) = ⌫(A ∩ P) + ⌫(A ∩ N) = ⌫+(A) − ⌫−(A).
Suppose that ⌫ = µ+ − µ− where X = P′ �N′, N′ is µ+-null and P′ is µ−-null. Then,
P′,N′ is another Hahn-Decomposition for X, and by uniqueness,

⌫(P�P′) = 0 and ⌫(N�N′) = 0.
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For every measurable A,

A ∩ (P ∪ P′) = (A ∩ P′) � (A ∩ (P � P′)) = (A ∩ P) � (A ∩ (P′ � P)),
hence

µ+(A) = ⌫(A ∩ P′)
= ⌫(A ∩ P) + ⌫(A ∩ (P � P′)) − ⌫(A ∩ (P′ � P))
= ⌫+(A),

and similarly, µ−(A) = ⌫−(A). n

Definition 4.8 Let ⌫ be a signed measure. Its total variation (�;--&, ;&1;:%) is
the (positive) measure �⌫� = ⌫+ + ⌫−,
where ⌫± is its Jordan decomposition.

Lemma 4.9 Let ⌫ be a signed measure on (X,⌃). Then, A ∈ ⌃ is ⌫-null if and only
if �⌫�(A) = 0 (i.e., it is �⌫�-null).

Proof : Let ⌫ = ⌫+ − ⌫− be the Jordan decomposition of ⌫ and suppose that

�⌫�(A) = ⌫+(A) + ⌫−(A) = 0.

Let B ⊂ A be measurable. Then, since ⌫± are positive measures,

⌫(B) = ⌫+(B) − ⌫−(B) ≤ ⌫+(B) ≤ ⌫+(A) = 0,

and
⌫(B) = ⌫+(B) − ⌫−(B) ≥ −⌫−(B) ≥ −⌫−(A) = 0.

The other direction is trivial. n —25h(2017)—
—24h(2018)—

. Exercise 4.2 Let µ, ⌫ be signed measures on (X,⌃). Show that ⌫ ⊥ µ if and only if �⌫� ⊥ µ,
if and only if ⌫+ ⊥ µ and if and only if ⌫− ⊥ µ.
. Exercise 4.3 Let µ, ⌫ be positive measures on (X,⌃). Suppose that for every " > 0 there
exists a set A ∈ ⌃, such that

µ(A) < " and µ(Ac) < ".
Prove that µ ⊥ ⌫.
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We conclude this section by defining integration with respect to a signed measure.
For a signed measure ⌫, we define

L1(⌫) = L1(⌫+) ∩ L1(⌫−).
Then, for all f ∈ L1(⌫),

�
X

f d⌫ def= �
X

f d⌫+ −�
X

f d⌫−.

. Exercise 4.4 Let ⌫ be a signed measures on (X,⌃). Show that:

(a) L1(⌫) = L1(�⌫�).
(b) For all f ∈ L1(⌫),

��
X

f d⌫� ≤ �
X
� f �d�⌫�.

(c) If A is measurable, then

�⌫�(A) = sup���
A

f d⌫� ∶ � f �∞ ≤ 1� .
. Exercise 4.5 Let ⌫ be a signed measures on (X,⌃), and let A ∈ ⌃. Show that

(a)
⌫+(A) = sup{⌫(B) ∶ ⌃ ∋ B ⊂ A} .

(b)
⌫−(A) = − inf {⌫(B) ∶ ⌃ ∋ B ⊂ A} .

(c)

�⌫�(A) = sup
�������

n�
j=1
�⌫(Aj)� ∶ n ∈ N, A = n�

j=1
Aj

������� .

4.2 The Radon-Nikodym theorem

Definition 4.10 Let ⌫ be a signed measure on (X,⌃) and let µ be a (positive)
measure on (X,⌃). ⌫ is said to be absolutely continuous (�)-(%" %5*79) with
respect to µ if µ(A) = 0 implies ⌫(A) = 0. We denote this relation by

⌫� µ.



Di↵erentiation 117

Comment: Absolute continuity, unlike mutual singularity, is not a symmetric re-
lation. For example, the zero measure is absolutely continuous with respect to any
non-zero measure, but the opposite is not true.

Lemma 4.11 Let ⌫ be a signed measure on (X,⌃) and let µ be a (positive) mea-
sure on (X,⌃). Then, ⌫ � µ if and only if every µ-null set is ⌫-null. (Note that
since µ is a positive measure, µ(A) = 0 implies that A is µ-null.)

Proof : Suppose that ⌫ � µ and µ(A) = 0. For every B ⊂ A, µ(B) = 0 hence
⌫(B) = 0, i.e., A is ⌫-null. The other direction is trivial. n

Lemma 4.12 ⌫ � µ if and only if �⌫� � µ, which in turns holds if and only if
⌫± � µ.

Proof : This is an immediate consequence of Lemma 4.9 and Lemma 4.11:

⌫� µ ⇐⇒ (µ-null sets are ⌫-)
⇐⇒ (µ-null sets are �⌫�-)
⇐⇒ �⌫�� µ.

n

Lemma 4.13 Absolute continuity is “complementary” to mutual singularity in
the following sense: if ⌫ ⊥ µ and ⌫� µ, then ⌫ = 0.

Proof : Let X = A� B, where A is µ-null and B is ⌫-null. By absolute continuity, A
is also ⌫-null, i.e., X is ⌫-null. n

The next proposition is a “quantitative” version of the notion of absolute continu-
ity:
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Proposition 4.14 Let µ be a (positive) measure on (X,⌃) and let ⌫ be a finite
signed measure. Then, ⌫� µ if and only if

∀" > 0 ∃� > 0, ∀A ∈ ⌃, µ(A) < � implies �⌫(A)� < ".

Proof : Reduction: it su�ces to consider the case where ⌫ is a finite positive
measure. Indeed, suppose that for positive measures

⌫� µ ⇐⇒ ∀" > 0 ∃� > 0, ∀A ∈ ⌃, µ(A) < � implies ⌫(A) < ".
Let ⌫ be a finite signed measure. If ⌫� µ, then �⌫�� µ is a finite positive measure,
hence

∀" > 0 ∃� > 0, ∀A ∈ ⌃, µ(A) < � implies �⌫(A)� ≤ �⌫�(A) < ",
proving one direction. Conversely, suppose that the "-� condition holds. Let P�N
be the Hahn-decomposition for ⌫. Then,

∀" > 0 ∃� > 0, ∀A ∈ ⌃, µ(A ∩ P) < � implies �⌫(A ∩ P)� < ",
which in turn implies that

∀" > 0 ∃� > 0, ∀A ∈ ⌃, µ(A) < � implies ⌫+(A) < ",
i.e., ⌫+ � µ. Likewise, we prove that ⌫− � µ.
proof of the positive case: The easy part: suppose that the ", �-condition holds.
For " > 0, let � > 0 be such that µ(A) < � implies ⌫(A) < ". Then, µ(A) = 0
implies ⌫(A) < ", and since this holds for every " > 0, we conclude that ⌫(A) = 0.
Conversely, suppose that the ", �-condition does not hold, i.e.,

∃" > 0, ∀� > 0 ∃A ∈ ⌃, µ(A) < � and ⌫(A) ≥ ".
Setting � = 2−n,

∃" > 0, ∀n ∈ N ∃An ∈ ⌃, µ(An) < 2−n and ⌫(An) ≥ ".
Let

Bn = ∞�
k=n

Ak and B = ∞�
n=1

Bn.
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Then,

µ(Bn) < ∞�
k=n

2−k = 21−n.

By the upper-semicontinuity of µ (using the fact that µ(B1) <∞),

µ(B) = lim
n→∞µ(Bn) = 0.

On the other hand, ⌫(Bn) ≥ ", and since ⌫ is finite,

⌫(B) = lim
n→∞ ⌫(Bn) ≥ ".

It follows that ⌫ �� µ. n

Given a measure, there exists a standard way of generating a signed measure that
it absolutely continuous with respect to it.

Proposition 4.15 Let (X,⌃, µ) be a measure space and let f be µ-extended-
integrable. Then,

⌫ ∶ A� �
A

f dµ

is a signed measure, with ⌫ � µ. In particular, if f ∈ L1(µ), then ⌫ is a finite
signed measure.

Proof : We have already seen that ⌫ is a signed measure; it is finite for f ∈ L1(µ)
because for every A ∈ ⌃,

�⌫(A)� ≤ �
A
� f �dµ <∞.

It remains to show that ⌫� µ: let µ(A) = 0. Since integrals are insensitive to sets
of measure zero, we may define

f̃ = f �Ac .

Then,
⌫(A) = �

A
f dµ = �

A
f̃ dµ = 0.

n
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Comment: It is customary to denote the relation

�
A

d⌫ = ⌫(A) = �
A

f dµ

by d⌫ = f dµ.
We will shortly see a powerful theorem stating that every signed measure that is
absolutely-continuous with respect to µ is of this form.

. Exercise 4.6 Let µ, ⌫ be positive measure on (X,⌃). Suppose that ⌫� µ and that

f = d⌫
dµ
> 0

a.e., Prove that µ� ⌫.
. Exercise 4.7 Let (X,⌃, µ) be a measure space. Let f ∈ L1(µ). Show that

∀" > 0 ∃� > 0, ∀A ∈ ⌃ µ(A) < � implies �
A

f dµ < ".

Lemma 4.16 Let µ, ⌫ be finite (positive) measures on (X,⌃). Then, either µ ⊥ ⌫,
or,

∃" > 0 and ∃A ∈ ⌃ such that µ(A) > 0 and A is (⌫ − "µ)-positive.

That is, for every ⌃ ∋ B ⊂ A,
⌫(B) ≥ "µ(B).

—25h(2018)—

Proof : For every n ∈ N, ⌫ − µ�n is a signed measure. Let

X = Pn � Nn

be the Hahn-decomposition for ⌫− µ�n. That is, Pn is (⌫− µ�n)-positive and Nn is(⌫ − µ�n)-negative. Let

P = ∞�
n=1

Pn and N = ∞�
n=1

Nn = Pc.
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Note that Pn are increasing and Nn are decreasing. By definition, N is (⌫ − µ�n)-
negative for all n. In particular,

⌫(N) ≤ µ(N)
n

for all n, implying that ⌫(N) = 0. If µ(P) = 0, then µ ⊥ ⌫. Otherwise, if µ(P) > 0,
then since Pn are increasing sets, there exists an n such that µ(Pn) > 0, and Pn is(⌫ − µ�n)-positive. n

We now prove the main theorem of this section:

Theorem 4.17 (Radon-Nikodym) Let ⌫ be a �-finite signed measure on (X,⌃)
and let µ be a �-finite (postive) measure on that same space. Then, ⌫ has a unique
decomposition

⌫ = � + ⇢,
where

� ⊥ µ and ⇢� µ.
Moreover, there exists an extended-integrable function f ∶ X → R, such that d⇢ =
f dµ; the function f is unique up to a set of µ-measure zero.

Comment: This theorem was proved by Johann Radon in 1913 in Rn, and gener-
alized in 1930 by Otto Nikodym.

Comment: In the particular case where ⌫ � µ, then � = 0 and there exists an
extended-integrable function f , such that d⌫ = f dµ. The function f it is called the
Radon-Nikodym derivative of ⌫ with respect to µ, and is denoted

f = d⌫
dµ
.

Naturally, it is defined up to a set of µ-measure zero.

Proof : Step 1: the finite positive case. We start with the case where both µ and
⌫ are finite positive measures. Let,

F = � f ∶ X → [0,∞] ∶ �
A

f dµ ≤ ⌫(A), ∀A ∈ ⌃� .
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This collection of functions is non-empty, because 0 ∈ F . Moreover, if f ,g ∈ F
then h = max( f ,g) ∈ F . Indeed, let

E = {x ∶ f (x) ≤ g(x)},
then for all A ∈ ⌃,

�
A

h dµ = �
A∩E

h dµ +�
A∩Ec

h dµ

= �
A∩E

g dµ +�
A∩Ec

f dµ

≤ ⌫(A ∩ E) + ⌫(A ∩ Ec) = ⌫(A).
Let

M = sup��
X

f dµ ∶ f ∈ F� .
By the definition of F and the finite-measure assumption,

M ≤ ⌫(X) <∞.
Let ( fn) be a sequence in F satisfying

lim
n→∞�X fn dµ = M.

Let
gn(x) = n

max
j=1

f j(x). and f (x) = sup
n

fn(x)
then, gn (which is a sequence in F) increases to f pointwise, and

M ≥ �
X

gn dµ ≥ �
X

fn dµ→ M.

It follows that
lim
n→∞�X gn dµ = M.

By monotone convergence,

�
X

f dµ = M,

from which we conclude that f is finite a.e., hence, without loss of generality, we
may assume that it is real-valued everywhere.
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We will show now that

d⌫ = (d⌫ − f dµ) + f dµ def= d� + d⇢

satisfies the desired properties. The measure � is in fact positive, because gn ∈ F ,
hence for every set A ∈ ⌃,

⌫(A) −�
A

gn dµ ≥ 0.

Letting n→∞ we obtain that

�(A) = lim
n→∞�⌫(A) −�A

gn dµ� ≥ 0.

Suppose that � was not singular with respect to µ. By Lemma 4.16,

∃" > 0 and ∃E ∈ ⌃ such that µ(E) > 0 and E is (� − "µ)-positive.

In particular, for every A ∈ ⌃,

0 ≤ �(A ∩ E) − "µ(A ∩ E)
= ⌫(A ∩ E) −�

A∩E
f dµ − "µ(A ∩ E)

= ⌫(A ∩ E) −�
A∩E
( f + ")dµ.

Consider the function f + "�E. For all A ∈ ⌃,

�
A
( f + "�E)dµ = �

A∩Ec
f dµ +�

A∩E
( f + ")dµ

≤ ⌫(A ∩ Ec) + ⌫(A ∩ E)
= ⌫(A).

We deduce that f + "�E ∈ F . On the other hand,

�
X
( f + "�E)dµ = M + "µ(E) > M,

which contradicts the definition of M as a supremum.
We have thus decomposed ⌫ into a � ⊥ µ and f dµ, which is absolutely-continuous
with respect to µ. We still need to prove the uniqueness of the decomposition.
Suppose that

d⌫ = d� + f dµ = d�′ + f ′ dµ.



124 Chapter 4

Then,
d� − d�′ = ( f ′ − f )dµ,

where � − �′ ⊥ µ and � − �′ � µ, from which we conclude (Lemma 4.13) that
� = �′ and

( f ′ − f )dµ = 0,

i.e., for every set A,

�
A

f dµ = �
A

f ′ dµ,
it follows from Proposition 3.35 that f = f ′ µ-a.e.

Step 2: the �-finite positive case. Partition X into a countable collection of
disjoint sets, Xn, that are both µ-finite and ⌫-finite. Set

µ j(E) = µ(E ∩X j) and ⌫ j(E) = ⌫(E ∩X j).
These are finite positive measures on X. Hence, there exist unique measures � j

and integrable functions f j, such that

d⌫ j = d� j + f j dµ j = d� j + f j�X j dµ.

Note that � j ⊥ µ j, from which follows that � j ⊥ µ. Setting

� = ∞�
n=1
� j and f = ∞�

n=1
fn�An ,

we obtain the desired partition.

Step 3: the �-finite signed case. Let ⌫ be a signed measure. Then ⌫± are �-finite
positive measures, and there exist unique decompositions,

d⌫± = d�± + f ± dµ.

Since ⌫ is a signed measure, either ⌫+ or ⌫− is a finite measure, hence so are either
�+ or �−; likewise, either f + or f − is integrable. It follows that

d⌫ = (d�+ − d�−) + ( f + − f −)dµ

satisfies the requirements. n
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Example: Suppose that P is a probability measure on (R,L) which is absolutely
continuous with respect to Lebesgue measure m, i.e., P � m. Then there exists a
non-negative function f ∈ L1(m), such that

dP = f dm.

The function f is called the probability density function (�;&9";2%% ;&5*57) of
the probability measure P. All the continuous random variables encountered in
the first Probability course have distributions (which are probability measures on
R) of this form. ▲▲▲ —27h(2017)—

. Exercise 4.8 Show that if µ, ⌫,� are �-finite measures with µ � ⌫ and ⌫ � �, then µ � �
and the “chain rule” holds:

dµ
d�
= dµ

d⌫
d⌫
d�

�-a.e.

. Exercise 4.9 Prove that of µ� ⌫ and ⌫� µ, then

dµ
d⌫
= � d⌫

dµ
�−1

a.e.

. Exercise 4.10 Let µ1 and µ2 be finite (positive) measures on (X,⌃). Show that there exist
measurable sets A � B = X, such that

µ1 ⊥ µ2

on (A,⌃ ∩ A) and
µ1 � µ2 � µ1

on (B,⌃ ∩ B). (Hint: show first that µ1, µ2 � µ1 + µ2 and apply the Radon-Nikodym theorem.)

. Exercise 4.11 Let µ, ⌫ be positive �-finite measures on (X,⌃). Show that there exists a
non-negative measurable function ', and a measurable set S , such that for all A ∈ ⌃,

⌫(A) = ⌫(A ∩ S ) +�
A
'dµ.

4.3 Di↵erentiation in Euclidean space

We saw that there was a correspondence between L+ functions and measures
through integration, and more generally between extended-integrable functions
and signed measure (or between L1 function and finite signed measures). The
Radon-Nikodym theorem states that given a reference measure µ, every signed
measure can decomposed into a measure that is singular wit respect to µ and a
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signed measure induced by an extended-integrable function (its Radon-Nikodym
derivative). In this section, we start relating the Radon-Nikodym theorem to the
analysis of real functions on Rn. We consider the measurable space (Rn,B(Rn));
the reference measure is the standard Borel measure m.
Suppose that ⌫ � m is a signed measure. By the Radon-Nikodym theorem, there
exists an extended-integrable function, f , such that d⌫ = f dm, i.e.,

⌫(A) = �
A

f dm.

Fix a point x ∈ Rn. For every r > 0, consider the ratio

⌫(Br(x))
m(Br(x)) =

1
m(Br(x)) �Br(x) f dm def= −�

Br(x) f dm,

where −∫ denotes a volume-averaged integral. If the limit of this ratio as r → 0
exists, then we would expect it to coincide with f .

Definition 4.18 A measurable function f ∶ Rn → R is called locally-integrable

(�;*/&8/ ;*-*"9#)1*!) if for every bounded measurable set E,

�
E
� f �dm <∞.

The space of locally-integrable functions on Rn is denoted L1
loc(Rn).

Definition 4.19 For f ∈ L1
loc(Rn) we define its local average over a ball of radius

r,
Ar f (x) = −�

Br(x) f dm.

(Note that Ar f (x) is finite by the local integrability of f .)

Lemma 4.20 If f ∈ L1
loc(Rn), then Ar f (x) is continuous, jointly in x and in r for

r > 0.

Proof : The volume of an n-Ball of radius r is given by

m(Br(x)) = ↵nrn,
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where ↵n = ⇡n�2��(n�2 + 1); this function is jointly continuous in x and r. Thus,
we only need to show that

(x, r)� �
Br(x) f dm = �

Rn
�Br(x) f dm

is continuous. That is, we need to show that for xk → x and rk → r,

lim
k→∞�Rn

�Brk(xx) f dm = �
Rn
�Br(x) f dm.

This follows from dominated convergence, where for large enough n,

��Brk(xx) f � ≤ �Br+1(x)� f � ∈ L1(m).
n

The following definition introduces a nonlinear operator on locally-integrable
functions, which has many uses in functional and harmonic analysis:

Definition 4.21 Let f ∈ L1
loc(Rn). Its Hardy-Littlewood maximal function (;*781&5

�;*-/*28/% $&&-)*- *$9%) is

H f (x) = sup
r>0

Ar� f �(x) = sup
r>0
−�

Br(x) � f �dm.

—27h(2018)—

Proposition 4.22 H f is measurable.

Proof : For every t ∈ R,

H f −1((t,∞)) = {x ∈ Rn ∶ sup
r>0

Ar� f �(x) > t}
=�

r>0
(Ar� f �)−1((t,∞)).

The latter is open (hence measurable) because Ar� f � is continuous. n

The following lemma is a combinatorial and geometric result commonly used in
the measure theory of Euclidean spaces:
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Lemma 4.23 (Vitali covering lemma) Let C be a collection of open balls in Rn

and let U be their union. Then, for every c < m(U) there exists a finite collection
of disjoint balls B1, . . . ,Bk ∈ C, such that

k�
j=1

m(Bj) > c
3n .

Proof : By the regularity of the Borel measure,

m(U) = sup{m(K) ∶ K � U},
where K � U denotes that K ⊂ U and K is compact. Hence, there exists for every
c < m(U) a compact set K � U such that

m(K) > c.

By compactness, there are finitely many balls in C, A1, . . . ,Am whose union covers
K. Let B1 be the largest of these balls, let B2 be the largest of the remaining
balls that are disjoint of B1, and proceed until there are no longer balls Aj that are
disjoint of the Bj’s. By construction, if a ball Ai is not one of the Bj’s, then there
is a ball Bj intersecting it; take this Bj to be the ball of largest radius intersecting
Ai. Then, the radius of Ai is at most the radius of Bj (otherwise this Ai would have
been picked). Thus, Ai is contained in a ball B∗j concentric with Bj and having a
radius 3 times as large. It follows that

K ⊂ k�
j=1

B∗j ,

hence
k�

j=1
m(Bj) = 1

3n

k�
j=1

m(B∗j ) ≥ m(K)
3n > c

3n ,

where we use the homogeneity of the volume of a Euclidean ball as function of
its radius. n

TA material 4.1 Vitali’s covering theorem for the Lebesgue measure.
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Theorem 4.24 (Maximal theorem) For all f ∈ L1(m) and all ↵ > 0,

m({x ∶ H f (x) > ↵}) ≤ 3n

↵
� f �L1(m).

Proof : Let
E↵ = {x ∶ H f (x) > ↵}.

By the definition of the maximal function, for each x ∈ E↵, there exists an r(x)
such that

Ar(x)� f �(x) = −�
Br(x)(x) � f �dm > ↵,

or equivalently,

m(Br(x)(x)) < 1
↵ �Br(x)(x) � f �dm.

The balls Br(x)(x), x ∈ E↵ cover E↵. By Vitali’s lemma, there exist for every
c < m(E↵) points x1, . . . , xk, such that the balls Br(x j)(x j) are disjoint, and

k�
j=1

m(Br(x j)(x j)) > c
3n .

That is,

c < 3n
k�

j=1
m(Br(x j)(x j))

< 3n

↵

k�
j=1
�

Br(x j)(x j) � f �dm

= 3n

↵ ��k
j=1 Br(x j)(x j) � f �dm ≤ 3n

↵
� f �L1(m),

where in the last step we used the disjointness of the balls Br(x j)(x j). Letting
c→ m(E↵) we obtain the desired result. n

With that, we turn to the main theorem of this section:
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Theorem 4.25 Let f ∈ L1
loc(Rn).Then,

lim
r→0

Ar f → f m-a.e.

Proof : It su�ces to prove the theorem for f ∈ L1(m). This would imply that for
f ∈ L1

loc(Rn),
lim
r→0

Ar(�B1(0) f )→ �B1(0) f . m-a.e.

Since B1(0) is open, for every x ∈ B1(0), the ball Br(x) is eventually in B1(0),
i.e., Ar(�B1(0) f )(x) = Ar f (x), which implies that

lim
r→0

Ar f → f for m-a.e. x ∈ B1(0).
Taking {xi} to be a countable 1�2-dense net in Rn,

lim
r→0

Ar f → f for m-a.e. x ∈ ∞�
i=1

B1(xi) = Rn.

So let f ∈ L1(m) and let " > 0. Since the continuous functions are dense in L1(m),
there exists a continuous integrable function g, such that

� f − g�L1(m) < ".
Since g is continuous1, then for all x ∈ Rn,

lim
r→0
�Arg(x) − g(x)� = 0.

It follows that,

lim sup
r→0

�Ar f (x) − f (x)� ≤ lim sup
r→0

�Ar f (x) − Arg(x)�
+ lim

r→0
�Arg(x) − g(x)� + �g(x) − f (x)�

= lim sup
r→0

�Ar( f − g)�(x) + �g(x) − f (x)�
≤ H( f − g)(x) + �g(x) − f (x)�.
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Note that we only have control on the L1-norm of g− f , however here, we need to
control it pointwise. Let ↵ > 0 be arbitrary and let—28h(2018)—

E↵ = �x ∶ lim sup
r→0

�Ar f (x) − f (x)� > ↵�
F↵ = {x ∶ �g(x) − f (x)� > ↵}
G↵ {x ∶ H( f − g)(x) > ↵} .

Since for c = a + b, c > ↵ only if a > ↵�2 or b > ↵�2, it follows that x ∈ E↵ only if
x ∈ F↵�2 or x ∈G↵�2, i.e.,

E↵ ⊂ F↵�2 ∪G↵�2.
Hence,

m(E↵) ≤ m(F↵�2) +m(G↵�2).
Now,

m(F↵�2) = �
F↵�2

dm ≤ 2
↵ �F↵�2

�g − f �dm ≤ 2
↵
�g − f �L1(m) ≤ 2"

↵
,

which really is Markov’s inequality from probability theory. By the maximal
theorem (Theorem 4.24),

m(G↵�2) = m ({x ∶ H( f − g)(x) > ↵�2}) ≤ 2 ⋅ 3n

↵
�g − f �L1(m) ≤ 2 ⋅ 3n"

↵
.

Thus, for every " > 0,

m(E↵) ≤ 2"
↵
+ 2 ⋅ 3n"

↵
,

which implies that m(E↵) = 0. It follows that for all k > 0,

m��x ∶ lim sup
r→0

�Ar f (x) − f (x)� > 1�k�� = 0.

It follows that

m��x ∶ lim
r→0

Ar f (x) ≠ f (x)�� = m�∞�
k=1
�x ∶ lim sup

r→0
�Ar f (x) − f (x)� > 1�k�� = 0.

n
1This fact is well-known for Riemann integration; since continuous functions are Riemann-

integrable, this fact holds for Lebesgue integration as well.
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Comment: This theorem can be rewritten in the following form,

lim
r→0
−�

Br(x)( f (x) − f )dm = 0 for a.e. x. (4.1)

In fact, we can prove a much stronger result, replacing the integrand in (4.1) with
its absolute value.

Definition 4.26 Let f ∈ L1
loc(Rn). Its Lebesgue set ( �#⌥=�- ;7&"8) is

L f
def= �x ∶ lim

r→0
−�

Br(x) � f (x) − f �dm = 0� .
A point in Lf is called a Lebesgue point (�#⌥=�- ;$&81) of f .

—29h(2017)—

Theorem 4.27 If f ∈ L1
loc(Rn), then almost every point in Rn is a Lebesgue point.

Proof : For every c ∈ R, applying Theorem 4.25 with f replaced by � f − c�,
lim
r→0
−�

Br(x) � f − c�dm = � f (x) − c�, (4.2)

everywhere except for an m-null set Ec. Let D be a countable dense set in R and
let

E = �
c∈D Ec,

which is an m-null set. Let x �∈ E, i.e., (4.2) holds for every c ∈ D. For every " > 0
there exists c ∈ D, such that � f (x) − c� < ".
Hence,

lim sup
r→0

−�
Br(x) � f − f (x)�dm ≤ lim sup

r→0
−�

Br(x) � f − c�dm + lim sup
r→0

−�
Br(x) � f (x) − c�dm

= 2� f (x) − c� < 2".

Since " > 0 is arbitrary, we obtain the desired result. n

Thus far, we only considered the convergence over averages over shrinking balls.
We will need a stronger version of those results.


