
Chapter 3

Integration

3.1 Measurable functions

The fundamental object that measure theory works with is a measurable space,
i.e., a set endowed with a structure—a �-algebra of subsets. Like in many other
instances in mathematics, the moment we have objects, we define morphisms
between such objects, which are maps between sets preserving the structure (mor-
phisms between sets are (general) functions, morphisms between vector spaces
are linear transformations, morphisms between groups are homomorphisms, mor-
phisms between topological spaces are continuous functions, etc.).
Recall that for every function f ∶ X → Y, where X and Y are arbitrary sets, its
inverse can be interpreted as a map

f −1 ∶P(Y)→P(X),
where for A ⊂ Y,

f −1(A) = {x ∈ X ∶ f (x) ∈ A} ⊂ X.
This map commutes with set-theoretic operations, namely,

f −1 ��
↵

A↵� =�
↵

f −1 (A↵) f −1 ��
↵

A↵� =�
↵

f −1 (A↵) ,
and

f −1 (Ac) = � f −1(A)�c .
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Note that in the above relations the collections {A↵} need not be countable. Like-
wise, we may apply f −1 to collections of subsets, i.e.,

f −1 ∶P(P(Y))→P(P(X)),
where for C ⊂P(Y),

f −1(C) = {A ⊂ X ∶ { f (x) ∶ x ∈ A} ∈ C}.
The following lemma assets that any function into a measurable spaces pulls back
a measurable structure on its domain (similarly to how any function into a topo-
logical space pulls back a topology on its domain):

Lemma 3.1 Let X be a set, let (Y,⌃Y) be a measurable space and let f ∶ X→ Y.
Then, the collection of sets

f −1(⌃Y) = { f −1(A) ∶ A ∈ ⌃Y} ⊂P(X)
is a �-algebra on X.

Proof : This follows from the fact that f −1 commutes with set-theoretic operations.
n

Definition 3.2 Let (X,⌃X) and (Y,⌃Y) be measurable spaces. A mapping f ∶
X→ Y is called measurable (�%$*$/) if

f −1(A) ∈ ⌃X for every A ∈ ⌃Y.
That is, if

f −1(⌃Y) ⊂ ⌃X.
Comment: Strictly speaking, measurability is a relation between �-algebras; we
should say that f is (⌃X,⌃Y)-measurable, because X and Y may be endowed with
multiple �-algebras.

Example: The finer ⌃X is and the coarser ⌃Y is, the more there are measurable
functions X → Y. In the extreme cases, if ⌃Y = {�,Y}, then every function
X→ Y is measurable, and likewise if ⌃X =P(X). ▲▲▲
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. Exercise 3.1 Let (X,⌃X) and (Y,⌃Y) be measurable spaces. In the absence of any other
information, which are the only functions f ∶ X→ Y that are guaranteed to ve measurable?

Proposition 3.3 Let (X,⌃X) and (Y,⌃Y) be measurable spaces. Suppose that ⌃Y
is generated by a collection of sets E . Then, f ∶ X → Y is measurable if and only
if

f −1(E) ∈ ⌃X for every E ∈ E ,
i.e.,

f −1(E) ⊂ ⌃X. (3.1)

Proof : The “only if” part is trivial, as if f is measurable, then

f −1(E) ⊂ f −1(⌃Y) ⊂ ⌃X.
For the “if” part, suppose that (3.1) is satisfied. Consider the collection of sets

F = {A ⊂ Y ∶ f −1(A) ∈ ⌃X}.
This set contains E . It is also a �-algebra since f −1 commutes with set-theoretic
operations; for example,

A ∈ F ⇒ f −1(A) ∈ ⌃X ⇒ f −1(Ac) = ( f −1(A))c ∈ ⌃X ⇒ Ac ∈ F .
It follows that ⌃Y ⊂ F , i.e.,

f −1(A) ∈ ⌃X for every A ∈ ⌃Y,
which by definition means that f is measurable. n

Corollary 3.4 Let (X, ⌧X) and (Y, ⌧Y) be topological spaces endowed with the
Borel �-algebras. Then, every continuous function f ∶ X→ Y is measurable.

Proof : A function f ∶ X → Y is continuous if the pre-image of every open set is
open,

f −1(E) ∈ ⌧X ⊂B(X) for every E ∈ ⌧Y.
Since B(Y) is generated by ⌧Y, it follows from Proposition 3.3 that f is measur-
able. n
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Comment: Functions into topological spaces are of particular importance, and
specifically real-valued functions. Let (X,⌃) be a measurable space and let f ∶
X→ R. Unless otherwise specified, we say that f is measurable if it is (⌃,B(R))-
measurable. A function f ∶ R→ R is called Borel-measurable if it is (B(R),B(R))-
measurable and it is called Lebesgue-measurable if it is (L,B(R))-measurable.
We use the same terminology when the range is the field of complex numbers C.

Comment: The composition of measurable maps between measure spaces is mea-
surable: indeed if (X,⌃X) f�→ (Y,⌃Y) g�→ (Z,⌃Z)
are measurable, then

(g ○ f )−1(⌃Z) = f −1(g−1(⌃Z)) ⊂ f −1(⌃Y) ⊂ ⌃X.
In particular, the composition of Borel-measurable maps

(R,B(R)) f�→ (R,B(R))) g�→ (R,B(R))
is Borel-measurable. However, the composition of Lebesgue-measurable maps

(L,B(R)) f�→ (R,B(R))) and (L,B(R)) g�→ (R,B(R)))
is not necessarily Lebesgue-measurable.

Comment: We will also consider complex-valued functions. Topologically (though
not algebraically), the complex plane C is homeomorphic to R2. Thus,

B(C) �B(R2) �B(R)⊗B(R),
where the product �-algebra was defined in Section 2.1.3.
By the definition of the product �-algebra, and since the projection maps C → R
are the real and the imaginal part,

B(C) = � �{Re−1(E) ∶ E ∈B(R)} ∪ {Im−1(F) ∶ F ∈B(R)}� .
By Proposition 3.3, f is measurable if and only if for every E,F ∈B(R),

f −1(Re−1(E)) ∈ ⌃X and f −1(Im−1(F)) ∈ ⌃X,
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namely, if and only if

(Re f )−1(E) ∈ ⌃X and (Im f )−1(F) ∈ ⌃X,
i.e., if and only if

Re f and Im f are measurable.

Let (Y,⌃Y) be a measurable space and let f ∶ X→ Y, where X is some non-empty
set. We saw that if we endow X with the maximal �-algebra P(X), then f is
measurable.

Definition 3.5 Let (Y,⌃Y) be a measurable space and let f ∶ X → Y. The �-

algebra generated by f is the intersection of all �-algebras on X with respect to
which f is measurable.

It is easy to see that the �-algebra generated by f is f −1(⌃Y).
Proposition 3.6 Let (X,⌃) be a measurable space and let f ∶ X → R. Then, the
following are equivalent:

1. f is measurable.

2. f −1((a,∞)) ∈ ⌃ for all a ∈ R.

3. f −1([a,∞)) ∈ ⌃ for all a ∈ R.

4. f −1((−∞,a)) ∈ ⌃ for all a ∈ R.

5. f −1((−∞,a]) ∈ ⌃ for all a ∈ R.

Proof : This follows from Proposition 3.3 and the fact that each of these sets
generates B(R) (Proposition 2.9). n —13h(2017)—

We next verify that the notion of measurability of functions pieces together with
basic algebraic operations on functions:
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Proposition 3.7 If f ,g ∶ (X,⌃)→ C are measurable, then so are f + g and f g.

Proof : Define F ∶ X→ C ×C by

F(x) = ( f (x),g(x)),
and � ∶ C ×C→ C by

�(z,w) = z +w.

Since B(C ×C) =B(C)⊗B(C), it is generated by the sets

{A ×C ∶ A ∈B(C)} and {C × B ∶ B ∈B(C)}.
Now,

F−1({A ×C ∶ A ∈B(C)}) = { f −1(A) ∶ A ∈B(C)}) ⊂ ⌃
and

F−1({C × B ∶ B ∈B(C)}) = {g−1(B) ∶ B ∈B(C)}) ⊂ ⌃,
proving that F is measurable. Likewise, � is measurable because it is continuous.
It follows that � ○ F, given by

� ○ F(x) = f (x) + g(x)
is measurable. The second part is proved similarly with �(z,w) = zw. n

Proposition 3.8 Let fn ∶ X→ R be a sequence of measurable functions. Then, the
functions

g1(x) = sup
n

fn(x)
g2(x) = inf

n
fn(x)

g3(x) = lim sup
n

fn(x)
g4(x) = lim inf

n
fn(x)

are measurable (here we use the topology of the extended real line, to allow for
infinite limits).
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Comment: The extended real line R̄ is obtained from the real number system R
by adding two elements: −∞ and∞. Topologically, a set U is a neighborhood of∞ if it contains a set (a,∞), and analogously for the neighborhoods of −∞ (this
topology is an order topology (�9$2 ;**#&-&5&)) applicable to every totally-ordered
set). With this topology, the limits∞ and −∞ reduce to the standard topological
definitions of limits.

Proof : Start with g1. For every a ∈ R,

g−1
1 ((a,∞]) = {x ∈ X ∶ sup

n
fn(x) > a}

= {x ∈ X ∶ ∃n, fn(x) > a}
= ∞�

n=1
f −1
n ((a,∞]) ∈ ⌃

(the supremum at x is greater than a if and only if there exists an n for which
fn(x) > a). This implies that g1 is measurable. We proceed similarly for g2. As
for g3 and g4,

g3(x) = inf
n

sup
k≥n

fk(x) and g4(x) = sup
n

inf
k≥n

fk(x)
which are measurable by the first two items. n

Corollary 3.9 If f and g are measurable then so are

max( f ,g) and min( f ,g).

Proof : Immediate from the previous proposition, taking f2n = f and f2n+1 = g. n

Corollary 3.10 Let fn ∶ X → C be a sequence of complex-valued measurable
functions. If

f (x) = lim
n→∞ fn(x)

exists for all x ∈ X, then f is measurable.
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Definition 3.11 Given a function f ∶ X → R, we denote its positive and negative
parts by

f + = max( f ,0) and f − = max(− f ,0).
If f is measurable then by Corollary 3.9 both f + and f − are measurable (every
constant function is measurable, see Ex. 3.1). Note also that

f = f + − f − and � f � = f + + f −,

hence the latter is measurable.

. Exercise 3.2 Let (X,⌃) be a measurable space, and letD ⊂ R be a dense set. Let f ∶ X→ R̄
satisfy {x ∶ f (x) > c} ∈ ⌃
for all c ∈ D. Prove that f is measurable.

. Exercise 3.3 Let (X,⌃) be a measurable space, and let A,B ∈ ⌃. Prove that f ∶ A ∪ B → R
is measurable if and only if its restrictions f �A and f �B are measurable.

. Exercise 3.4 Show that the following functions R→ R are Borel-measurable:

f (x) = �������
0 x ∈ Q
1 x �∈ Q and g(x) = �������

x x ∈ Q
−x x �∈ Q .

. Exercise 3.5 Show that every monotone function f ∶ R→ R is measurable.

. Exercise 3.6 Let (X,⌃) be a measurable space, and let fn ∶ X → R be a sequence of
measurable functions. Prove that the set of points in X on which fn converges is measurable.

3.2 Simple functions

Definition 3.12 Let (X,⌃) be a measurable space. For A ⊂ X, its characteristic

function (�;1**7/ %*781&5) is defined by

�A(x) =
�������

1 x ∈ A
0 x �∈ A.
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Proposition 3.13 �A is a measurable function if and only if A is a measurable set.

Proof : This is immediate from the definition, as for every B ∈B(R),

�−1
A (B) =

�����������������

A 1 ∈ B and 0 �∈ B
Ac 0 ∈ B and 1 �∈ B
X 0,1 ∈ B
� 0,1 �∈ B.

n

Definition 3.14 Let (X,⌃) be a measurable space. A simple function (%*781&5
�%)&:5) on X is a finite linear combination of characteristic functions of measur-
able sets with complex (or real) coe�cients. That is,

f (x) = n�
j=1

z j �A j(x), Aj ∈ ⌃.
A simple function is in standard representation (�;*18; %#7%) if the Aj are disjoint.
We denote the algebra of simple functions by SF(X,⌃).
Simple functions will be used repeatedly to approximate measurable functions:

Theorem 3.15 (Approximation of non-negative functions by simple functions)

Let (X,⌃) be a measurable space. If f ∶ X → [0,∞] is measurable, then there
exists a sequence of simple functions, �i ∈ SF(X,⌃),

0 ≤ �1 ≤ �2 ≤ ⋅ ⋅ ⋅ ≤ f ,

converging to f pointwise, and uniformly on any set in which f is bounded.

Proof : For every n ∈ {0} ∪N and 0 ≤ k ≤ 22n − 1, let

Ek
n = f −1((k2−n, (k + 1)2−n)) and Fn = f −1((2n,∞])
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(note that k2−n ranges from 0 to 2n − 2−n in steps of 2−n). Define

�n(x) = 22n−1�
k=0

k2−n�Ek
n
(x) + 2n �Fn(x).

It is easy to set that �n ≤ f and that at all points where f (x) ≤ 2n,

f (x) − �n(x) ≤ 2−n,

hence the uniform convergence on sets where f is bounded.

1

2
�1

f

n—13h(2018)—

Proposition 3.16 Let (X,⌃, µ) be a complete measure space. Then,

1. If f is measurable and g = f µ-a.e., then g is measurable.

2. If fn are measurable functions converging to f µ-a.e., then f is measurable.

Proof : For the first part, let

A = {x ∈ X ∶ f (x) = g(x)}.
It is given that µ(Ac) = 0 (hence A is measurable). Let B ∈B(R). Then,

g−1(B) = (g−1(B) ∩ A) ∪ (g−1(B) ∩ Ac)
= ( f −1(B) ∩ A)���������������������������������������������������������������∈⌃

∪(g−1(B) ∩ Ac).
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Since µ is complete, then g−1(B) ∩ Ac ⊂ Ac is measurable, hence g−1(B) is mea-
surable, proving that g is measurable.
For the second part, let

A = {x ∈ X ∶ fn(x)→ f (x)}.
Since Ac has measure zero, A is measurable, and so are the functions fn�A (see
Ex. 3.3). Since moreover fn�A → f �A, it follows that f �A is measurable (Corol-
lary 3.10). Define

f̃ (x) = �������
f (x) x ∈ A
0 x �∈ A.

Then, f̃ is measurable (once again see Ex. 3.3) and equals f µ-a.e. It follows from
the first part that f is measurable. n

. Exercise 3.7 Let (X,⌃, µ) be a measure space and let (X,⌃′, µ′) be its completion. Prove
that for every f ∶ X → R which is µ′-measurable, there exists an f̃ ∶ X → R which is µ-measurable
and equals f µ-a.e.

3.3 Integration of non-negative functions

Having a notion of (real- or complex-valued) measurable functions, we proceed
to define their integral over a measure space. We proceed in stages, starting with
real-valued function that assume non-negative values.

Definition 3.17 Let (X,⌃) be a measure space. We denote by L+(X,⌃) the space
of all measurable functionsX→ [0,∞]; we denote by SF+(X,⌃) the space of non-
negative simple functions.

Definition 3.18 Let � ∈ SF+(X,⌃) be given by

�(x) = n�
j=1

aj �E j(x).
The integral of � with respect to µ is defined by

�
X
�dµ = n�

j=1
aj µ(E j). (3.2)
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If A ⊂ X is a measurable set, we define

�
A
�dµ = �

X
�A�dµ,

where we use the fact that

�A�(x) = n�
j=1

aj�E j∩A(x)
is a simple function as well, hence

�
A
�dµ = n�

j=1
aj µ(E j ∩ A).

Comment: Other standard notations for the integral are

�
X
�(x)dµ(x) and �

X
�(x)µ(dx).

Note that these are just notations, which like for the Riemann integral may provide
additional insight into the definition.

Example: Consider the segment [0,1] with the �-algebra of Borel sets. The
Dirichlet function

D = 1 ⋅ �Qc + 0 ⋅ �Q
is a simple function (yes!) and its integral is

�[0,1]D dm = 1 ⋅m(Qc) = 1.

▲▲▲
The next proposition shows that integrals of non-negative simple functions behave
as we would like them to behave:

Proposition 3.19 Let f ,g ∈ SF+(X,⌃) and let c > 0. Then,

(a) ∫X c f dµ = c ∫X f dµ.

(b) ∫X( f + g)dµ = ∫X f dµ + ∫X g dµ.

(c) If f ≤ g then ∫X f dµ ≤ ∫X g dµ.

(d) The map A� ∫A f dµ is a measure on ⌃.
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Proof : Item (a) follows directly from the definition. For Item (b), let

f = n�
j=1

aj�E j and g = m�
k=1

bk�Fk .

be in standard notation, i.e., {E j} and {Fk} are disjoint. Then,

f + g = n�
j=1

m�
k=1
(aj + bk)�E j∩Fk .

Hence,

�
X
( f + g)dµ = n�

j=1

m�
k=1
(aj + bk)µ(E j ∩ Fk)

= n�
j=1

aj

m�
k=1
µ(E j ∩ Fk) + m�

k=1
bk

n�
j=1
µ(E j ∩ Fk)

= n�
j=1

ajµ(�m
k=1(E j ∩ Fk)) + m�

k=1
bkµ(�n

j=1(E j ∩ Fk))
= n�

j=1
ajµ(E j) + m�

k=1
bkµ(Fk)

= �
X

f dµ +�
X

g dµ.

For Item (c) we write

f = n�
j=1

m�
k=1

aj�E j∩Fk and g = n�
j=1

m�
k=1

bk�E j∩Fk ,

and note that aj ≤ bk whenever E j ∩ Fk ≠ �. Hence

�
X

f dµ = n�
j=1

m�
k=1

ajµ(E j ∩ Fk) ≤ n�
j=1

m�
k=1

bkµ(E j ∩ Fk) = �
X

g dµ.

Finally, for Item (d), let

⌫(A) = �
A

f dµ.
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Clearly, ⌫(�) = 0. Let (An) be a sequence of disjoint measurable sets. Then,

⌫� ∞�
n=1

An� = ��∞n=1 An

f dµ

= �
X
��∞n=1 An f dµ

= n�
j=1

aj µ�E j ∩ ∞�
n=1

An�
= n�

j=1
aj

∞�
n=1
µ (E j ∩ An)

= ∞�
n=1

n�
j=1

ajµ (E j ∩ An)
= ∞�

n=1
�

An

f dµ

= ∞�
n=1
⌫(An).

n—14h(2018)—

Having a definition for the integral of simple functions, we proceed to extend the
definition for any function in L+(X,⌃):
Definition 3.20 Let f ∈ L+(X,⌃). Then,

�
X

f dµ = sup��
X
�dµ ∶ � ≤ f , � ∈ SF+(X,⌃)� . (3.3)

Proposition 3.21 For f ∈ SF+(X,⌃), the definitions (3.2) and (3.3) coincide.
Moreover, for f ≤ g ∈ L+(X,⌃) and c > 0,

�
X

f dµ ≤ �
X

g dµ and �
X

c f dµ = c�
X

f dµ.

Proof : That the two definitions coincide is obvious, as if f ∈ SF+(X,⌃),
�
X

f dµ = max��
X
�dµ ∶ � ≤ f , � ∈ SF+(X,⌃)� .
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If f ≤ g ∈ L+(X,⌃) then

��
X
�dµ ∶ � ≤ f , � ∈ SF+(X,⌃)� ⊂ ��

X
�dµ ∶ � ≤ g, � ∈ SF+(X,⌃)� ,

hence the inequality between the supremums. Finally, for c > 0

��
X
�dµ ∶ � ≤ c f , � ∈ SF+(X,⌃)� = ��

X
c�dµ ∶ c� ≤ c f , � ∈ SF+(X,⌃)�

= c��
X
�dµ ∶ � ≤ f , � ∈ SF+(X,⌃)� .

n

The following theorem is a central pillar in integration theory:

Theorem 3.22 (Monotone Convergence (�;*1&)&1&/ ;&21,;%)) Let fn ∈
L+(X,⌃) be monotonically increasing, fn ≤ fn+1. Let

f (x) = lim
n→∞ fn(x).

Then, f ∈ L+(X,⌃) and

�
X

f dµ = lim
n→∞�X fn dµ.

—15h(2017)—

Proof : Since ( fn) is increasing, it converges everywhere (possibly assuming infi-
nite values); limits of measurable functions are measurable, hence f ∈ L+(X,⌃).
Moreover, since fn ≤ f ,

�
X

fn dµ ≤ �
X

f dµ,

hence
lim
n→∞�X fn dµ ≤ �

X
f dµ.

For the reverse inequality, let 0 < ↵ < 1 and let � ≤ f be a non-negative simple
function. Define

En = {x ∈ X ∶ fn(x) ≥ ↵�(x)}.
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This sequence of sets is increasing (by the monotonicity of fn), measurable (be-
cause fn − ↵� is measurable) and its union is X (because for every x, fn(x) is
eventually larger than ↵�(x) ≤ ↵ f (x)). Now,

�
X

fn dµ ≥ �
En

fn dµ ≥ ↵�
En

�dµ,

where in the last step we used the defining property of points in En. Define

⌫(A) = �
A
�dµ,

i.e.,

�
X

fn dµ ≥ ↵⌫(En).
We have seen that ⌫ is a measure. By the lower-semicontinuity of measures,

lim
n→∞�X fn dµ ≥ ↵ lim

n→∞ ⌫(En) = ↵⌫�∞�
n=1

En� = ↵⌫(X) = ↵�
X
�dµ.

Letting ↵→ 1 and taking the supremum over all � ≤ f we obtain that

lim
n→∞�X fn dµ ≥ �

X
f dµ,

which completes the proof. n

The Monotone Convergence Theorem has a very practical implication. The def-
inition of the integral of f ∈ L+(X,⌃) involves a supremum over a huge set of
functions. By Monotone Convergence, it can be obtained as a limit over integrals
of simple functions increasing to f (and those always exist by Theorem 3.15).
We will now derive a number of almost immediate consequences of Monotone
Convergence.

Proposition 3.23 If f ,g ∈ L+(X,⌃), then

�
X
( f + g)dµ = �

X
f dµ +�

X
g dµ.
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Proof : Let �n, n ∈ SF+(X,⌃) be increasing to f and g, then �n +  n increases to
f + g, and by Monotone Convergence,

�
X
( f + g)dµ = lim

n→∞�X(�n +  n)dµ

= lim
n→∞��X �n dµ +�

X
 n dµ�

= �
X

f dµ +�
X

g dµ.

n

Proposition 3.24 Let fn ∈ L+(X,⌃). Then,

�
X

∞�
n=1

fn dµ = ∞�
n=1
�
X

fn dµ.

(Verify that both sides are indeed well defined.)

Proof : By induction,

�
X

N�
n=1

fn dµ = N�
n=1
�
X

fn dµ.

Letting N →∞ and applying the Monotone Convergence Theorem, we obtain the
desired result. n

. Exercise 3.8 Let (X,⌃, µ) be a �-finite measure space. Let f ∶ X→ [0,∞) be measurable.
Show that

�
X

f dµ = �[0,∞) µ({x ∶ f (x) > t})dm(t).
Hint: establish the identity first for indicator functions, then for functions in SF+(X,⌃), and finally
for functions in L+(X,⌃).

Proposition 3.25 If f ∈ L+(X,⌃), then

�
X

f dµ = 0

if and only if f = 0 µ-a.e.,
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Proof : If � is simple then, by definition, its integral is zero if and only if it equals
zero µ-a.e. Suppose that f ∈ L+(X,⌃) and equals zero µ-a.e. Then, every simple
0 ≤ � ≤ f is zero µ-a.e., i.e.,

�
X

f dµ = sup
�≤ f
�
X
�dµ = 0.

Conversely, suppose that f ∈ L+(X,⌃) and

�
X

f dµ = 0.

Then,
{x ∈ X ∶ f (x) > 0} = ∞�

n=1
{x ∈ X ∶ f (x) > 1�n} ≡ ∞�

n=1
En,

with (En) increasing. By the lower-semicontinuity of µ

µ({x ∈ X ∶ f (x) > 0}) = lim
n→∞µ(En).

If the left-hand side equals c > 0, then there exists an n for which µ(En) > c�2.
Then,

�
X

f dµ ≥ �
En

f dµ ≥ 1
n �En

dµ > c
2n
> 0,

which is a contradiction. n

Corollary 3.26 If fn ∈ L+(X,⌃) increases to f µ-a.e., then

�
X

f dµ = lim
n→∞�X fn dµ.

Proof : Let E be the set on which fn increases to f . Then,

f − f �E = 0 µ-a.e.,

and
fn − fn �E = 0 µ-a.e.

By the previous proposition,

�
X
( f − f �E)dµ = 0 = lim

n→∞�X( fn − fn �E)dµ,
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i.e.,

�
X

f �E dµ = �
X

f dµ and �
X

fn �E dµ = �
X

fn dµ.

By Monotone Convergence, since fn �E increases to f �E everywhere,

lim
n→∞�X fn �E dµ = �

X
f �E dµ.

To conclude:

�
X

f dµ = �
X

f �E dµ = lim
n→∞�X fn �E dµ = lim

n→∞�X fn dµ.

n

. Exercise 3.9 Let (R,B(R),m) be the standard Borel measure space, and let f ∈ L+(R).
Suppose that

F(x) = ∞�
n=1

f (x + n)
has finite integral. Prove that f = 0 a.e.

. Exercise 3.10 Let (X,⌃, µ) be a measure space and let f ∈ L+(X,⌃) have finite integral.
Show that there exists for every " > 0 a � > 0, such that µ(A) < � implies

�
A

f dµ < ".
—16h(2017)—

TA material 3.1 Show what may go wrong when the convergence is not mono-
tone.

In the Monotone Convergence Theorem, the sequence of functions is increasing,
hence bounded from above by a limit f . For an arbitrary sequence in L+(X,⌃),
we have the following:

Proposition 3.27 (Fatou’s lemma) Let fn ∈ L+(X,⌃) be an arbitrary sequence.
Then.

�
X

lim inf
n→∞ fn dµ ≤ lim inf

n→∞ �X fn dµ.
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Comment: In particular, if fn → f , then

�
X

f dµ ≤ lim inf
n→∞ �X fn dµ.

Proof : First note that the left-hand side is well-defined as the inferior-limit of a
measurable sequence is measurable. Since

lim inf
n→∞ fn = lim

n→∞ inf
k≥n

fk,

and infk≥n fk is increasing, it follows from Monotone Convergence that for every
n,

�
X

lim inf
n→∞ fn dµ = lim

n→∞�X inf
k≥n

fk dµ.

Finally, since for every n and ` ≥ n

�
X

inf
k≥n

fk dµ ≤ �
X

f` dµ,

it follows that
�
X

inf
k≥n

fk dµ ≤ inf
`≥n �X f` dµ,

hence
�
X

lim inf
n→∞ fn dµ ≤ lim

n→∞ inf
`≥n �X f` dµ = lim inf

n→∞ �X fn dµ.

n

Corollary 3.28 If fn, f ∈ L+(X,⌃) and fn → f µ-a.e., then

�
X

f dµ ≤ lim inf
n→∞ �X fn dµ.

Proof : If fn → f everywhere then this follows from Fatou’s lemma. Since we
can modify f on a set of measure zero without a↵ecting the integral we obtain the
desired result. Specifically, we set

E = �x ∶ lim
n→∞ fn(x) = f (x)� .
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Then fn �E converges to f �E everywhere, and it follows from Fatou’s lemma that

�
X

f �E dµ ≤ lim inf
n→∞ �X fn �E dµ.

Since f �E = f and fn �E = fn µ-a.e., we obtain the desired result. n

Proposition 3.29 If f ∈ L+(X,⌃) and ∫X f dµ <∞, then

µ({x ∶ f (x) =∞}) = 0,

and the set {x ∶ f (x) > 0}
is �-finite.

Proof : Consider the set
A = {x ∶ f (x) =∞},

which is measurable since

A = ∞�
n=1

f −1((n,∞]).
Suppose A had finite measure, µ(A) = c > 0. Consider the sequence of simple
functions,

�n(x) =
�������

n x ∈ A
0 x �∈ A.

Then, �n ≤ f for all n. Since

�
X
�n dµ = cn

it follows that
�
X

f dµ ≥ sup
n∈N �X �n dµ =∞,

which is a contradiction.
For the second part, let

Bn = �x ∶ f (x) ≥ 1
n
� .
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Then,

�
X

f dµ ≥ �
Bn

f dµ ≥ µ(Bn)
n
,

i.e.,

µ(Bn) ≤ n �
X

f dµ <∞.
Since

{x ∶ f (x) > 0} = ∞�
n=1

Bn,

the left-hand side is �-finite. n

Proposition 3.30 (Borel-Cantelli) Let An be measurable sets satisfying

∞�
n=1
µ(An) <∞.

Then,

µ�lim sup
n→∞ An� = µ ({x ∶ x ∈ An for infinitely many n’s}) = 0.

Proof : Take fn = �An ∈ L+(X,⌃) and apply Proposition 3.24. Then,

�
X

∞�
n=1
�An dµ = ∞�

n=1
�
X
�An dµ = ∞�

n=1
µ(An) <∞.

It follows from the previous proposition that

0 = µ��x ∶ ∞�
n=1
�An(x) =∞��

= µ ({x ∶ x ∈ An for infinitely many n’s}) .
n—16h(2018)—
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3.4 Integration of complex functions

Having defined integrals for non-negative, measurable real-valued functions, we
proceed to define the integral of general measurable (real- and complex-valued)
functions.

Definition 3.31 Let (X,⌃, µ) be a measure space and let f ∶ X → R be measur-
able. If either

�
X

f + dµ <∞ or �
X

f − dµ <∞,
then

�
X

f dµ = �
X

f + dµ −�
X

f − dµ.

If both integrals are finite, we say that f is integrable (�;*-*"9#)1*!).

Comment: Since � f � = f + + f −, f is integrable if and only if

�
X
� f �dµ <∞.

Proposition 3.32 The set of integrable functions forms a real vector space; the
integral is a linear functional on that space.

Proof : Let f ,g be integrable and let a,b ∈ R. Since

�a f + bg� ≤ �a�� f � + �b��g�,
if follows from the monotonicity of the integral of non-negative functions that
a f + bg is integrable. Next, suppose that a > 0. Then,

�
X

a f dµ = �
X
(a f )+ dµ −�

X
(a f )− dµ = a�

X
f + dµ − a�

X
f − dµ = a�

X
f dµ.

If a < 0 we proceed similarly, using the fact that (a f )± = −a f ∓. Finally, let
h = f + g. Then,

h+ − h− = f + − f − + g+ − g−,
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which we re-organize as

h+ + f − + g− = h− + f + + g+.

From the additivity of the integral for non-negative functions (Proposition 3.23),

�
X

h+ dµ +�
X

f − dµ +�
X

g− dµ = �
X

h− dµ +�
X

f + dµ +�
X

g+ dµ,

hence

�
X

h dµ = �
X

h+ dµ −�
X

h− dµ

= �
X

f + dµ −�
X

f − dµ +�
X

g+ dµ −�
X

g− dµ

= �
X

f dµ +�
X

g dµ.

n

Definition 3.33 Let f ∶ X → C be measurable. It is called integrable if � f � is
integrable and we define

�
X

f dµ = �
X

Re f dµ + ı�
X

Im f dµ.

The space of complex integrable functions is a complex vector space, which we
denote by L1(µ) (or, to avoid all ambiguity, L1(X,⌃, µ)).

Proposition 3.34 If f ∈ L1(µ) then

��
X

f dµ� ≤ �
X
� f �dµ.

Proof : If f is real-valued, then

��
X

f dµ� = ��
X

f + dµ −�
X

f − dµ� ≤ �
X

f + dµ +�
X

f − dµ = �
X
� f �dµ.
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If f is complex-valued and its integral is zero then the statement is trivial; other-
wise, there exists an ↵ ∈ C such that ↵ ∫X f dµ is real, positive and �↵� = 1. Then,

��
X

f dµ� = ↵�
X

f dµ = Re�↵�
X

f dµ�
= Re�

X
↵ f dµ = �

X
Re(↵ f )dµ ≤ �

X
�↵ f �dµ = �

X
� f �dµ,

where the fourth passage follows from the definition of the integral of a complex
function. n

Proposition 3.35 If f ∈ L1(µ) is real-valued then the set

{x ∶ f (x) ≠ 0}
is �-finite. Moreover, for f ,g ∈ L1(µ)

�
A

f dµ = �
A

g dµ for all A ∈ ⌃,
if and only if

�
X
� f − g�dµ = 0

if and only if f = g µ-a.e.

Proof : The first assertion follows from Proposition 3.29, as

{x ∶ f (x) ≠ 0} = {x ∶ f +(x) > 0} � {x ∶ f −(x) > 0}.
Suppose that

�
X
� f − g�dµ = 0.

Then, by Proposition 3.25, f = g µ-a.e., and for every A ∈ ⌃,

��
A

f dµ −�
A

g dµ� = ��
X
�A( f − g)dµ� ≤ �

X
� f − g�dµ = 0.

Conversely, suppose that the set {x ∶ f (x) = g(x)} is not a null set. Then, either

A = {x ∶ f (x) > g(x)} or B = {x ∶ f (x) < g(x)}
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is not a null set. Suppose without loss of generality that A has positive measure;
then,

A = ∞�
n=1

An ≡ ∞�
n=1
{x ∶ f (x) − g(x) > 1�n},

and by the lower-semicontinuity of µ one of the An must have finite measure,
µ(An) = c > 0. Then,

�
An

f dµ −�
An

g dµ = �
An

( f − g)dµ ≥ c
n
> 0.

n—17h(2018)—

The last proposition asserts that integrals are not a↵ected by variations of the
integrand on null sets. With this in mind, it is customary to redefine L1(µ) as
equivalence classes of integrable functions that are equal up to sets of measure
zero. This approach has many advantages. For example, L1(µ) is now a metric
space, with

d( f ,g) = �
X
� f − g�dµ.

Indeed, positivity is satisfied only if we identify functions that di↵er on null sets.

. Exercise 3.11 Let (X,⌃, µ) be a measure space. Let A ∈ ⌃ satisfy µ(A) <∞ and let

sup
x∈A f (x) = M <∞.

Suppose that

�
A

f dµ = M µ(A).
Prove that f (x) = M a.e. in A.

. Exercise 3.12 Let (X,⌃, µ) be a measure space, and let f ∈ L1(µ). Show that

lim
t→∞ t µ({x ∶ � f (x)� ≥ t}) = 0.

. Exercise 3.13 Easier than the previous exercise: let (X,⌃, µ) be a measure space, and let
f ∈ L1(µ). Show that

lim
t→∞µ({x ∶ � f (x)� ≥ t}) = 0.

. Exercise 3.14 Let (X,⌃, µ) be a measure space. Prove that µ is �-finite if and only if there
exists a strictly positive f ∈ L1(µ).
Thus far, we have seen two convergence theorems: Monotone Convergence and
Fatou’s lemma. We now prove the third convergence theorem, which has many
applications:
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Theorem 3.36 (Dominated Convergence (�;)-:1 ;&21,;%)) Let (X,⌃, µ) be a
complete measure space. Let fn ∈ L1(µ) such that fn → f µ-a.e). Moreover,
suppose that there exists a non-negative function g ∈ L1(µ) such that

� fn� ≤ g µ-a.e. for all n.

Then f ∈ L1(µ) and
lim
n→∞�X � fn − f �dµ = 0.

In particular,
lim
n→∞�X fn dµ = �

X
f dµ.

Comment: The assumption in the Dominated Convergence Theorem is that the
graphs of all fn are confined to a region of finite measure.

Proof : f is measurable by Proposition 3.16 (Item 2). Since � f � ≤ g µ-a.e. and
g ∈ L1(µ) it follows that f ∈ L1(µ). It su�ces to consider the case where f is
real-valued; since

2g − � f − fn� ≥ 0,
it follows from Fatou’s lemma that

�
X

2g dµ ≤ lim inf
n→∞ �X(2g − � f − fn�)dµ

= �
X

2g dµ + lim inf
n→∞ �−�X � f − fn�dµ�

= �
X

2g dµ − lim sup
n→∞ �

X
� f − fn�dµ,

and using the fact that g is integrable,

lim sup
n→∞ �

X
� f − fn�dµ ≤ 0,

which completes the proof. n

TA material 3.2 The need for a dominating function: Take the following exam-
ple: the measure space is (R,B(R),m), and

fn = 1
2n
�(n2−n,n2+n).
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This function converges uniformly (and hence everywhere) to f = 0, and yet

lim
n→∞�R fn dm = 1 ≠ 0 = �

R
f dm.

Note that there is no integrable g that dominates the fn.

. Exercise 3.15 Let fn, f ,gn,g ∶ X→ R be measurable functions in a measure space (X,⌃, µ).
Suppose that gn,g ∈ L1(µ), � fn� ≤ gn,

lim
n→∞ fn = f and lim

n→∞gn = g a.e.,

and
lim

n→∞�X gn dµ = �
X

g dµ.

Prove that f ∈ L1(µ) and

lim
n→∞�X fn dµ = �

X
f dµ.

. Exercise 3.16 Let (X,⌃, µ) be a measure space, and let fn ∈ L1(µ) be a sequence of non-
negative functions, converging pointwise to f ∈ L1(µ). Prove that

lim
n→∞��X fn dµ −�

X
f dµ −�

X
� f − fn�dµ� = 0.

—18h(2017)—

Proposition 3.37 Let fn ∈ L1(µ) such that

∞�
n=1
�
X
� fn�dµ <∞.

Then, ∑∞n=1 fn converges µ-a.e. to a function in L1(µ) and

�
X

∞�
n=1

fn dµ = ∞�
n=1
�
X

fn dµ.

Proof : By Proposition 3.24, since � fn� ∈ L+(X,⌃),
�
X

∞�
n=1
� fn�dµ = ∞�

n=1
�
X
� fn�dµ.
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(Note that in Proposition 3.24 both sides could be infinite, however here they are
finite.) Thus,

g ≡ ∞�
n=1
� fn� ∈ L1(µ),

and by Proposition 3.35 it is finite µ-a.e. For each such x, the sequence of func-
tions

Fn(x) = n�
k=1

fk(x)
converges and satisfies �Fn� ≤ g. Applying the Dominated Convergence Theorem
to the sequence of partial sums, we obtain

lim
n→∞�X Fn dµ = �

X
lim
n→∞Fn dµ,

which is the desired result. n

Proposition 3.38 (Simple functions are dense in L1(µ)) Let f ∈ L1(µ). For ev-
ery " > 0 there exists a simple function

� = n�
k=1

ak �Ak ,

such that
�
X
� f − ��dµ < ".

Proof : We may construct �n as in Theorem 3.15, such that it converges from
below to f + and from above to (− f −). Then, � f − �n� → 0 everywhere f is finite,
i.e., a.e. Since � f − �n� ≤ � f � + ��n� ≤ 2� f �,
it follows from Dominated Convergence that

lim
n→∞�X � f − �n�dµ = �

X
lim
n→∞ � f − �n�dµ = 0.

n
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3.5 Lebesgue and Riemann integration

In the particular case where the measure space is (R,L,m), the integral we defined
is called the Lebesgue integral. The integral defined in first-year calculus is the
Riemann integral. We will now examine the relation between the two.
Let X = [a,b] and let f ∶ [a,b] → R be bounded. If P = {t0, . . . , tn} is a partition
of that interval, then we define

S P( f ) = n�
k=1

Mk(tk − tk−1) and sP( f ) = n�
k=1

mk(tk − tk−1),
where

Mk = sup
tk−1≤x≤tk

f (x) and mk = inf
tk−1≤x≤tk

f (x),
and

I( f ) = inf
P

S P( f ) and I( f ) = sup
P

sP( f )
f is Riemann-integrable if both are equal.

Theorem 3.39 (Riemann integrability implies Lebesgue integrability) If f is
Riemann-integrable on [a,b] then it is Lebesgue-measurable and therefore
Lebesgue-integrable, with

� b

a
f (x)dx = �[a,b] f dm.

Moreover, f is Riemann-integrable if and only if the set of points in which it is
discontinuous has measure zero.

Proof : Suppose that f is Riemann-integrable. For every partition P, define

GP = m�
k=1

Mk �[tk−1,tk] and gP = m�
k=1

mk �[tk−1,tk].

We note that

S P( f ) = �[a,b]GP dm and sP( f ) = �[a,b] gP dm.
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Also, for every partition,
gP ≤ f ≤GP.

By the construction of the Riemann integral, there is a sequence of partitions Pn,
such that GPn is monotonically decreasing, gPn is monotonically increasing, and

lim
n→∞�[a,b]GPn dm = lim

n→∞�[a,b] gPn dm = � b

a
f (x)dx.

Let
G = lim

n→∞GPn and g = lim
n→∞gPn .

Then, by Dominated Convergence,

�[a,b]G dm = lim
n→∞�[a,b]GPn dm = � b

a
f (x)dx

�[a,b] g dm = lim
n→∞�[a,b] gPn dm = � b

a
f (x)dx.

i.e.,

�[a,b](G − g)dm = 0.

Since
g ≤ f ≤G,

it follows that G = g m-a.e., hence f is measurable (here we use the fact that m is
complete), and

�[a,b] f dm = �[a,b]G dm = � b

a
f (x)dx.

n

. Exercise 3.17 Prove the second part of this theorem: that a function is Riemann-integrable
of an only if the set of points at which it is discontinuous has measure zero.

3.6 Modes of convergence

Let X be a set (with no additional structure) and let fn, f ∶ X → C. There are two
classical senses in which we may define convergence fn → f :
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(a) Pointwise convergence:

lim
n→∞ fn(x) = f (x) ∀x ∈ X.

(b) Uniform convergence:

lim
n→∞ sup

x∈X � fn(x) − f (x)� = 0.

Uniform convergence implies pointwise convergence, but the opposite is not true:
The classical example is X = [0,1) and fn(x) = xn, which converges to f (x) = 0
pointwise, but not uniformly.
If (X,⌃, µ) is a measure space, then we may define additional modes of conver-
gence (for measurable functions):

(d) µ-almost-everywhere convergence:

µ�{x ∶ lim
n→∞ fn(x) ≠ f (x)}� = 0.

(e) L1(µ)-convergence:
lim
n→∞�X � fn − f �dµ = 0.

(f) Convergence in measure: for every " > 0,

lim
n→∞µ({x ∶ � fn(x) − f (x)� ≥ "}) = 0.

—19h(2017)—

Examples: Consider the following functions:

fn = �(0,n)n
gn = �(n,n+1) hn = n�[0,1�n]

p1 = �[0,1] p2 = �[0,1�2] p3 = �[1�2,1] p4 = �[0,1�4], . . . .
uniformly pointwise µ-a.e. L1(µ) in measure

fn → 0 yes yes yes no yes
gn → 0 no yes yes no no
hn → 0 no no yes no yes
pn → 0 no no no yes yes
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Proposition 3.40 Convergence in L1 implies convergence in measure.

Proof : Suppose that fn → f in L1(µ), i.e.,

lim
n→∞�X � fn − f �dµ = 0.

Let " > 0 be given, and denote

An = {x ∶ � fn(x) − f (x)� ≥ "}.
Then,

�
X
� fn − f �dµ ≥ �

An

� fn − f �dµ ≥ "µ(An),
i.e.,

µ({x ∶ � fn(x) − f (x)� ≥ "}) ≤ 1
" �X � fn − f �dµ→ 0.

n

Proposition 3.41 If fn → f in measure, then fn has a subsequence converging to
f µ-a.e.

Proof : By the definition of convergence in measure, for every " > 0

lim
n→∞µ({x ∶ � fn(x) − f (x)� ≥ "}) = 0.

Take " = 1�k. Then, there exists an nk such that

µ ({x ∶ � fnk(x) − f (x)� ≥ 1�k}) ≤ 1
k2 .

Since the right-hand side is summable, it follows from Borel-Cantelli (Proposi-
tion 3.30) that

µ({x ∶ � fnk(x) − f (x)� ≥ 1�k for infinitely many k’s}) = 0,

whereas
{x ∶ � fnk(x) − f (x)� ≥ 1�k for infinitely many k’s}c

= {x ∶ � fnk(x) − f (x)� < 1�k for k large enough}
⊂ {x ∶ lim

k→∞ fnk(x) = f (x)}.
That is, fnk → f µ-a.e. n
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Corollary 3.42 If fn → f in L1, then there is a subsequence of fn converging to f
µ-a.e.

Proof : L1-convergence implies convergence in measure, which implies the a.e.
convergence of a subsequence. n—19h(2018)—

. Exercise 3.18 Let (X,⌃, µ) be a �-finite measure space. Let fn ∈ L1(µ) be non-negative
functions satisfying

�
X

fn dµ = 1.

(a) Show that it is not necessarily true that fn�n→ 0 a.e. (b) Show that fn�n2 → 0 a.e.

. Exercise 3.19 Let (X,⌃, µ) be a finite measure space and let fn, f be uniformly-bounded
measurable real-valued functions. Show that fn → f in measure implies that fn → f in L1(µ).
. Exercise 3.20 Show that the condition

lim
n→∞µ({x ∶ � fn(x) − f (x)� > 0}) = 0,

implies that fn → f in measure.

. Exercise 3.21 Show that if fn ≤ fn+1 is a monotone sequence of measurable functions and
fn → f in measure, then fn → f a.e.

. Exercise 3.22 Show that Dominated Convergence holds if a.e. convergence is replaced by
convergence in measure: let (X,⌃, µ) be a measure space. Let fn, f be measurable, with � fn� ≤ g ∈
L1(µ). Furthermore, fn → f in measure. Show that f ∈ L1(µ) and

lim
n→∞�X fn dµ = �

X
f dµ.

. Exercise 3.23 Show that fn → f and gn → g a.e., then fn + gn → f + g a.e.

The final theorem of this section applies to finite measure spaces, and states that
in such spaces convergence a.e. implies, in a certain sense, “almost uniform con-
vergence”.
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Theorem 3.43 (Egoroff) Let (X,⌃, µ) be a finite measure space. Let fn, f ∶ X→ C
be measurable, such that

lim
n→∞ fn(x) = f (x) µ-a.e.

Then there exists for every " > 0 a measurable set A, such that µ(A) < ", and
fn → f uniformly on Ac.

Proof : Let
B = {x ∶ lim

n→∞ fn(x) = f (x)},
which is a set of full-measure (i.e., its complement is a null-set).

For every n and k we define the set

A(n, k) = ∞�
j=n
{x ∈ B ∶ � f j(x) − f (x)� ≥ 1�k}.

This collection is decreasing as a function on n and increasing as a function of k.
Since fn → f pointwise in B,

∞�
n=1

A(n, k) = �
(this is the set of points x for which � fn(x) − f (x)� ≥ 1�k infinitely-often). Since
µ is a finite measure, it follows from the upper-semicontinuity of the measure that
for every k ∈ N,

lim
n→∞µ(A(n, k)) = µ�

∞�
n=1

A(n, k)� = 0.

Given " > 0 and k ∈ N, we may choose nk su�ciently large such that

µ(A(nk, k)) ≤ "2−k.

Let then

A = Bc ∪ ∞�
k=1

A(nk, k).
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By the sub-additivity of µ, µ(A) < ". On the other hand,

Ac = B ∩ �∞�
k=1

A(nk, k)�
c

= B ∩ ∞�
k=1

Ac(nk, k)
= B ∩ ∞�

k=1

∞�
j=nk

{x ∈ B ∶ � f j(x) − f (x)� ≥ 1�k}c

= ∞�
k=1

∞�
j=nk

{x ∈ B ∶ � f j(x) − f (x)� < 1�k}.
That is, x ∈ Ac implies that

∀k ∈ N ∃nk ∀ j > nk � f j(x) − f (x)� < 1�k.
In other words, fn → f uniformly on Ac. n

. Exercise 3.24 We say that fn → f almost-uniformly if there exists for every " > 0 a
measurable set A, such that µ(A) < " and fn converges to f uniformly on Ac. Show that almost
uniform convergence implies a.e. convergence (hence convergence in measure).

. Exercise 3.25 Show that Egorov’s theorem does not extend to �-finite spaces.

The following theorem states that in a certain sense, measurable functions over
finite segment are “almost continuous”:

Theorem 3.44 (Lusin) Let f ∶ [a,b] → R be measurable. Then, for every " > 0
there exists a compact set K ⊂ [a,b] such that m([a,b] � K]) < ", and a function
g ∈ C([a,b]), such that g�K = f �K.

Proof : It su�ces to consider the case where f is non-negative (for then, apply
the theorem for f ±). Then, there exists by Theorem 3.15 a sequence of simple
function �n ∈ SF+(X,⌃), such that

lim
n→∞ n(x) = f (x) ∀x ∈ [a,b].

Now, every simple function is of the form

 n = mn�
i=1
↵n,i �An,i .
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Let " > 0 be given and let �n,i ∈ C([a,b]) satisfy

m({x ∶ �n,i(x) ≠ �An,i(x)}) < "

4mn2n .

Then,

fn = mn�
i=1
↵n,i�n,i

is continuous and satisfies,

m({x ∶ fn(x) ≠  n(x)}) < "

4 2n .

Finally, set

E = ∞�
n=1
{x ∶ fn(x) ≠  n(x)}.

Then, m(E) < "�4 and

lim
n→∞ fn(x) = f (x) ∀x ∈ [a,b] � E.

By Egorov’s theorem, there exists a measurable set A ⊂ [a,b] � E such that fn

converges uniformly of A and m([a,b] � E � A) < "�4. Its limit is continuous
(relative to the subspace topology of [a,b] � E � A).
Let K ⊂ [a,b] � E � A be compact, such that

m([a,b] � K) < "
(here we use the inner-regularity of the Lebesgue measure). Note that [a,b]�K is
open, hence is a countable union of open intervals. We can therefore extend f �K
into a continuous function g by linear interpolation in each interval in [a,b] � K.
Clearly,

m({x ∶ g(x) ≠ f (x)}) < e.

n

3.7 Product measures

Let (X,⌃X, µ) and (Y,⌃Y, ⌫) be measure spaces. We have already defined the
product �-algebra,

⌃X ⊗ ⌃Y
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on X×Y. We proceed to define a product measure on the product �-algebra. The
construction is quite natural. We want a measure, which we will denote by µ × ⌫,
with respect to which sets of the form A×B are ”independent” (in the probabilistic
sense), i.e.,

µ × ⌫(A × B) = µ(A)⌫(B).
With this in mind, we start constructing such measures.

Definition 3.45 Let (X,⌃X) and (Y,⌃Y) be measurable spaces. A measurable

rectangle (�$*$/ 0"-/) in X ×Y is a set of the form

A × B A ∈ ⌃X, B ∈ ⌃Y.
(Note that even for X = Y = R, it needs not look like a rectangle.)

X

Y

A

B
A × B

Lemma 3.46 The collection E of measurable rectangles is an elementary family.

Proof : We need to show that E is closed under intersection and that the comple-
ment of a measurable rectangle is a finite disjoint union of elements in E . Indeed,

(A × B) ∩ (C ×D) = (A ∩C) × (B ∩D)
and (A × B)c = (A × Bc) � (Ac × B) � (Ac × Bc).

n
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Corollary 3.47 The collectionA of finite disjoint unions of elementary rectangles
forms an algebra.

Proposition 3.48 LetA be the algebra of finite disjoint unions of elementary rect-
angles. Then,

�(A) = ⌃X ⊗ ⌃Y.

Proof : Since for every A ∈ ⌃X and B ∈ ⌃Y,

A ×Y ∈ E ⊂ A and X × B ∈ E ⊂ A
if follows that

⌃X ⊗ ⌃Y = �({A ×Y ∶ ∶ A ∈ ⌃X} ∪ {X × B ∶ B ∈ ⌃Y}) ⊂ �(A).
Conversely, A ⊂ ⌃X ⊗ ⌃Y, hence �(A) ⊂ ⌃X ⊗ ⌃Y. n

We next want to define a pre-measure ⇡ on A. Naturally, we will set

⇡� n�
k=1

Ak × Bk� = n�
k=1
µ(Ak)⌫(Bk).

As in previous instances, we need to show that this definition is independent of
representation, and that ⇡ is �-additive. —20h(2018)—

Independence on representation is straightforward. To prove that ⇡ is �-additive,
it su�ces to consider the case where An × Bn are disjoint measurable rectangles,
with ∞�

n=1
An × Bn = A × B.

For x ∈ X and y ∈ Y,

�A(x)�B(y) = ∞�
n=1
�An(x)�Bn(y).

Integrating over x (viewing y as fixed), using Proposition 3.24 (for series of func-
tions in L+(X,⌃)),
µ(A)�B(y) = �

X

∞�
n=1
�An�Bn(y)dµ = ∞�

n=1
�
X
�Bn(y)�An dµ = ∞�

n=1
�Bn(y)µ(An).
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Similarly, integrating over y we obtain that

⇡(A × B) = µ(A)⌫(B) = ∞�
n=1
µ(An)⌫(Bn) = ∞�

n=1
⇡(An × Bn).

The pre-measure ⇡, which is defined on the algebraA generates an outer measure,
whose restriction on ⌃X ⊗ ⌃Y is a measure extending ⇡. We call this measure the
product measure (�%-5,/ ;$*/), which we denote by µ × ⌫. Note that if both µ
and ⌫ are �-finite, i.e.,

X = ∞�
n=1

An and Y = ∞�
n=1

Bn, µ(An), ⌫(Bn) <∞,
then

X ×Y = ∞�
n=1

∞�
m=1

An × Bm,

and
⇡(An × Bm) = µ(Am)⌫(Bn) <∞,

i.e., ⇡ is �-finite, hence it has unique extension.

Comment: The construction of a product can be extended to any finite number of
factors.—21h(2017)—

Definition 3.49 Let X and Y be sets and let A ⊂ X ×Y. For x ∈ X, the x-section

(�+;() of A is
Ax = {y ∈ Y ∶ (x, y) ∈ A} ⊂ Y.

Likewise, for y ∈ Y, the y-section of A is

Ay = {x ∈ X ∶ (x, y) ∈ A} ⊂ X.
For a function on X × Y we define its x-section fx ∶ Y → R and its y-section
f y ∶ X→ R by

fx(y) = f (x, y) and f y(x) = f (x, y).
The x-section of f is the formal way of saying “we fix x and consider f only as a
function of y”.
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X

Y

x

y
Ax

Ay

Lemma 3.50 Let A ⊂ X ×Y. Then, for x ∈ X,

(�A)x = �Ax ∶ Y→ R.
Likewise, for y ∈ Y, (�A)y = �Ay ∶ X→ R.

Proof : Let x ∈ X. Then,

(�A)x(y) = �A(x, y) =
�������

1 (x, y) ∈ A
0 otherwise

= �������
1 y ∈ Ax

0 otherwise
= �Ax(y).

n

The following proposition shows that sections of measurable sets/functions and
measurable.

Proposition 3.51 Let (X,⌃X) and (Y,⌃Y) be measurable spaces.

1. If E ∈ ⌃X ⊗ ⌃Y then Ex ∈ ⌃Y and Ey ∈ ⌃X for all x ∈ X and y ∈ Y.

2. If f ∶ X×Y→ R is ⌃X⊗⌃Y-measurable, then fx is ⌃Y-measurable and f y is
⌃X-measurable for all x ∈ X and y ∈ Y.
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Proof : Given x ∈ X and y ∈ Y, define

R = {E ⊂ X ×Y ∶ Ex ∈ ⌃Y and Ey ∈ ⌃X}.
R contains all the measurable rectangles: for A ∈ ⌃X and B ∈ ⌃Y,

(A × B)x =
�������

B x ∈ A
� otherwise

,

i.e., in either case, (A × B)x ∈ ⌃Y.

It is easy to see that R is a �-algebra: for example, if E ∈R, then

(Ec)x = {y ∈ Y ∶ (x, y) �∈ E} = (Ex)c ∈ ⌃Y(Ec)y = {x ∈ X ∶ (x, y) �∈ E} = (Ey)c ∈ ⌃X,
i.e., Ec ∈R.

Since R contains a collection generating ⌃X ⊗ ⌃Y,

⌃X ⊗ ⌃Y ⊂R,
which proves the first part.

The second part follows from the fact that if f is ⌃X ⊗ ⌃Y-measurable, then for
every C ∈B(R),

f −1(C) ∈ ⌃X ⊗ ⌃Y,
hence

( fx)−1(C) = {y ∈ Y ∶ fx(y) ∈ C}
= {y ∈ Y ∶ f (x, y) ∈ C}
= {y ∈ Y ∶ (x, y) ∈ f −1(C)}
= {y ∈ Y ∶ y ∈ ( f −1(C))x}= ( f −1(C))x ∈ ⌃Y,

where the last inclusion follows the first part. n—22h(2017)—
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Theorem 3.52 Let (X,⌃X, µ) and (Y,⌃Y, ⌫) be �-finite measure spaces. For E ∈
⌃X ⊗ ⌃Y, the real-valued functions fE ∶ X→ R and gE ∶ Y→ R defined by

fE ∶ x� ⌫(Ex) and gE ∶ y� µ(Ey)
are ⌃X- and ⌃Y-measurable, respectively. Moreover,

µ × ⌫(E) = �
X

fE dµ = �
Y

gE d⌫,

which we may also write as

µ × ⌫(E) = �
X
⌫(Ex)dµ(x) = �

Y
µ(Ey)d⌫(y).

Proof : Start by assuming that both spaces are finite measure spaces. Let C be
the class of sets for which the statements are true. Note that for each measurable
rectangle, E = A × B,

fE(x) = ⌫(Ex) =
�������
⌫(B) x ∈ A
0 otherwise

= ⌫(B)�A(x)
and

gE(y) = µ(Ey) = �������
µ(A) y ∈ B
0 otherwise

= µ(A)�B(y)
are both measurable. By definition of the product measure,

�
X

fE dµ = µ(A)⌫(B) and �
Y

gE d⌫ = µ(A)⌫(B).
Thus, the class C contains the measurable rectangles, which are a generating set
for ⌃X ⊗ ⌃Y. —21h(2018)—

By additivity, any finite disjoint union of measurable rectangles is also in C. In-
deed, let E,F ∈ ⌃X ⊗ ⌃Y be disjoint measurable rectangles. Then,

fE�F(x) = ⌫((E � F)x) = ⌫(Ex) + ⌫(Fx) = fE(x) + fF(x)
gE�F(y) = µ((E � F)y) = µ(Ey) + ⌫(Fy) = gE(y) + gF(y),
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proving that fE�F and gE�F are both measurable. Moreover,

µ × ⌫(E � F) = µ × ⌫(E) + µ × ⌫(F)
= �

X
fE dµ +�

X
fF dµ = �

X
fE�F dµ

= �
Y

gE d⌫ +�
Y

gF d⌫ = �
Y

gE�F d⌫.

This proves that C is an algebra. By the Monotone Class Theorem (Theorem 2.20),
it su�ces to prove that C is a monotone class (which will imply that it is a �-
algebra, hence equal to ⌃X ⊗ ⌃Y).
So let (En) be an increasing sequence in C and let E = �∞n=1 En. The functions

fEn(x) = ⌫((En)x) and gEn(y) = µ((En)y)
are measurable (since En ∈ C), increase pointwise, and by the lower-semicontinuity
of measures converge (pointwise) to

lim
n→∞ fEn(x) = lim

n→∞ ⌫((En)x) = ⌫�∞�
n=1
(En)x� = ⌫(Ex) = fE(x)

lim
n→∞gEn(x) = lim

n→∞µ((En)y) = µ�∞�
n=1
(En)y� = ⌫(Ey) = gE(y).

Then, fE and gE are measurable, and by Monotone Convergence,

�
X

fE(x)dµ(x) = lim
n→∞�X fEn(x)dµ(x) = lim

n→∞µ × ⌫(En) = µ × ⌫(E),
where we used once again the lower-semicontinuity of measures. Similarly,

�
Y

gE(y)d⌫(y) = lim
n→∞�Y gEn(y)dµ(y) = lim

n→∞µ × ⌫(En) = µ × ⌫(E).
Hence E ∈ C. A similar analysis holds for decreasing sequences, proving that C is
a monotone class (which is where we use the fact that the measure is finite).
It remains to address the case where the spaces are �-finite (see exercise). n

. Exercise 3.26 Extend the above theorem for the case of �-finite spaces.
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Theorem 3.53 (Fubini-Tonelli) Let (X,⌃X, µ) and (Y,⌃Y, ⌫) be �-finite measure
spaces. Then,

1. Tonelli: Let f ∶ X ×Y→ R be in L+(X ×Y). Then,

g(x) = �
Y

fx(y)d⌫(y) and h(y) = �
X

f y(x)dµ(x)
are in L+(X,⌃X) and L+(Y,⌃Y), respectively. Moreover,

�
X×Y f d(µ×⌫) = �

X
��
Y

fx(y)d⌫(y)�dµ(x) = �
Y
��
X

f y(x)dµ(x)�d⌫(y).
2. Fubini: The same holds with L+(X ×Y) replaced by L1(µ × ⌫).

Comment: Fubini’s theorem states that under those conditions, in short-hand no-
tation

�
X×Y f d(µ × ⌫) = �

X
��
Y

f d⌫�dµ = �
Y
��
X

f dµ�d⌫.

We will commonly omit the brackets, and simply write

�
X×Y f d(µ × ⌫) = �

X
�
Y

f d⌫dµ = �
Y
�
X

f dµd⌫.

Proof : For E ∈ ⌃X⊗⌃Y and f = �E, the first part (Tonelli’s theorem) coincides with
the Theorem 3.52. By additivity, Tonelli’s theorem holds for any simple function.
If f ∈ L+(X ×Y), let fn be a sequence of simple functions increasing to f . Then,( fn)x increases to fn and ( fn)y increases to f y; by Monotone Convergence,

lim
n→∞gn(x) = lim

n→∞�Y( fn)x(y)d⌫(y) = �
Y

fx(y)d⌫(y) ≡ g(x)
and

lim
n→∞hn(y) = lim

n→∞�X( fn)y(x)dµ(x) = �
X

f y(x)dµ(x) ≡ h(y),
hence g and h are in L+. Finally, using once again Monotone Convergence,

�
X

g dµ = lim
n→∞�X gn dµ = lim

n→∞�X×Y fn d(µ × ⌫) = �
X×Y f d(µ × ⌫),
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and

�
Y

h d⌫ = lim
n→∞�Y hn d⌫ = lim

n→∞�X×Y fn d(µ × ⌫) = �
X×Y f d(µ × ⌫).

This proves Tonelli’s theorem.
Suppose now that

f ∈ L+(X ×Y) ∩ L1(µ × ⌫).
Then, Tonelli’s theorem obviously holds and in particular, g ∈ L1(µ) and h ∈
L1(⌫). Fubini’s theorem follows by applying it to f + and f − separately (and if f
is complex-valued, to its real and imaginary parts). n

A note on completeness: even if µ and ⌫ are complete, the product measure is
almost never complete. This is easy to see: suppose that A ∈ ⌃X satisfies µ(A) = 0,
⌫ is a finite measure and P(Y) contains non-measurable sets. Then, every set

E ∈ A × (P(Y) � ⌃Y)
is not in ⌃X ⊗ ⌃Y (otherwise Ex would be in ⌃Y for all x), and yet

E ⊂ A ×Y and µ × ⌫(A ×Y) = 0.

Given two complete measures µ and ⌫ we can consider the completion of µ × ⌫.
Fubini’s theorem can be adjusted to this case, but note that measurability becomes
then an issue.

. Exercise 3.27 Consider the measure space (R2,B(R2),m) and the set

E = {(x, x) ∶ x ∈ R}.
Prove that E is measurable and that m(E) = 0.

. Exercise 3.28 Let E ⊂ R2 be Borel-measurable and let m be the standard Borel measure.
Let

Ẽ = {(ax,by) ∶ (x, y) ∈ E},
where a,b ≠ 0. Prove that Ẽ is measurable and that m(Ẽ) = ab m(E).
. Exercise 3.29 Let (X,⌃, µ) be a complete measure space and let f ∈ L+(X,⌃) ∩ L1(µ).
Prove that

�
X

f dµ = �[0,∞) µ({x ∶ f (x) ≥ t})dm(t).

3.8 The n-dimensional Lebesgue integral

TA material 3.3 Prove that the Lebesgue measure in R2 is invariant under rigid
transformations.


