
Chapter 4

Linear Forms

4.1 Definition and examples

Let V be a vector space over F. Often, we want to assign vectors numerical
values (think of measurements). In the context of a vector space over a field
F, the “number” we associate with each vector is a scalar; in other words, a
“measurement” of vectors is a function V → F. However, a vector space is
not just any old set of points; this set is endowed with an algebraic structure,
and therefore, we may be interested in functions on V that “communicate”
with this algebraic structure. This leads us to the following definition:

Definition 4.1 Let V be a vector space over F. A linear form (;*1";
�;*9!1*-) or a linear functional (�*9!1*- -1&*781&5) over V is a function ` ∶
V → F (i.e., a scalar-valued function with domain V ) satisfying the following

conditions: for every u,v ∈ V ,

`(u + v) = `(u) + `(v),
and for every v ∈ V and a ∈ F,

`(av) = a `(v).
In other words, a linear form on a vector space is a scalar-valued function
over that space that “respects” linear operations. Note (once again) the
distinction between operations in V and operations in F.
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Example: The function ` ∶ V → F assigning to every vector v ∈ V the value
`(v) = 0F is a linear form. Why? because for every u,v ∈ V and a ∈ F,

`(u + v) = 0F = 0F + 0F = `(u) + `(v),
and

`(av) = 0F = a `(v).
This linear form is called the zero form ( �25!% ;*1";). ▲▲▲
Example: Let V be an n-dimensional vector space and let

B = (v1, . . . ,vn)
be an ordered basis. For every i = 1, . . . , n, we denote by `i ∶ V → F the
function returning the i-th coordinate of a vector relative to the basis B.
That is,

`
i(v) = ([v]B)i.

More explicitly, if

v = �v1 . . . vn�
�������
a1⋮
an

�������
,

then `i(v) = ai. Why is this a linear form? Because for every u,v ∈ V ,

`
i(u + v) = ([u + v]B)i = ([u]B + [v]B)i = ([u]B)i + ([v]B)i = `i(u) + `i(v),

where we used here Proposition 3.46. Note the di↵erent types of addition:
in the first two terms it is addition in V , in the third term it is addition in
Fn

col
, and in the last two terms it is addition in F.

Likewise, using once again Proposition 3.46, for u ∈ V and c ∈ F,
`
i(cu) = ([cu]B)i = (c [u]B)i = c ([u]B)i = c `i(u),

Note that for every i, j = 1, . . . , n,
`
i(vj) = ([vj]B)i =

�������
1 i = j
0 i ≠ j ,

i.e., `i(vj) = �ij. This particular set of linear forms will have an important
role shortly. ▲▲▲
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Example: Let V = (Fn

col
,+,F, ⋅) and let a ∈ Fn

row
. We define the function

`a ∶ V → F by

`a(v) = av = �a1 . . . an�
�������
v1⋮
vn

�������
.

The function `a is a linear form because matrix multiplication is distributive,
namely, for u,v ∈ V and c ∈ F,

`a(u + v) = a (u + v) = au + av = `a(u) + `a(v),
and

`a(cu) = a (cu) = cau = c `a(u).
Note how we view the row vector a as “constant” whereas the linear form
`a operates on all v ∈ V . To summarize: every vector a ∈ Fn

row
defines via

matrix multiplication a linear form on Fn

col
. ▲▲▲

Example: Take n = 1 and F = R in the previous example; then V = R, and
for every a ∈ R we define the function

`a(x) = ax.
Thus, linear forms coincide in this case with the good old notion of linear
functions R→ R. ▲▲▲
Example: Let V = (Mn(F),+,F, ⋅) and define the function known as the
trace ( �%"83) of the matrix.

tr(A) = n�
i=1

a
i

i
.

It is readily verified that the trace is also a linear form. ▲▲▲
Example: Let S be a non-empty set (it doesn’t need to have any other
structure than being a set) and consider the set V = FS of all functions
f ∶ S → F. We have seen that V is a vector space over F with respect to
the natural operations of addition and scalar multiplication of field-valued
functions (make sure you remember the vectorial structure of FS). Let s ∈ S,
and define the function Evals ∶ V → F,

Evals(f) = f(s).
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(Given a function f ∈ FS, the function Evals return the value of f at s.)
Then, Evals is a linear form, because for every f, g ∈ FS and c ∈ F,

Evals(f + g) = (f + g)(s) = f(s) + g(s) = Evals(f) +Evals(g),
and

Evals(c f) = (c f)(s) = c f(s) = c Evals(f).
▲▲▲

4.2 Properties of linear forms

In this section we review some important properties of linear forms.

The following is readily proved inductively:

Proposition 4.2 Let ` be a linear form on a vector space (V,+,F, ⋅). Then
for every v1, . . . ,vn ∈ V and a1, . . . , an ∈ F,

` �a1v1 + ⋅ ⋅ ⋅ + anvn� = a1 `(v1) +� + an `(vn).

Proof : This is left as an exercise. n

Proposition 4.3 Let ` be a linear form on a vector space (V,+,F, ⋅). Then
`(0V ) = 0F.

Proof : Let v ∈ V be arbitrary. Then, using the fact that 0F v = 0V and the
properties of `,

`(0V ) = `(0F v) = 0F `(v) = 0F.
n

An important fact about linear forms (in finitely-generated vector spaces) is
that they are completely determined by their action on basis vectors. We
establish this in two separate propositions:
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Proposition 4.4 Let V be a finitely-generated vector space, and let

B = �v1 . . . vn�
be an ordered basis for V . Then, for every set c1, . . . , cn of scalars there exists

a linear form `, such that

`(vi) = ci for every i = 1, . . . , n.

Proof : There really is only one way to define such a functional. Since every
v ∈ V has a unique representation as

v = a1v1 + ⋅ ⋅ ⋅ + anvn,

then `(v) must be given by

`(v) = a1 `(v1) + ⋅ ⋅ ⋅ + an `(vn) = a1c1 + ⋅ ⋅ ⋅ + ancn.
To complete the proof, we have to verify that ` is a linear form. Let v,w ∈ V
be given by

v = a1v1 + ⋅ ⋅ ⋅ + anvn

w = b1v1 + ⋅ ⋅ ⋅ + bnvn.

Then,
v +w = (a1 + b1)v1 + ⋅ ⋅ ⋅ + (an + bn)vn.

By the way we defined `,

`(v) = a1 c1 + ⋅ ⋅ ⋅ + an cn
`(w) = b1 c1 + ⋅ ⋅ ⋅ + bn cn,

and
`(v +w) = (a1 + b1) c1 + ⋅ ⋅ ⋅ + (an + bn) cn,

so that indeed `(v +w) = `(v) + `(w). We proceed similarly to show that
`(k v) = k `(v) for k ∈ F. n

The following complementing proposition asserts that there really was no
other way to define `:
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Proposition 4.5 Let V be a finitely-generated vector space. Let

B = �v1 . . . vn�
be an ordered basis for V . If two linear forms `, `′ satisfy

`(vi) = `′(vi) for all i = 1, . . . , n,
then ` = `′.
Proof : By the property of a basis in a finitely-generated vector space, every
v ∈ V can be represented uniquely as

v = a1v1 + ⋅ ⋅ ⋅ + anvn

for some scalars a1, . . . , an. Then, by the linearity of `, `′,
`(v) = a1`(v1) + ⋅ ⋅ ⋅ + an`(vn) = a1`′(v1) + ⋅ ⋅ ⋅ + an`′(vn) = `′(v).

n

Note how we defined the functional `. Given the c ∈ Fn
row

,

`(v) = �c1 . . . cn�
�������
([v]B)1⋮([v]B)n

�������
= c[v]B.

The two last propositions have a very important implication: every linear
form can be defined using n scalars. It is di�cult not to make a connection
with the notion of coordinates. However, at this stage we haven’t identified
the set of linear forms as a vector space, hence these is yet no meaning to
assign them coordinates. This will be rectified in the next section.

Take the particular example where V = Fn along with the standard basis,

E = �e1 . . . en� .
Then every vector v = (v1, . . . , vn) ∈ V “coincides with its coordinates”, i.e.,
vi = ([v]B)i. We have just shown that to every linear form ` corresponds a
unique c ∈ Fn

row
, such that

`(v) = c [v]E = c1v1 + ⋅ ⋅ ⋅ + cnvn.
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Exercises

(easy) 4.1 Prove using induction that for a linear from ` on a vector space
V ,

f(a1v1 + ⋅ ⋅ ⋅ + anvn) = a1 f(v1) + . . . an f(vn)
for every a1, . . . , an ∈ F and v1, . . . ,vn ∈ V .

(intermediate) 4.2 Let V = (R3,+,R, ⋅) and let

v1 = (1,0,1) v2 = (0,1,−2) and v3 = (−1,−1,0).
(a) Find the linear form ` on R3 satisfying

`(v1) = 1 `(v2) = −2 and `(v3) = 3.
That is, what is `(x, y, z)?

(b) Characterize all linear forms satisfying `(v1) = `(v2) = 0 and `(v3) ≠ 0.
(c) Show that for a linear form such as in the previous article, `(2,3,−1) ≠

0.

(intermediate) 4.3 Let (V,+,F, ⋅) be a finitely-generated vector space and
let v ∈ V be a non-zero vector, v ≠ 0V . Prove that there exists a linear form
` ∈ V ∨, such that `(v) ≠ 0F.
(intermediate) 4.4 Let (V,+,F, ⋅) be a finitely-generated vector space and
let u,v ∈ V be distinct vectors, u ≠ v. Prove that there exists a linear form
` ∈ V ∨, such that `(u) ≠ `(v).
(intermediate) 4.5 Let (V,+,F, ⋅) be a vector space and let `,m ∈ V ∨ be
linear forms satisfying that

`(v) = 0F if and only if m(v) = 0F.
Prove that there exists an a ∈ F such that m = a `.
(intermediate) 4.6 Consider the infinite-dimensional vector space R[X].
Let a, b ∈ R such that a < b. For

P = n�
i=0

piX
i ∈ R[X]
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we define

� b

a

P (x)dx = n�
i=0

pi

i + 1(bi+1 − ai+1).
Let Q ∈ R[X]. Prove that the function ` ∶ R[X]→ R defined by

`(P ) = � b

a

P (x)Q(x)dx
is a linear form. Note: you are not expected to know anything about
integrals—just follow the definitions.

4.3 The dual space

Let V be a vector space over F. In the previous section we defined the notion
of linear forms over (V,+,F, ⋅). We denote the set of all linear forms over V
by

V
∨ = {` ∶ V → F ∶ ` is a linear form}.

it is a subset of the set of Func(V,F), which comprises all (i.e., not necessarily
linear) functions f ∶ V → F. Recall that Func(V,F) is itself a vector space
over F with respect to the function addition

(f + g)(v) = f(v) + g(v)
and the scalar multiplication

(c f)(v) = c f(v).
Proposition 4.6 The set of linear forms V ∨ is a linear subspace of the

vector space Func(V,F) (hence, V ∨ is a vector space in its own sake).

Proof : By definition, in order to prove that a set of vectors is a linear sub-
space, we need to prove that it is non-empty, and that it is closed under
addition and scalar multiplication.

The set V ∨ is non-empty, because it contains at least the zero form, which
we now denote by 0V ∨ . Let `1, `2 ∈ V ∨. The sum `1 + `2 is well-defined as a
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sum in Func(V,F); we need to show that `1 + `2 ∈ V ∨, i.e., that it is a linear
form. For all u,v ∈ V and c ∈ F,

(`1 + `2)(u + v) = `1(u + v) + `2(u + v)= (`1(u) + `1(v)) + (`2(u) + `2(v))= (`1(u) + `2(u)) + (`1(v) + `2(v))= (`1 + `2)(u) + (`1 + `2)(v),
and

(`1 + `2)(cu) = `1(cu) + `2(cu)= c `1(u) + c `2(u)= c (`1(u) + `2(u))= c (`1 + `2)(u),
proving that `1 + `2 ∈ V ∨. Likewise, let ` ∈ V ∨ and a ∈ F; we need to show
that a ` ∈ V ∨, i.e., that it is a linear form. For all u,v ∈ V and c ∈ F,

(a `)(u + v) = a `(u + v)
= a (`(u) + `(v))
= a `(u) + a `(v)
= (a `)(u) + (a `)(v),

and

(a `)(cu) = a `(cu)
= a (c `(u))
= c (a `(u))
= c (a `)(u),

proving that a ` ∈ V ∨. This completes the proof. n

Thus, every vector space (V,+,F, ⋅) induces another vector space (V ∨,+,F, ⋅)
over the same field. The vector space V ∨ is called the space dual ( �*-!&$) to
V . You should internalize the fact that elements of V ∨ are also vectors, but
they are at the same time functions over a vector space, V . Elements of V
and elements of V ∨ are both vectors, albeit belonging to di↵erent spaces. In
particular, there is no meaning to adding an element of V and an element of
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V ∨. On the other hand, the elements of V ∨ “act” on element of V to yield
scalars.

The action `(v) of a linear form ` or a vector v can be viewed as a function
taking an element of V ∨ and an element of V and returning is a scalar. We
often denote this pairing by

�⋅, ⋅� ∶ V ∨ × V → F,

where �`,v� = `(v).
Example: For V = Fn

col
we have seen that V ∨ can be identified with Fn

row
:

every a ∈ Fn
row

defined a unique `a ∈ V ∨ defined by

`a(v) = a ⋅ v.
It is customary to write (Fn

col
)∨ � Fn

row
,

where the � sign mean that the two spaces can be identified (more on that
later). ▲▲▲

4.4 Dual bases

Let V be a finitely-generated vector space. What can be said about its dual
space? Is it also finitely-generated? If it is, is there a relation between dimF V

and dimF V ∨? The theorem below answers this question a�rmatively.

Theorem 4.7 Let V be a finitely-generated vector space. Let

B = �v1 . . . vn�
be an ordered basis for V . Then,

B∨ = ���
`1⋮̀
n

���
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is an ordered basis for V ∨, called the dual basis (�*-!&$ 2*2") of B, where

`i is the unique linear form satisfying

`
i(vj) = �ij for all i, j = 1, . . . , n,

or equivalently

`
i(v) = ([v]B)i.

As a result,

dimF V
∨ = dimF V.

Proof : We need to show that B∨ is spanning and independent. Suppose that
a1, . . . , an are scalars satisfying

a1`
1 + ⋅ ⋅ ⋅ + an`n = 0V ∨

(this is an equality between elements in V ∨). In particular, applying both
sides on vj,

a1`
1(vj) + ⋅ ⋅ ⋅ + an `n(vj) = 0V ∨(vj) = 0F,

i.e.,
aj = 0F.

Since this holds for every j = 1, . . . , n, it follows that the linear combination
of the `i’s is trivial, namely, the linear forms `i are linearly-independent.

It remains to show that B∨ is spanning. We will show that any ` ∈ V ∨ can
be represented as

` = `(v1) `1 + ⋅ ⋅ ⋅ + `(vn) `n,
i.e., it is a linear combination of the linear forms `i (note that `(vi) are
scalars). By Proposition 4.5 it su�ces to verify that both sides yield the
same scalar when acting on basis vectors vj. Indeed,

(`(v1) `1 + ⋅ ⋅ ⋅ + `(vn) `n)(vj) = `(v1) `1(vj) + ⋅ ⋅ ⋅ + `(vn) `n(vj) = `(vj),
which completes the proof. n

Example: Let V = (Fn,+,F, ⋅) and let

E = �e1 . . . en�
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be the standard basis. We denote the basis dual to E by

E∨ = ���
e1⋮
en

��� .
As we have seen, for v = (x1, . . . , xn) we have

ei(v) = [v]E = xi
,

that is the i-th linear form in the dual standard basis extracts the i-th coor-
dinate of a vector. ▲▲▲
Since V ∨ is a vector space and since B∨ is a basis for V ∨, every linear form
in V ∨ can be represented using coordinates. Every ` ∈ V ∨ has a unique
representation

` = �c1 . . . cn��������������������������������������������������������������[`]B∨

���
`1⋮̀
n

����
B∨

,

where [`]B∨ ∈ Fn
row

is the coordinate matrix. We have just proved that

[`]B∨ = �`(v1) . . . `(vn)� .
Consider now the following question: given a basis B on a finitely-generated
vector space V , and its dual basis, every vector v and every linear form ` can
be written using coordinates,

v =B [v]B and ` = [`]B∨B∨.
Can we express the scalar `(v) obtained by the action of the linear form on
the vector using their respective coordinates?

Let denote the coordinates of v and ` as

v = a1v1 + ⋅ ⋅ ⋅ + anvn

` = b1`1 + ⋅ ⋅ ⋅ + bn`n,
namely,

[v]B =
�������
a1⋮
an

�������
and [`]B∨ = �b1 . . . bn� .
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Then,

`(v) = n�
i=1

bi`
i � n�

j=1
a
jvj�

= n�
i=1

n�
j=1

bia
j
`
i(vj)

= n�
i=1

n�
j=1

bia
j
�
i

j

= n�
i=1

bia
i
.

Consider the right-hand side; it is the product of the row vector [`]B∨ and
the column vector [v]B.
We have just proved the following:

Proposition 4.8 Let V be a finitely-generated vector space. Let

B = �v1 . . . vn�
be an ordered basis for V and let

B∨ = ���
`1⋮̀
n

���
be its dual basis. Then, for every ` ∈ V ∨ and v ∈ V ,

`(v) = [`]B∨[v]B.

We have seen that given an ordered basis B = (v1, . . . ,vn) and its dual
B∨ = (`1, . . . , `n) in a finitely-generated vector space, every linear form ` ∈ V ∨
can be represented as

` = n�
i=1

`(vi) `i.
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This representation has an analog for vectors: every vector v ∈ V is given by

v = n�
i=1

`
i(v)vi,

because by definition, `i(v) = ([v]B)i.
We end this section with addressing the transition between dual bases:

Theorem 4.9 Let V be a finitely-generated vector space. Let

B = �v1 . . . vn� and C = �w1 . . . wn�
be ordered bases for V , related by a transition matrix P ∈ GLn(F),

C =BP.

Denote the corresponding dual bases by

B∨ = ���
`1⋮̀
n

��� and C∨ = ���
m1

⋮
mn

��� .
Then, the transition matrix from B∨ to C∨ is Q = P −1,

C∨ = QB∨.

Proof : By definition of the dual basis,

m
j(wi) = �ji for all i, j = 1, . . . , n.

It is given that

wi = n�
k=1

p
k

i
vk,

and we need to show that

m
j = n�

s=1
q
j

s
`
s
.
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This is an identity between linear forms; both sides are equal if they yield
the same set of scalars when acting on the basis vectors wi. Indeed, for every
i, j = 1, . . . , n,

n�
s=1

q
j

s
`
s(wi) = n�

s=1
q
j

s
`
s � n�

k=1
p
k

i
vk�

= n�
s=1

q
j

s

n�
k=1

p
k

i
`
s(vk)

= n�
s=1

q
j

s

n�
k=1

p
k

i
�
s

k

= n�
k=1

q
j

k
p
k

i

= (PQ)j
i
= �j

i
.

This completes the proof. n

Example: Consider once again the vector space (R2,+,R, ⋅) endowed with
the two bases

B = �(1,2) (2,1)� and C = �(1,1) (1,−1)� .

(1,2)

(2,1)
(1,1)

(1,−1)
We have seen that

�(1,1) (1,−1)������������������������������������������������������������������������������������������
C

= �(1,2) (2,1)���������������������������������������������������������������������������������
B

�1�3 −1
1�3 1

�
�����������������������������������������

P

,
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and

�(1,2) (2,1)���������������������������������������������������������������������������������
B

= �(1,1) (1,−1)������������������������������������������������������������������������������������������
C

� 3�2 3�2−1�2 1�2�����������������������������������������������������������
Q

.

We now calculate the dual bases

B∨ = �`1
`2
� and C∨ = �m1

m2
� .

Since
`
i(v) = ([v]B)i,

we have to find the coordinates of every vector v ∈ R2 relative to the basis
B. Write v = (x, y), then

(x, y) = `1(v)(1,2) + `2(v)(2,1),
from which we obtain that

`
1(x, y) = 1

3
(2y − x) and `

2(x, y) = 1

3
(2x − y).

Similarly, (x, y) =m1(v)(1,1) +m2(v)(1,−1),
from which we obtain that

m
1(x, y) = 1

2
(x + y) and m

2(x, y) = 1

2
(x − y).

Since C =BP we expect that C∨ = QB∨, i.e.,

�m1

m2
� = � 3�2 3�2−1�2 1�2��`

1

`2
�

Indeed, for every v = (x, y),
(3
2
`
1 + 3

2
`
2)(v) = 3

2
⋅ 1
3
(2y − x) + 3

2
⋅ 1
3
(2x − y) = 1

2
(x + y) =m1(v),

and

(−1

2
`
1 + 1

2
`
2)(v) = −1

2
⋅ 1
3
(2y − x) + 1

2
⋅ 1
3
(2x − y) = 1

2
(x − y) =m2(v).

▲▲▲



Linear Forms 167

Exercises

(easy) 4.7 Consider the vector space (R2,+,R, ⋅). Find the ordered basis
dual to the ordered basis

B = �(3,4) (5,7)� .
(intermediate) 4.8 Let (V,+,F, ⋅) be a finitely-generated vector space. Prove
that

(a) v = 0V if and only if `(v) = 0 for all ` ∈ V ∨.
(b) ` = 0V ∨ if and only if `(v) = 0 for all v ∈ V .

(intermediate) 4.9 Consider the vector space (C3,+,C, ⋅). Find the basis
dual to the ordered basis

B = �(1,0,−1) (1,1,1) (2,2,0)� .
(intermediate) 4.10 Let V = (Q3,+,Q, ⋅) and consider the ordered basis

B = ((1,0,−1), (1,1,1), (2,2,0)) .
(a) Find the basis B∨ dual to B.

(b) Let E = (e1,e2,e3) be the standard basis for V . Find the basis E∨ dual
to E

(c) Find the transition matrix P satisfying B = EP .

(d) Find the transition matrix Q satisfying E∨ = QB∨ (write the bases E∨
and B∨ as columns of linear forms).

(e) Find the transition matrix P satisfying E =BP .

(f) Find the transition matrix Q satisfying B∨ = QE∨.
(intermediate) 4.11 Repeat the previous question with E replaced by

C = ((1,1,0), (1,0,1), (0,1,1)) .
(intermediate) 4.12 Based on the last two questions, formulate a general
statement and prove it.
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(intermediate) 4.13 Let (V,+,F, ⋅) be a vector space of dimension at least

n. Let A ∈ GLn(F) (an invertible square matrix) and let

�v1 . . . vn�
be an independent sequence of vectors. Define the linear forms

���
'1

⋮
'n

���
via

'
i(vj) = aij for all i, j = 1, . . . , n.

(Recall that this defines the linear forms uniquely.) Show that the linear
forms '1, . . . ,'n are linearly-independent. Try to relate this question to the
last three.

(harder) 4.14 Let B = (v1,v2, . . . ) be an infinite (but countable) basis for
a vector space V over a field F. Define a sequence of linear forms B∨ =(`1, `2, . . . ) by

`
i(vj) = �ij.

(a) Show that the functions `i are indeed well-defined for all v ∈ V , and
are linear forms.

(b) Show that the sequence B∨ is linearly-independent.
(c) Show that B∨ is not a basis for V ∨. I.e., there exists an ` ∈ V ∨ which

is not in the span of B∨. Hint: set `(vi) = 1 for all i ∈ N.

4.5 Null space and annihilator

4.5.1 The annihilator of a set of vectors

Definition 4.10 Let V be a vector space over F and let S ⊆ V be a subset

(not necessarily a subspace). The annihilator (�.*25!/% ;7&"8) of S is the

set S0 ⊆ V ∨ of linear forms that vanish on all elements in S,

S
0 = {` ∈ V ∨ ∶ `(v) = 0F for all v ∈ S} ⊆ V ∨.

(In some places the notation is Ann(S).)
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Example: Let S = {0V }, then the set of linear forms ` ∈ V ∨ satisfying that
`(v) = 0F for all v ∈ S, i.e., `(0V ) = 0F is the entirety of V ∨, i.e.,

{0V }0 = V ∨.
▲▲▲

Example: Let V = (R2,+,R, ⋅) and let S = {(1,0)}. Then,
S
0 = {` ∈ V ∨ ∶ `(1,0) = 0F}.

Take the standard basis for V ∨,
e1(x, y) = x and e2(x, y) = y.

Writing ` = ae1 + be2, we have that

`(1,0) = 0F if and only if a = 0F,
so that

S
0 = {be2 ∶ b ∈ F} = Fe2.

▲▲▲
Example: Let V = (R2,+,R, ⋅) and let S = {(1,0), (0,1)}. Then,

S
0 = {` ∈ V ∨ ∶ `(1,0) = 0F and `(0,1) = 0F}.

Using the same basis for V ∨, we obtain that both a and b vanish, i.e.,

S
0 = {0V ∨}.

▲▲▲
Look at the above three example: first notice that the larger S is, the smaller
S0 is. Second, in all instances S0 turned out to be a linear subspace of V ∨.
The next two propositions show that this is always the case:

Proposition 4.11 Let V be a vector space over F and let S ⊆ V be a subset.

Then,

S
0 ≤ V ∨.
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Proof : We need to show that S0 is non-empty and that it is closed under
addition and scalar multiplication. The set S0 is non-empty because 0V ∨ ∈ S0.
Let `, `′ ∈ S0, i.e.,

`(v) = `′(v) = 0F for all v ∈ S.
Then, (` + `′)(v) = `(v) + `′(v) = 0F for all v ∈ S,
proving that ` + `′ ∈ S0. Likewise, let ` ∈ S0 and a ∈ F, then

(a `)(v) = a `(v) = 0F for all v ∈ S,
proving that a ` ∈ S0. By definition, S0 ≤ V ∨. n

Proposition 4.12 Let (V,+,F, ⋅) be a vector space and let S,T ⊆ V . Then,

(a) If S ⊆ T then T 0 ≤ S0.

(b) S0 = (SpanS)0

Proof : For the first item, let ` ∈ T 0, i.e.,

`(v) = 0F for all v ∈ T .
Since S ⊆ T , it follows that

`(v) = 0F for all v ∈ S,
i.e., ` ∈ S0, proving that T 0 ⊆ S0.

For the second item, let ` ∈ S0, i.e.,

`(v) = 0F for all v ∈ S.
Every v ∈ SpanS is of the form

v = a1v1 + ⋅ ⋅ ⋅ + anvn
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for some v1, . . . ,vn ∈ S, hence
`(v) = a1 `(v1) + ⋅ ⋅ ⋅ + an `(vn) = 0F,

proving that ` ∈ (SpanS)0, i.e.,
S
0 ⊆ (SpanS)0.

Conversely, since S ⊆ SpanS, it follows from the first item that (SpanS)0 ⊆
S0, proving that (SpanS)0 = S0. n

Thus far, S was just any old set; consider now the case there S = W is a
subspace of V , in which case we have two subspaces, W and W 0, of spaces,
V and V ∨, having the same dimension. As we show the dimensions of W
and W 0 are inter-related:

Proposition 4.13 Let (V,+,F, ⋅) be a finitely-generated vector space and let

W ≤ V . Then,

dimFW + dimFW
0 = dimF V.

Proof : Suppose that

dimFW = n and dimF V = n + k.
Let �w1 . . . wn� be an ordered basis for W , which we complete (using
Proposition 3.36) into an ordered basis

B = (w1, . . . ,wn,v1, . . . ,vk)
for V . We partition its dual basis accordingly

B∨ = (`1, . . . , `n,m1
, . . . ,m

k),
such that

`
i(wj) = �ij `

i(vj) = 0 m
i(wj) = 0 and m

i(vj) = �ij.
We will be done if we prove that (m1, . . . ,mk) is an ordered basis for W 0,
for then dimFW 0 = k.
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By the definition of a basis, every ` ∈W 0 ≤ V ∨ can be written as

` = (a1`1 + ⋅ ⋅ ⋅ + an`n) + (b1m1 + ⋅ ⋅ ⋅ + bkmk).
For every j = 1, . . . , n,

0F = `(wj) = (a1`1 + ⋅ ⋅ ⋅ + an`n)(wj) + (b1m1 + ⋅ ⋅ ⋅ + bkmk)(wj) = aj,
proving that

` = b1m1 + ⋅ ⋅ ⋅ + bkmk
,

i.e., (m1, . . . ,mk) is a generating set for W 0; since it is also independent, it
is a basis for W 0. n

4.5.2 The null space of a set of linear forms

The notion of an annihilating set has a dual version:

Definition 4.14 Let V be vector space and let L ⊆ V ∨. The null space
(�.*25!% ;7&"8) of L is the set of vectors

L0 = {v ∈ V ∶ `(v) = 0F for all ` ∈ L} ⊆ V.
Example: Let V be any vector space and L = {0V ∨}. Then,

L0 = {v ∈ V ∶ 0V ∨(v) = 0F} = V.
▲▲▲

Example: Let V = F3

col
and let L = {`} for
`([x, y, z]T ) = x + y + z.

Then,
L0 = {([x, y, z]T ) ∈ F3

col
∶ x + y + z = 0},

which we know how to express explicitly. In fact, we know that

L0 =
�������
�������
−s − t
s

t

�������
∶ s, t ∈ F

�������
= Span

���������
�������
−1
1
0

�������
,

�������
−1
0
1

�������
���������
.

This example shows that the left-hand side of a linear equation of the type
we started this course with is really a linear form, and the solution of a
homogeneous equation is nothing but its null space. ▲▲▲
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Example: Let V =M2(F) and let ` = tr, i.e.,
`��a b

c d
�� = a + d.

It is easy to see that

{`}0 = ��a b

c −a� ∶ a, b, c ∈ F� ,
or

{`}0 = Span��1 0
0 −1� , �0 1

0 0
� , �0 0

1 0
�� .

▲▲▲
The following three propositions are the analogs of Propositions 4.11–4.13:

Proposition 4.15 The null space of a set of linear forms is a vector sub-

space: let V be a vector space and let L ⊆ V ∨, then
L0 ≤ V.

Proof : The set L0 is non-empty because it contains 0V . Let u,v ∈ L0, i.e.,

`(u) = `(v) = 0F for all ` ∈ L.
Then,

`(u + v) = `(u) + `(v) = 0F for all ` ∈ L,
which implies that u + v ∈ L0. For u ∈ L0 and a ∈ F,

`(au) = a `(u) = 0F for all ` ∈ L,
which implies that au ∈ L0. By definition, L0 is a linear subspace of V . n

Proposition 4.16 Let (V,+,F, ⋅) be a vector space and let L,M ⊆ V ∨.
Then,

(a) If L ⊆M then M0 ≤ L0.

(b) L0 = (SpanL)0
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Proof : Before we prove it formally, two observations: (i) the larger a set
of linear forms is, the more constraints are imposed on its null space, hence
its null space should be smaller. (ii) Think of L0 as a set of homogeneous
linear equations on Fn

col
(just as an example—we haven’t even required V to

be finitely-generated). The span of L is the set of all linear equations that
are linear combinations of the equations in L; we know that the space of
solutions doesn’t change, which explains the second item.

And now to the formal proof. For the first item, let v ∈M0, i.e.,

`(v) = 0F for all ` ∈M.

Since L ⊆M , it follows that

`(v) = 0F for all ` ∈ L,
i.e., v ∈ L0, proving that M0 ⊆ L0.

For the second item, let v ∈ L0, i.e.,

`(v) = 0F for all ` ∈ L.
Every ` ∈ SpanL is of the form

` = a1`1 + ⋅ ⋅ ⋅ + an`n
for some `1, . . . , `n ∈ L, hence

`(v) = �a1`1 + ⋅ ⋅ ⋅ + an`n� (v) = a1`1(v) + ⋅ ⋅ ⋅ + an`n(v) = 0F,
proving that v ∈ (SpanL)0, i.e.,

L0 ⊆ (SpanL)0.
Conversely, since L ⊆ SpanL, it follows from the first item that (SpanL)0 ⊆
L0, proving that (SpanL)0 = L0. n

Proposition 4.17 Let (V,+,F, ⋅) be a finitely-generated vector space and let

L ≤ V ∨. Then,
dimFL + dimFL0 = dimF V.
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Proof : This is left as an exercise; start with a basis for L0. n

We now combine the notions of null sets and annihilators to prove the fol-
lowing:

Proposition 4.18 Let V be a finitely-generated vector space. Let W ≤ V

and let L ≤ V ∨. Then,
(W 0)0 =W and (L0)0 = L. (4.1)

Proof : By Proposition 4.17 and Proposition 4.13,

dimFW
0 + dim(W 0)0 = dimF V

and
dimFW + dimFW

0 = dimF V,

from which we conclude that W and dim(W 0)0 have the same dimension.
It su�ces then to show every vector in W is also in (W 0)0 (actually, justify
this assertion formally).

By definition,

(W 0)0 = {v ∈ V ∶ `(v) = 0F for all ` ∈W 0},
whereas

W
0 = {` ∈ V ∨ ∶ `(w) = 0F for all w ∈W}.

So let w ∈W . For every ` ∈W 0

`(w) = 0F,
from which follows that w ∈ (W 0)0, proving that W ⊆ (W 0)0, which com-
pletes the proof. The second part is left as an exercise. n

Corollary 4.19 Let V be a finitely-generated vector space and let U,W ≤ V .

Then,

U =W if and only if U
0 =W 0

.

Likewise, let L,M ≤ V ∨. Then,
L =M if and only if L0 =M0.
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Proof : We prove the first item. One direction is obvious, U =W implies that
U0 = W 0. The other direction follows from the fact that U0 = W 0 implies
that (U0)0 = (W 0)0, along with (4.1). The second item is left as an exercise.
n

Exercises

(intermediate) 4.15 Let (V,+,F, ⋅) be a vector space and let W ≤ V . De-
fine

U = {` ∈ V ∨ ∶ W ≤ {`}0}.
Show that U ≤ V ∨.
(easy) 4.16 Let

w = (1,1) ∈ R2
.

Calculate {w}0.
(intermediate) 4.17 Let (V,+,F, ⋅) be a finitely-generated vector space, let
W1,W2 ≤ V and let L1, L2 ≤ V ∨. Show that

(a) (W1 ∩W2)0 = (W1)0 + (W2)0.
(b) (W1 +W2)0 = (W1)0 ∩ (W2)0.
(c) (L1 ∩L2)0 = (L1)0 + (L2)0.
(d) (L1 +L2)0 = (L1)0 ∩ (L2)0.

(intermediate) 4.18 Find a basis for the annihilator of

W = Span ((1,2,−3,4), (0,1,4,−1)) ≤ R4
.

(intermediate) 4.19 Let V = (R4,+,R, ⋅), and let

`1(x) = x1 + 2x2 + 2x3 + x4
`2(x) = 2x1 + x4

`3(x) = −2x1 − 3x3 + 3x4
.

Find a subspace W ≤ R4 such that

W
0 = Span({`1, `2, `3}).
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(intermediate) 4.20 Let V be a finitely-generated vector space and let
L ≤ V ∨. Show that (L0)0 = L.
Conclude that for L,M ≤ V ∨,

L =M if and only if L0 =M0.

(harder) 4.21 Prove Proposition 4.17.

4.5.3 Linear systems and linear forms

Let A ∈Mm×n(F). We consider the space of solutions

SA = {v ∈ Fn

col
∶ Av = 0Fm

col
}

of the homogeneous linear system. Each of the m rows of A can be viewed
as a linear form acting on an element of Fn

col
; Thus the set of solutions SA

equals,

SA = {v ∈ Fn

col
∶ Rowi(A)v = 0, i = 1, . . . ,m} = {Rowi(A) ∶ i = 1, . . . ,m}0.

By Proposition 4.16,

SA = �Span{Rowi(A) ∶ i = 1, . . . ,m}�
0
= (R(A))0,

i.e., the set of solutions is the null space of the row space of A. Proposi-
tion 4.17 asserts that

dimF R(A) + dimF SA = dimF Fn

col
= n.

Recall that the dimension of the row space equals the dimension of the column
space, and that this dimension is called the rank of the matrix. Thus,

dimF SA = n − rankA.
In other words, for a homogeneous linear system of m equations in n un-
knowns, the space of solutions is a linear subspace of Fn

col
, whose dimension

is n minus the rank of A, which we recall is the number of non-zero rows in
its row-reduced form (make sure that this makes sense to you).
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Example: Consider once again the matrix

�������
0 0 1 4
2 4 2 6
3 6 2 5

�������
,

whose row-reduced form is �������
1 2 0 −1
0 0 1 4
0 0 0 0

�������
.

In this case, n = 4 and rankA = 2. As for the space of solutions, its dimension
is 2,

SA =
�������������

���������

−2s + t
s−4t
t

���������
∶ s, t ∈ R

�������������
= Span

�������������

���������

−2
1
0
0

���������
,

���������

1
0−4
1

���������

�������������
.

▲▲▲
Example: Let’s have a di↵erent look on the relation between equations and
solutions. Let V = F3

col
; then V ∨ = F3

row
under the action through row-column

multiplication. We use the standard bases for V and V ∨. Consider the linear
form

`(x) = �1 1 1�
�������
x1

x2

x3

�������
= x1 + x2 + x3

.

The space of solutions, which is the null space of {`} is
{`}0 =

���������
�������
−s − t
s

t

�������
∶ s, t ∈ F

���������
= Span

���������
�������
−1
1
0

�������
,

�������
−1
0
1

�������
���������
≤ F3

col
.

The equation represented by the linear form whose coordinates (relative to
the standard dual basis) are [1,1,1], induces a space of solutions, which is
a two-dimensional subspace of F3

col
. As we know, the space of solution does

not change if we multiply ` by any non-zero scalar: the space of solution is
in fact the null space of the one-dimensional subspace of linear forms, whose
coordinate representation is

F[1,1,1] = {[a, a, a] ∶ a ∈ F}.
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Denote the space of solutions by W . We may ask the opposite question:
does the space of solutions define the equation whose solution they are. This
is really asking: what are all the linear forms ` satisfying `(w) = 0F for all
w ∈W . Write such a linear form as

` = a1 e1 + a2 e2 + a3 e3,
we require that ` ∈W 0, which is the case if and only if

`

���
�������
−1
1
0

�������
��� = −a1 + a2 = 0F and `

���
�������
−1
0
1

�������
��� = −a1 + a3 = 0F,

from which we obtain that a1 = a2 = a3, i.e., ` must be of the form

` = a (e1 + e2 + e3) = a �1 1 1�
�������
e1

e2

e3

�������
,

which is what we expected. This examples show once again the relations
between equations and solutions as linear subspaces of vectors and linear
forms. ▲▲▲
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