Chapter 4

Linear Forms

4.1 Definition and examples

Let V be a vector space over \mathbb{F}. Often, we want to assign vectors numerical values (think of measurements). In the context of a vector space over a field \mathbb{F}, the "number" we associate with each vector is a scalar; in other words, a "measurement" of vectors is a function $V \rightarrow \mathbb{F}$. However, a vector space is not just any old set of points; this set is endowed with an algebraic structure, and therefore, we may be interested in functions on V that "communicate" with this algebraic structure. This leads us to the following definition:

Definition 4.1 Let V be a vector space over \mathbb{F}. A linear form (תבנית (לינארית) or a linear functional (פונקציונל לינארי) over V is a function ℓ : $V \rightarrow \mathbb{F}$ (i.e., a scalar-valued function with domain V) satisfying the following conditions: for every $\mathbf{u}, \mathbf{v} \in V$,

$$
\ell(\mathbf{u}+\mathbf{v})=\ell(\mathbf{u})+\ell(\mathbf{v}),
$$

and for every $\mathbf{v} \in V$ and $a \in \mathbb{F}$,

$$
\ell(a \mathbf{v})=a \ell(\mathbf{v}) .
$$

In other words, a linear form on a vector space is a scalar-valued function over that space that "respects" linear operations. Note (once again) the distinction between operations in V and operations in \mathbb{F}.

Example: The function $\ell: V \rightarrow \mathbb{F}$ assigning to every vector $\mathbf{v} \in V$ the value $\ell(\mathbf{v})=0_{\mathbb{F}}$ is a linear form. Why? because for every $\mathbf{u}, \mathbf{v} \in V$ and $a \in \mathbb{F}$,

$$
\ell(\mathbf{u}+\mathbf{v})=0_{\mathbb{F}}=0_{\mathbb{F}}+0_{\mathbb{F}}=\ell(\mathbf{u})+\ell(\mathbf{v}),
$$

and

$$
\ell(a \mathbf{v})=0_{\mathbb{F}}=a \ell(\mathbf{v}) .
$$

This linear form is called the zero form (תבנית האפס).
Example: Let V be an n-dimensional vector space and let

$$
\mathfrak{B}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

be an ordered basis. For every $i=1, \ldots, n$, we denote by $\ell^{i}: V \rightarrow \mathbb{F}$ the function returning the i-th coordinate of a vector relative to the basis \mathfrak{B}. That is,

$$
\ell^{i}(\mathbf{v})=\left([\mathbf{v}]_{\mathfrak{B}}\right)^{i} .
$$

More explicitly, if

$$
\mathbf{v}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right)\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{n}
\end{array}\right],
$$

then $\ell^{i}(\mathbf{v})=a^{i}$. Why is this a linear form? Because for every $\mathbf{u}, \mathbf{v} \in V$,

$$
\ell^{i}(\mathbf{u}+\mathbf{v})=\left([\mathbf{u}+\mathbf{v}]_{\mathfrak{B}}\right)^{i}=\left([\mathbf{u}]_{\mathfrak{B}}+[\mathbf{v}]_{\mathfrak{B}}\right)^{i}=\left([\mathbf{u}]_{\mathfrak{B}}\right)^{i}+\left([\mathbf{v}]_{\mathfrak{B}}\right)^{i}=\ell^{i}(\mathbf{u})+\ell^{i}(\mathbf{v}),
$$

where we used here Proposition 3.46. Note the different types of addition: in the first two terms it is addition in V, in the third term it is addition in $\mathbb{F}_{\text {col }}^{n}$, and in the last two terms it is addition in \mathbb{F}.
Likewise, using once again Proposition 3.46, for $\mathbf{u} \in V$ and $c \in \mathbb{F}$,

$$
\ell^{i}(c \mathbf{u})=\left([c \mathbf{u}]_{\mathfrak{B}}\right)^{i}=\left(c[\mathbf{u}]_{\mathfrak{B}}\right)^{i}=c\left([\mathbf{u}]_{\mathfrak{B}}\right)^{i}=c \ell^{i}(\mathbf{u}),
$$

Note that for every $i, j=1, \ldots, n$,

$$
\ell^{i}\left(\mathbf{v}_{j}\right)=\left(\left[\mathbf{v}_{j}\right]_{\mathfrak{B}}\right)^{i}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array},\right.
$$

i.e., $\ell^{i}\left(\mathbf{v}_{j}\right)=\delta_{j}^{i}$. This particular set of linear forms will have an important role shortly.

Example: Let $V=\left(\mathbb{F}_{\text {col }}^{n},+, \mathbb{F}, \cdot\right)$ and let $\mathbf{a} \in \mathbb{F}_{\text {row }}^{n}$. We define the function $\ell_{\mathrm{a}}: V \rightarrow \mathbb{F}$ by

$$
\ell_{\mathbf{a}}(\mathbf{v})=\mathbf{a} \mathbf{v}=\left[\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
v^{1} \\
\vdots \\
v^{n}
\end{array}\right] .
$$

The function ℓ_{a} is a linear form because matrix multiplication is distributive, namely, for $\mathbf{u}, \mathbf{v} \in V$ and $c \in \mathbb{F}$,

$$
\ell_{\mathbf{a}}(\mathbf{u}+\mathbf{v})=\mathbf{a}(\mathbf{u}+\mathbf{v})=\mathbf{a} \mathbf{u}+\mathbf{a} \mathbf{v}=\ell_{\mathbf{a}}(\mathbf{u})+\ell_{\mathbf{a}}(\mathbf{v})
$$

and

$$
\ell_{\mathbf{a}}(c \mathbf{u})=\mathbf{a}(c \mathbf{u})=c \mathbf{a} \mathbf{u}=c \ell_{\mathbf{a}}(\mathbf{u}) .
$$

Note how we view the row vector a as "constant" whereas the linear form $\ell_{\mathbf{a}}$ operates on all $\mathbf{v} \in V$. To summarize: every vector $\mathbf{a} \in \mathbb{F}_{\text {row }}^{n}$ defines via matrix multiplication a linear form on $\mathbb{F}_{\text {col }}^{n}$.

Example: Take $n=1$ and $\mathbb{F}=\mathbb{R}$ in the previous example; then $V=\mathbb{R}$, and for every $a \in \mathbb{R}$ we define the function

$$
\ell_{a}(x)=a x .
$$

Thus, linear forms coincide in this case with the good old notion of linear functions $\mathbb{R} \rightarrow \mathbb{R}$.

Example: Let $V=\left(M_{n}(\mathbb{F}),+, \mathbb{F}, \cdot\right)$ and define the function known as the trace (עקבה) of the matrix.

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i}^{i} .
$$

It is readily verified that the trace is also a linear form.
Example: Let S be a non-empty set (it doesn't need to have any other structure than being a set) and consider the set $V=\mathbb{F}^{S}$ of all functions $f: S \rightarrow \mathbb{F}$. We have seen that V is a vector space over \mathbb{F} with respect to the natural operations of addition and scalar multiplication of field-valued functions (make sure you remember the vectorial structure of \mathbb{F}^{S}). Let $s \in S$, and define the function $E_{\text {Eval }}^{s}: ~ V \rightarrow \mathbb{F}$,

$$
\operatorname{Eval}_{s}(f)=f(s) .
$$

(Given a function $f \in \mathbb{F}^{S}$, the function Eval $_{s}$ return the value of f at s.) Then, Eval ${ }_{s}$ is a linear form, because for every $f, g \in \mathbb{F}^{S}$ and $c \in \mathbb{F}$,

$$
\operatorname{Eval}_{s}(f+g)=(f+g)(s)=f(s)+g(s)=\operatorname{Eval}_{s}(f)+\operatorname{Eval}_{s}(g),
$$

and

$$
\operatorname{Eval}_{s}(c f)=(c f)(s)=c f(s)=c \operatorname{Eval}_{s}(f)
$$

4.2 Properties of linear forms

In this section we review some important properties of linear forms.
The following is readily proved inductively:

Proposition 4.2 Let ℓ be a linear form on a vector space ($V,+, \mathbb{F}, \cdot)$. Then for every $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$ and $a^{1}, \ldots, a^{n} \in \mathbb{F}$,

$$
\ell\left(a^{1} \mathbf{v}_{1}+\cdots+a^{n} \mathbf{v}_{n}\right)=a^{1} \ell\left(\mathbf{v}_{1}\right)+\cdots+a^{n} \ell\left(\mathbf{v}_{n}\right) .
$$

Proof: This is left as an exercise.

Proposition 4.3 Let ℓ be a linear form on a vector space $(V,+, \mathbb{F}, \cdot)$. Then

$$
\ell\left(0_{V}\right)=0_{\mathbb{F}} .
$$

Proof: Let $\mathbf{v} \in V$ be arbitrary. Then, using the fact that $0_{\mathbb{F}} \mathbf{v}=0_{V}$ and the properties of ℓ,

$$
\ell\left(0_{V}\right)=\ell\left(0_{\mathbb{F}} \mathbf{v}\right)=0_{\mathbb{F}} \ell(\mathbf{v})=0_{\mathbb{F}} .
$$

An important fact about linear forms (in finitely-generated vector spaces) is that they are completely determined by their action on basis vectors. We establish this in two separate propositions:

Proposition 4.4 Let V be a finitely-generated vector space, and let

$$
\mathfrak{B}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right)
$$

be an ordered basis for V. Then, for every set c_{1}, \ldots, c_{n} of scalars there exists a linear form ℓ, such that

$$
\ell\left(\mathbf{v}_{i}\right)=c_{i} \quad \text { for every } i=1, \ldots, n
$$

Proof: There really is only one way to define such a functional. Since every $\mathbf{v} \in V$ has a unique representation as

$$
\mathbf{v}=a^{1} \mathbf{v}_{1}+\cdots+a^{n} \mathbf{v}_{n}
$$

then $\ell(\mathbf{v})$ must be given by

$$
\ell(\mathbf{v})=a^{1} \ell\left(\mathbf{v}_{1}\right)+\cdots+a^{n} \ell\left(\mathbf{v}_{n}\right)=a^{1} c_{1}+\cdots+a^{n} c_{n}
$$

To complete the proof, we have to verify that ℓ is a linear form. Let $\mathbf{v}, \mathbf{w} \in V$ be given by

$$
\begin{aligned}
\mathbf{v} & =a^{1} \mathbf{v}_{1}+\cdots+a^{n} \mathbf{v}_{n} \\
\mathbf{w} & =b^{1} \mathbf{v}_{1}+\cdots+b^{n} \mathbf{v}_{n} .
\end{aligned}
$$

Then,

$$
\mathbf{v}+\mathbf{w}=\left(a^{1}+b^{1}\right) \mathbf{v}_{1}+\cdots+\left(a^{n}+b^{n}\right) \mathbf{v}_{n} .
$$

By the way we defined ℓ,

$$
\begin{aligned}
& \ell(\mathbf{v})=a^{1} c_{1}+\cdots+a^{n} c_{n} \\
& \ell(\mathbf{w})=b^{1} c_{1}+\cdots+b^{n} c_{n},
\end{aligned}
$$

and

$$
\ell(\mathbf{v}+\mathbf{w})=\left(a^{1}+b^{1}\right) c_{1}+\cdots+\left(a^{n}+b^{n}\right) c_{n}
$$

so that indeed $\ell(\mathbf{v}+\mathbf{w})=\ell(\mathbf{v})+\ell(\mathbf{w})$. We proceed similarly to show that $\ell(k \mathbf{v})=k \ell(\mathbf{v})$ for $k \in \mathbb{F}$.
The following complementing proposition asserts that there really was no other way to define ℓ :

Proposition 4.5 Let V be a finitely-generated vector space. Let

$$
\mathfrak{B}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right)
$$

be an ordered basis for V. If two linear forms ℓ, ℓ^{\prime} satisfy

$$
\ell\left(\mathbf{v}_{i}\right)=\ell^{\prime}\left(\mathbf{v}_{i}\right) \quad \text { for all } i=1, \ldots, n,
$$

then $\ell=\ell^{\prime}$.

Proof: By the property of a basis in a finitely-generated vector space, every $\mathbf{v} \in V$ can be represented uniquely as

$$
\mathbf{v}=a^{1} \mathbf{v}_{1}+\cdots+a^{n} \mathbf{v}_{n}
$$

for some scalars a^{1}, \ldots, a^{n}. Then, by the linearity of ℓ, ℓ^{\prime},

$$
\ell(\mathbf{v})=a^{1} \ell\left(\mathbf{v}_{1}\right)+\cdots+a^{n} \ell\left(\mathbf{v}_{n}\right)=a^{1} \ell^{\prime}\left(\mathbf{v}_{1}\right)+\cdots+a^{n} \ell^{\prime}\left(\mathbf{v}_{n}\right)=\ell^{\prime}(\mathbf{v}) .
$$

Note how we defined the functional ℓ. Given the $\mathbf{c} \in \mathbb{F}_{\text {row }}^{n}$,

$$
\ell(\mathbf{v})=\left[\begin{array}{lll}
c_{1} & \ldots & c_{n}
\end{array}\right]\left[\begin{array}{c}
\left([\mathbf{v}]_{\mathfrak{B}}\right)^{1} \\
\vdots \\
\left([\mathbf{v}]_{\mathfrak{B}}\right)^{n}
\end{array}\right]=\mathbf{c}[\mathbf{v}]_{\mathfrak{B}} .
$$

The two last propositions have a very important implication: every linear form can be defined using n scalars. It is difficult not to make a connection with the notion of coordinates. However, at this stage we haven't identified the set of linear forms as a vector space, hence these is yet no meaning to assign them coordinates. This will be rectified in the next section.

Take the particular example where $V=\mathbb{F}^{n}$ along with the standard basis,

$$
\mathfrak{E}=\left(\begin{array}{lll}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n}
\end{array}\right) .
$$

Then every vector $\mathbf{v}=\left(v^{1}, \ldots, v^{n}\right) \in V$ "coincides with its coordinates", i.e., $v^{i}=\left([\mathbf{v}]_{\mathfrak{B}}\right)^{i}$. We have just shown that to every linear form ℓ corresponds a unique $\mathbf{c} \in \mathbb{F}_{\text {row }}^{n}$, such that

$$
\ell(\mathbf{v})=\mathbf{c}[\mathbf{v}]_{\mathfrak{E}}=c_{1} v^{1}+\cdots+c_{n} v^{n} .
$$

Exercises

(easy) 4.1 Prove using induction that for a linear from ℓ on a vector space V,

$$
f\left(a^{1} \mathbf{v}_{1}+\cdots+a^{n} \mathbf{v}_{n}\right)=a^{1} f\left(\mathbf{v}_{1}\right)+\ldots a^{n} f\left(\mathbf{v}_{n}\right)
$$

for every $a^{1}, \ldots, a^{n} \in \mathbb{F}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$.
(intermediate) 4.2 Let $V=\left(\mathbb{R}^{3},+, \mathbb{R}, \cdot\right)$ and let

$$
\mathbf{v}_{1}=(1,0,1) \quad \mathbf{v}_{2}=(0,1,-2) \quad \text { and } \quad \mathbf{v}_{3}=(-1,-1,0) .
$$

(a) Find the linear form ℓ on \mathbb{R}^{3} satisfying

$$
\ell\left(\mathbf{v}_{1}\right)=1 \quad \ell\left(\mathbf{v}_{2}\right)=-2 \quad \text { and } \quad \ell\left(\mathbf{v}_{3}\right)=3 .
$$

That is, what is $\ell(x, y, z)$?
(b) Characterize all linear forms satisfying $\ell\left(\mathbf{v}_{1}\right)=\ell\left(\mathbf{v}_{2}\right)=0$ and $\ell\left(\mathbf{v}_{3}\right) \neq 0$.
(c) Show that for a linear form such as in the previous article, $\ell(2,3,-1) \neq$ 0.
(intermediate) 4.3 Let $(V,+, \mathbb{F}, \cdot)$ be a finitely-generated vector space and let $\mathbf{v} \in V$ be a non-zero vector, $\mathbf{v} \neq 0_{V}$. Prove that there exists a linear form $\ell \in V^{\vee}$, such that $\ell(\mathbf{v}) \neq 0_{\mathbb{F}}$.
(intermediate) 4.4 Let $(V,+, \mathbb{F}, \cdot)$ be a finitely-generated vector space and let $\mathbf{u}, \mathbf{v} \in V$ be distinct vectors, $\mathbf{u} \neq \mathbf{v}$. Prove that there exists a linear form $\ell \in V^{\vee}$, such that $\ell(\mathbf{u}) \neq \ell(\mathbf{v})$.
(intermediate) 4.5 Let $(V,+, \mathbb{F}, \cdot)$ be a vector space and let $\ell, m \in V^{\vee}$ be linear forms satisfying that

$$
\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { if and only if } \quad m(\mathbf{v})=0_{\mathbb{F}} .
$$

Prove that there exists an $a \in \mathbb{F}$ such that $m=a \ell$.
(intermediate) 4.6 Consider the infinite-dimensional vector space $\mathbb{R}[X]$. Let $a, b \in \mathbb{R}$ such that $a<b$. For

$$
P=\sum_{i=0}^{n} p_{i} X^{i} \in \mathbb{R}[X]
$$

we define

$$
\int_{a}^{b} P(x) d x=\sum_{i=0}^{n} \frac{p_{i}}{i+1}\left(b^{i+1}-a^{i+1}\right) .
$$

Let $Q \in \mathbb{R}[X]$. Prove that the function $\ell: \mathbb{R}[X] \rightarrow \mathbb{R}$ defined by

$$
\ell(P)=\int_{a}^{b} P(x) Q(x) d x
$$

is a linear form. Note: you are not expected to know anything about integrals-just follow the definitions.

4.3 The dual space

Let V be a vector space over \mathbb{F}. In the previous section we defined the notion of linear forms over $(V,+, \mathbb{F}, \cdot)$. We denote the set of all linear forms over V by

$$
V^{\vee}=\{\ell: V \rightarrow \mathbb{F}: \ell \text { is a linear form }\} .
$$

it is a subset of the set of $\operatorname{Func}(V, \mathbb{F})$, which comprises all (i.e., not necessarily linear) functions $f: V \rightarrow \mathbb{F}$. Recall that $\operatorname{Func}(V, \mathbb{F})$ is itself a vector space over \mathbb{F} with respect to the function addition

$$
(f+g)(\mathbf{v})=f(\mathbf{v})+g(\mathbf{v})
$$

and the scalar multiplication

$$
(c f)(\mathbf{v})=c f(\mathbf{v}) .
$$

Proposition 4.6 The set of linear forms V^{\vee} is a linear subspace of the vector space $\operatorname{Func}(V, \mathbb{F})$ (hence, V^{\vee} is a vector space in its own sake).

Proof: By definition, in order to prove that a set of vectors is a linear subspace, we need to prove that it is non-empty, and that it is closed under addition and scalar multiplication.

The set V^{\vee} is non-empty, because it contains at least the zero form, which we now denote by $0_{V^{v}}$. Let $\ell_{1}, \ell_{2} \in V^{\vee}$. The sum $\ell_{1}+\ell_{2}$ is well-defined as a
sum in $\operatorname{Func}(V, \mathbb{F})$; we need to show that $\ell_{1}+\ell_{2} \in V^{\vee}$, i.e., that it is a linear form. For all $\mathbf{u}, \mathbf{v} \in V$ and $c \in \mathbb{F}$,

$$
\begin{aligned}
\left(\ell_{1}+\ell_{2}\right)(\mathbf{u}+\mathbf{v}) & =\ell_{1}(\mathbf{u}+\mathbf{v})+\ell_{2}(\mathbf{u}+\mathbf{v}) \\
& =\left(\ell_{1}(\mathbf{u})+\ell_{1}(\mathbf{v})\right)+\left(\ell_{2}(\mathbf{u})+\ell_{2}(\mathbf{v})\right) \\
& =\left(\ell_{1}(\mathbf{u})+\ell_{2}(\mathbf{u})\right)+\left(\ell_{1}(\mathbf{v})+\ell_{2}(\mathbf{v})\right) \\
& =\left(\ell_{1}+\ell_{2}\right)(\mathbf{u})+\left(\ell_{1}+\ell_{2}\right)(\mathbf{v}),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\ell_{1}+\ell_{2}\right)(c \mathbf{u}) & =\ell_{1}(c \mathbf{u})+\ell_{2}(c \mathbf{u}) \\
& =c \ell_{1}(\mathbf{u})+c \ell_{2}(\mathbf{u}) \\
& =c\left(\ell_{1}(\mathbf{u})+\ell_{2}(\mathbf{u})\right) \\
& =c\left(\ell_{1}+\ell_{2}\right)(\mathbf{u})
\end{aligned}
$$

proving that $\ell_{1}+\ell_{2} \in V^{\vee}$. Likewise, let $\ell \in V^{\vee}$ and $a \in \mathbb{F}$; we need to show that $a \ell \in V^{\vee}$, i.e., that it is a linear form. For all $\mathbf{u}, \mathbf{v} \in V$ and $c \in \mathbb{F}$,

$$
\begin{aligned}
(a \ell)(\mathbf{u}+\mathbf{v}) & =a \ell(\mathbf{u}+\mathbf{v}) \\
& =a(\ell(\mathbf{u})+\ell(\mathbf{v})) \\
& =a \ell(\mathbf{u})+a \ell(\mathbf{v}) \\
& =(a \ell)(\mathbf{u})+(a \ell)(\mathbf{v})
\end{aligned}
$$

and

$$
\begin{aligned}
(a \ell)(c \mathbf{u}) & =a \ell(c \mathbf{u}) \\
& =a(c \ell(\mathbf{u})) \\
& =c(a \ell(\mathbf{u})) \\
& =c(a \ell)(\mathbf{u}),
\end{aligned}
$$

proving that $a \ell \in V^{\vee}$. This completes the proof.
Thus, every vector space $(V,+, \mathbb{F}, \cdot)$ induces another vector space $\left(V^{\vee},+, \mathbb{F}, \cdot\right)$ over the same field. The vector space V^{\vee} is called the space dual (דואלי) to V. You should internalize the fact that elements of V^{\vee} are also vectors, but they are at the same time functions over a vector space, V. Elements of V and elements of V^{\vee} are both vectors, albeit belonging to different spaces. In particular, there is no meaning to adding an element of V and an element of
V^{\vee}. On the other hand, the elements of V^{\vee} "act" on element of V to yield scalars.

The action $\ell(\mathbf{v})$ of a linear form ℓ or a vector \mathbf{v} can be viewed as a function taking an element of V^{\vee} and an element of V and returning is a scalar. We often denote this pairing by

$$
\langle\cdot, \cdot\rangle: V^{\vee} \times V \rightarrow F,
$$

where

$$
\langle\ell, \mathbf{v}\rangle=\ell(\mathbf{v}) .
$$

Example: For $V=\mathbb{F}_{\text {col }}^{n}$ we have seen that V^{\vee} can be identified with $\mathbb{F}_{\text {row }}^{n}$: every $\mathbf{a} \in \mathbb{F}_{\text {row }}^{n}$ defined a unique $\ell_{\mathbf{a}} \in V^{\vee}$ defined by

$$
\ell_{\mathbf{a}}(\mathbf{v})=\mathbf{a} \cdot \mathbf{v} .
$$

It is customary to write

$$
\left(\mathbb{F}_{\mathrm{col}}^{n}\right)^{\vee} \simeq \mathbb{F}_{\mathrm{row}}^{n},
$$

where the $\simeq \operatorname{sign}$ mean that the two spaces can be identified (more on that later).

4.4 Dual bases

Let V be a finitely-generated vector space. What can be said about its dual space? Is it also finitely-generated? If it is, is there a relation between $\operatorname{dim}_{\mathbb{F}} V$ and $\operatorname{dim}_{\mathbb{F}} V^{\vee}$? The theorem below answers this question affirmatively.

Theorem 4.7 Let V be a finitely-generated vector space. Let

$$
\mathfrak{B}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right)
$$

be an ordered basis for V. Then,

$$
\mathfrak{B}^{\vee}=\left(\begin{array}{c}
\ell^{1} \\
\vdots \\
\ell^{n}
\end{array}\right)
$$

is an ordered basis for V^{\vee}, called the dual basis (בסים דואלי) of \mathfrak{B}, where ℓ^{i} is the unique linear form satisfying

$$
\ell^{i}\left(\mathbf{v}_{j}\right)=\delta_{j}^{i} \quad \text { for all } i, j=1, \ldots, n,
$$

or equivalently

$$
\ell^{i}(\mathbf{v})=\left([\mathbf{v}]_{\mathfrak{B}}\right)^{i} .
$$

As a result,

$$
\operatorname{dim}_{\mathbb{F}} V^{\vee}=\operatorname{dim}_{\mathbb{F}} V
$$

Proof: We need to show that \mathfrak{B}^{\vee} is spanning and independent. Suppose that a_{1}, \ldots, a_{n} are scalars satisfying

$$
a_{1} \ell^{1}+\cdots+a_{n} \ell^{n}=0_{V^{\vee}}
$$

(this is an equality between elements in V^{\vee}). In particular, applying both sides on \mathbf{v}_{j},

$$
a_{1} \ell^{1}\left(\mathbf{v}_{j}\right)+\cdots+a_{n} \ell^{n}\left(\mathbf{v}_{j}\right)=0_{V^{\vee}}\left(\mathbf{v}_{j}\right)=0_{\mathbb{F}},
$$

i.e.,

$$
a_{j}=0_{\mathbb{F}} .
$$

Since this holds for every $j=1, \ldots, n$, it follows that the linear combination of the ℓ^{i} 's is trivial, namely, the linear forms ℓ^{i} are linearly-independent.
It remains to show that \mathfrak{B}^{\vee} is spanning. We will show that any $\ell \in V^{\vee}$ can be represented as

$$
\ell=\ell\left(\mathbf{v}_{1}\right) \ell^{1}+\cdots+\ell\left(\mathbf{v}_{n}\right) \ell^{n}
$$

i.e., it is a linear combination of the linear forms ℓ^{i} (note that $\ell\left(\mathbf{v}_{i}\right)$ are scalars). By Proposition 4.5 it suffices to verify that both sides yield the same scalar when acting on basis vectors \mathbf{v}_{j}. Indeed,

$$
\left(\ell\left(\mathbf{v}_{1}\right) \ell^{1}+\cdots+\ell\left(\mathbf{v}_{n}\right) \ell^{n}\right)\left(\mathbf{v}_{j}\right)=\ell\left(\mathbf{v}_{1}\right) \ell^{1}\left(\mathbf{v}_{j}\right)+\cdots+\ell\left(\mathbf{v}_{n}\right) \ell^{n}\left(\mathbf{v}_{j}\right)=\ell\left(\mathbf{v}_{j}\right)
$$

which completes the proof.
Example: Let $V=\left(\mathbb{F}^{n},+, \mathbb{F}, \cdot\right)$ and let

$$
\mathfrak{E}=\left(\begin{array}{lll}
\mathrm{e}_{1} & \ldots & \mathbf{e}_{n}
\end{array}\right)
$$

be the standard basis. We denote the basis dual to \mathfrak{E} by

$$
\mathfrak{E}^{\vee}=\left(\begin{array}{c}
\mathbf{e}^{1} \\
\vdots \\
\mathbf{e}^{n}
\end{array}\right)
$$

As we have seen, for $\mathbf{v}=\left(x^{1}, \ldots, x^{n}\right)$ we have

$$
\mathbf{e}^{i}(\mathbf{v})=[\mathbf{v}]_{\mathfrak{E}}=x^{i},
$$

that is the i-th linear form in the dual standard basis extracts the i-th coordinate of a vector.

Since V^{\vee} is a vector space and since \mathfrak{B}^{\vee} is a basis for V^{\vee}, every linear form in V^{\vee} can be represented using coordinates. Every $\ell \in V^{\vee}$ has a unique representation

$$
\ell=\underbrace{\left[\begin{array}{ccc}
c_{1} & \ldots & c_{n}
\end{array}\right]}_{[\ell]_{\mathfrak{B}}} \underbrace{\left(\begin{array}{c}
\ell^{1} \\
\vdots \\
\ell^{n}
\end{array}\right)}_{\mathfrak{B}^{\vee}},
$$

where $[\ell]_{\mathfrak{B}^{v}} \in \mathbb{F}_{\text {row }}^{n}$ is the coordinate matrix. We have just proved that

$$
[\ell]_{\mathfrak{B} \mathfrak{V}}=\left[\begin{array}{lll}
\ell\left(\mathbf{v}_{1}\right) & \ldots & \ell\left(\mathbf{v}_{n}\right)
\end{array}\right] .
$$

Consider now the following question: given a basis \mathfrak{B} on a finitely-generated vector space V, and its dual basis, every vector v and every linear form ℓ can be written using coordinates,

$$
\mathbf{v}=\mathfrak{B}[\mathbf{v}]_{\mathfrak{B}} \quad \text { and } \quad \ell=[\ell]_{\mathfrak{B} \vee} \mathfrak{B}^{\vee} .
$$

Can we express the scalar $\ell(\mathbf{v})$ obtained by the action of the linear form on the vector using their respective coordinates?
Let denote the coordinates of \mathbf{v} and ℓ as

$$
\begin{aligned}
\mathbf{v} & =a^{1} \mathbf{v}_{1}+\cdots+a^{n} \mathbf{v}_{n} \\
\ell & =b_{1} \ell^{1}+\cdots+b_{n} \ell^{n}
\end{aligned}
$$

namely,

$$
[\mathbf{v}]_{\mathfrak{B}}=\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{n}
\end{array}\right] \quad \text { and } \quad[\ell]_{\mathfrak{B} v}=\left[\begin{array}{lll}
b_{1} & \ldots & b_{n}
\end{array}\right] .
$$

Then,

$$
\begin{aligned}
\ell(\mathbf{v}) & =\sum_{i=1}^{n} b_{i} \ell^{i}\left(\sum_{j=1}^{n} a^{j} \mathbf{v}_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} a^{j} \ell^{i}\left(\mathbf{v}_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} a^{j} \delta_{j}^{i} \\
& =\sum_{i=1}^{n} b_{i} a^{i} .
\end{aligned}
$$

Consider the right-hand side; it is the product of the row vector $[\ell]_{\mathfrak{B}^{\vee}}$ and the column vector $[v]_{\mathfrak{B}}$.
We have just proved the following:

Proposition 4.8 Let V be a finitely-generated vector space. Let

$$
\mathfrak{B}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right)
$$

be an ordered basis for V and let

$$
\mathfrak{B}^{\vee}=\left(\begin{array}{c}
\ell^{1} \\
\vdots \\
\ell^{n}
\end{array}\right)
$$

be its dual basis. Then, for every $\ell \in V^{\vee}$ and $\mathbf{v} \in V$,

$$
\ell(\mathbf{v})=[\ell]_{\mathfrak{B}}[\mathbf{v}]_{\mathfrak{B}} .
$$

We have seen that given an ordered basis $\mathfrak{B}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ and its dual $\mathfrak{B}^{\vee}=\left(\ell^{1}, \ldots, \ell^{n}\right)$ in a finitely-generated vector space, every linear form $\ell \in V^{\vee}$ can be represented as

$$
\ell=\sum_{i=1}^{n} \ell\left(\mathbf{v}_{i}\right) \ell^{i} .
$$

This representation has an analog for vectors: every vector $\mathbf{v} \in V$ is given by

$$
\mathbf{v}=\sum_{i=1}^{n} \ell^{i}(\mathbf{v}) \mathbf{v}_{i}
$$

because by definition, $\ell^{i}(\mathbf{v})=\left([\mathbf{v}]_{\mathfrak{B}}\right)^{i}$.
We end this section with addressing the transition between dual bases:

Theorem 4.9 Let V be a finitely-generated vector space. Let

$$
\mathfrak{B}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right) \quad \text { and } \quad \mathfrak{C}=\left(\begin{array}{lll}
\mathbf{w}_{1} & \ldots & \mathbf{w}_{n}
\end{array}\right)
$$

be ordered bases for V, related by a transition matrix $P \in \mathrm{GL}_{n}(\mathbb{F})$,

$$
\mathfrak{C}=\mathfrak{B} P .
$$

Denote the corresponding dual bases by

$$
\mathfrak{B}^{\vee}=\left(\begin{array}{c}
\ell^{1} \\
\vdots \\
\ell^{n}
\end{array}\right) \quad \text { and } \quad \mathfrak{C}^{\vee \vee}=\left(\begin{array}{c}
m^{1} \\
\vdots \\
m^{n}
\end{array}\right)
$$

Then, the transition matrix from \mathfrak{B}^{\vee} to \mathfrak{C}^{\vee} is $Q=P^{-1}$,

$$
\mathfrak{C}^{\vee v}=Q \mathfrak{B}^{\vee} .
$$

Proof: By definition of the dual basis,

$$
m^{j}\left(\mathbf{w}_{i}\right)=\delta_{i}^{j} \quad \text { for all } i, j=1, \ldots, n .
$$

It is given that

$$
\mathbf{w}_{i}=\sum_{k=1}^{n} p_{i}^{k} \mathbf{v}_{k},
$$

and we need to show that

$$
m^{j}=\sum_{s=1}^{n} q_{s}^{j} \ell^{s} .
$$

This is an identity between linear forms; both sides are equal if they yield the same set of scalars when acting on the basis vectors \mathbf{w}_{i}. Indeed, for every $i, j=1, \ldots, n$,

$$
\begin{aligned}
\sum_{s=1}^{n} q_{s}^{j} \ell^{s}\left(\mathbf{w}_{i}\right) & =\sum_{s=1}^{n} q_{s}^{j} \ell^{s}\left(\sum_{k=1}^{n} p_{i}^{k} \mathbf{v}_{k}\right) \\
& =\sum_{s=1}^{n} q_{s}^{j} \sum_{k=1}^{n} p_{i}^{k} \ell^{s}\left(\mathbf{v}_{k}\right) \\
& =\sum_{s=1}^{n} q_{s}^{j} \sum_{k=1}^{n} p_{i}^{k} \delta_{k}^{s} \\
& =\sum_{k=1}^{n} q_{k}^{j} p_{i}^{k} \\
& =(P Q)_{i}^{j}=\delta_{i}^{j} .
\end{aligned}
$$

This completes the proof.

Example: Consider once again the vector space $\left(\mathbb{R}^{2},+, \mathbb{R}, \cdot\right)$ endowed with the two bases

$$
\mathfrak{B}=((1,2) \quad(2,1)) \quad \text { and } \quad \mathfrak{C}=((1,1) \quad(1,-1)) .
$$

We have seen that

$$
\underbrace{((1,1) \quad(1,-1))}_{\mathfrak{C}}=\underbrace{((1,2) \quad(2,1))}_{\mathfrak{B}} \underbrace{\left[\begin{array}{cc}
1 / 3 & -1 \\
1 / 3 & 1
\end{array}\right]}_{P}
$$

and

$$
\underbrace{((1,2) \quad(2,1))}_{\mathfrak{B}}=\underbrace{(\begin{array}{ll}
(1,1) \quad(1,-1))
\end{array} \underbrace{\left[\begin{array}{cc}
3 / 2 & 3 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]}_{Q} ~ . ~}_{\mathfrak{C}}
$$

We now calculate the dual bases

$$
\mathfrak{B}^{\vee}=\binom{\ell^{1}}{\ell^{2}} \quad \text { and } \quad \mathfrak{C}^{\vee}=\binom{m^{1}}{m^{2}} .
$$

Since

$$
\ell^{i}(\mathbf{v})=\left([\mathbf{v}]_{\mathfrak{B}}\right)^{i},
$$

we have to find the coordinates of every vector $v \in \mathbb{R}^{2}$ relative to the basis \mathfrak{B}. Write $\mathbf{v}=(x, y)$, then

$$
(x, y)=\ell^{1}(\mathbf{v})(1,2)+\ell^{2}(\mathbf{v})(2,1),
$$

from which we obtain that

$$
\ell^{1}(x, y)=\frac{1}{3}(2 y-x) \quad \text { and } \quad \ell^{2}(x, y)=\frac{1}{3}(2 x-y) .
$$

Similarly,

$$
(x, y)=m^{1}(\mathbf{v})(1,1)+m^{2}(\mathbf{v})(1,-1),
$$

from which we obtain that

$$
m^{1}(x, y)=\frac{1}{2}(x+y) \quad \text { and } \quad m^{2}(x, y)=\frac{1}{2}(x-y) .
$$

Since $\mathfrak{C}=\mathfrak{B} P$ we expect that $\mathfrak{C}^{\vee}=Q \mathfrak{B}^{\vee}$, i.e.,

$$
\binom{m^{1}}{m^{2}}=\left[\begin{array}{cc}
3 / 2 & 3 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]\binom{\ell^{1}}{\ell^{2}}
$$

Indeed, for every $\mathbf{v}=(x, y)$,

$$
\left(\frac{3}{2} \ell^{1}+\frac{3}{2} \ell^{2}\right)(\mathbf{v})=\frac{3}{2} \cdot \frac{1}{3}(2 y-x)+\frac{3}{2} \cdot \frac{1}{3}(2 x-y)=\frac{1}{2}(x+y)=m^{1}(\mathbf{v}),
$$

and

$$
\left(-\frac{1}{2} \ell^{1}+\frac{1}{2} \ell^{2}\right)(\mathbf{v})=-\frac{1}{2} \cdot \frac{1}{3}(2 y-x)+\frac{1}{2} \cdot \frac{1}{3}(2 x-y)=\frac{1}{2}(x-y)=m^{2}(\mathbf{v}) .
$$

Exercises

(easy) 4.7 Consider the vector space $\left(\mathbb{R}^{2},+, \mathbb{R}, \cdot\right)$. Find the ordered basis dual to the ordered basis

$$
\mathfrak{B}=((3,4) \quad(5,7)) .
$$

(intermediate) 4.8 Let $(V,+, \mathbb{F}, \cdot)$ be a finitely-generated vector space. Prove that
(a) $\mathbf{v}=0_{V}$ if and only if $\ell(\mathbf{v})=0$ for all $\ell \in V^{v}$.
(b) $\ell=0_{V^{v}}$ if and only if $\ell(\mathbf{v})=0$ for all $\mathbf{v} \in V$.
(intermediate) 4.9 Consider the vector space $\left(\mathbb{C}^{3},+, \mathbb{C}, \cdot\right)$. Find the basis dual to the ordered basis

$$
\mathfrak{B}=((1,0,-1) \quad(1,1,1) \quad(2,2,0)) .
$$

(intermediate) 4.10 Let $V=\left(\mathbb{Q}^{3},+, \mathbb{Q}, \cdot\right)$ and consider the ordered basis

$$
\mathfrak{B}=((1,0,-1),(1,1,1),(2,2,0)) .
$$

(a) Find the basis \mathfrak{B}^{\vee} dual to \mathfrak{B}.
(b) Let $\mathcal{E}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ be the standard basis for V. Find the basis $\mathcal{E} \vee$ dual to \mathcal{E}
(c) Find the transition matrix P satisfying $\mathfrak{B}=\mathcal{E} P$.
(d) Find the transition matrix Q satisfying $\mathcal{E}^{\vee}=Q \mathfrak{B}^{\vee}$ (write the bases \mathcal{E}^{\vee} and \mathfrak{B}^{\vee} as columns of linear forms).
(e) Find the transition matrix P satisfying $\mathcal{E}=\mathfrak{B} P$.
(f) Find the transition matrix Q satisfying $\mathfrak{B}^{\vee}=Q \mathcal{E}^{\vee}$.
(intermediate) 4.11 Repeat the previous question with \mathcal{E} replaced by

$$
\mathfrak{C}=((1,1,0),(1,0,1),(0,1,1)) .
$$

(intermediate) 4.12 Based on the last two questions, formulate a general statement and prove it.
(intermediate) 4.13 Let $(V,+, \mathbb{F}, \cdot)$ be a vector space of dimension at least n. Let $A \in \mathrm{GL}_{n}(\mathbb{F})$ (an invertible square matrix) and let

$$
\left(\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}
\end{array}\right)
$$

be an independent sequence of vectors. Define the linear forms

$$
\left(\begin{array}{c}
\varphi^{1} \\
\vdots \\
\varphi^{n}
\end{array}\right)
$$

via

$$
\varphi^{i}\left(\mathbf{v}_{j}\right)=a_{j}^{i} \quad \text { for all } i, j=1, \ldots, n .
$$

(Recall that this defines the linear forms uniquely.) Show that the linear forms $\varphi^{1}, \ldots, \varphi^{n}$ are linearly-independent. Try to relate this question to the last three.
(harder) 4.14 Let $\mathfrak{B}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots\right)$ be an infinite (but countable) basis for a vector space V over a field \mathbb{F}. Define a sequence of linear forms $\mathfrak{B}^{\vee}=$ $\left(\ell^{1}, \ell^{2}, \ldots\right)$ by

$$
\ell^{i}\left(\mathbf{v}_{j}\right)=\delta_{j}^{i} .
$$

(a) Show that the functions ℓ^{i} are indeed well-defined for all $\mathbf{v} \in V$, and are linear forms.
(b) Show that the sequence \mathfrak{B}^{\vee} is linearly-independent.
(c) Show that \mathfrak{B}^{\vee} is not a basis for V^{\vee}. I.e., there exists an $\ell \in V^{\vee}$ which is not in the span of \mathfrak{B}^{\vee}. Hint: set $\ell\left(\mathbf{v}_{i}\right)=1$ for all $i \in \mathbb{N}$.

4.5 Null space and annihilator

4.5.1 The annihilator of a set of vectors

Definition 4.10 Let V be a vector space over \mathbb{F} and let $S \subseteq V$ be a subset (not necessarily a subspace). The annihilator (קבוצת המאפסים) of S is the set $S^{0} \subseteq V^{\vee}$ of linear forms that vanish on all elements in S,

$$
S^{0}=\left\{\ell \in V^{\vee}: \ell(\mathbf{v})=0_{\mathbb{F}} \text { for all } \mathbf{v} \in S\right\} \subseteq V^{\vee}
$$

(In some places the notation is $\operatorname{Ann}(S)$.)

Example: Let $S=\left\{0_{V}\right\}$, then the set of linear forms $\ell \in V^{\vee}$ satisfying that $\ell(\mathbf{v})=0_{\mathbb{F}}$ for all $\mathbf{v} \in S$, i.e., $\ell\left(0_{V}\right)=0_{\mathbb{F}}$ is the entirety of V^{\vee}, i.e.,

$$
\left\{0_{V}\right\}^{0}=V^{\vee} .
$$

Example: Let $V=\left(\mathbb{R}^{2},+, \mathbb{R}, \cdot\right)$ and let $S=\{(1,0)\}$. Then,

$$
S^{0}=\left\{\ell \in V^{\vee}: \ell(1,0)=0_{\mathbb{F}}\right\} .
$$

Take the standard basis for V^{\vee},

$$
\mathbf{e}^{1}(x, y)=x \quad \text { and } \quad \mathbf{e}^{2}(x, y)=y
$$

Writing $\ell=a \mathbf{e}^{1}+b \mathbf{e}^{2}$, we have that

$$
\ell(1,0)=0_{\mathbb{F}} \quad \text { if and only if } \quad a=0_{\mathbb{F}},
$$

so that

$$
S^{0}=\left\{b \mathbf{e}^{2}: b \in \mathbb{F}\right\}=\mathbb{F} \mathbf{e}^{2} .
$$

Example: Let $V=\left(\mathbb{R}^{2},+, \mathbb{R}, \cdot\right)$ and let $S=\{(1,0),(0,1)\}$. Then,

$$
S^{0}=\left\{\ell \in V^{\vee}: \ell(1,0)=0_{\mathbb{F}} \quad \text { and } \quad \ell(0,1)=0_{\mathbb{F}}\right\} .
$$

Using the same basis for V^{\vee}, we obtain that both a and b vanish, i.e.,

$$
S^{0}=\left\{0_{V^{\vee}}\right\} .
$$

Look at the above three example: first notice that the larger S is, the smaller S^{0} is. Second, in all instances S^{0} turned out to be a linear subspace of V^{\vee}. The next two propositions show that this is always the case:

Proposition 4.11 Let V be a vector space over \mathbb{F} and let $S \subseteq V$ be a subset. Then,

$$
S^{0} \leq V^{\vee} .
$$

Proof: We need to show that S^{0} is non-empty and that it is closed under addition and scalar multiplication. The set S^{0} is non-empty because $0_{V \vee} \in S^{0}$. Let $\ell, \ell^{\prime} \in S^{0}$, i.e.,

$$
\ell(\mathbf{v})=\ell^{\prime}(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \mathbf{v} \in S
$$

Then,

$$
\left(\ell+\ell^{\prime}\right)(\mathbf{v})=\ell(\mathbf{v})+\ell^{\prime}(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \mathbf{v} \in S
$$

proving that $\ell+\ell^{\prime} \in S^{0}$. Likewise, let $\ell \in S^{0}$ and $a \in \mathbb{F}$, then

$$
(a \ell)(\mathbf{v})=a \ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \mathbf{v} \in S
$$

proving that $a \ell \in S^{0}$. By definition, $S^{0} \leq V^{\vee}$.

Proposition 4.12 Let $(V,+, \mathbb{F}, \cdot)$ be a vector space and let $S, T \subseteq V$. Then,
(a) If $S \subseteq T$ then $T^{0} \leq S^{0}$.
(b) $S^{0}=(\operatorname{Span} S)^{0}$

Proof: For the first item, let $\ell \in T^{0}$, i.e.,

$$
\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \mathbf{v} \in T .
$$

Since $S \subseteq T$, it follows that

$$
\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \mathbf{v} \in S
$$

i.e., $\ell \in S^{0}$, proving that $T^{0} \subseteq S^{0}$.

For the second item, let $\ell \in S^{0}$, i.e.,

$$
\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \mathbf{v} \in S
$$

Every $\mathbf{v} \in \operatorname{Span} S$ is of the form

$$
\mathbf{v}=a^{1} \mathbf{v}_{1}+\cdots+a^{n} \mathbf{v}_{n}
$$

for some $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in S$, hence

$$
\ell(\mathbf{v})=a^{1} \ell\left(\mathbf{v}_{1}\right)+\cdots+a^{n} \ell\left(\mathbf{v}_{n}\right)=0_{\mathbb{F}},
$$

proving that $\ell \in(\operatorname{Span} S)^{0}$, i.e.,

$$
S^{0} \subseteq(\operatorname{Span} S)^{0} .
$$

Conversely, since $S \subseteq \operatorname{Span} S$, it follows from the first item that (Span $S)^{0} \subseteq$ S^{0}, proving that $(\operatorname{Span} S)^{0}=S^{0}$.
Thus far, S was just any old set; consider now the case there $S=W$ is a subspace of V, in which case we have two subspaces, W and W^{0}, of spaces, V and V^{\vee}, having the same dimension. As we show the dimensions of W and W^{0} are inter-related:

Proposition 4.13 Let $(V,+, \mathbb{F}, \cdot)$ be a finitely-generated vector space and let $W \leq V$. Then,

$$
\operatorname{dim}_{\mathbb{F}} W+\operatorname{dim}_{\mathbb{F}} W^{0}=\operatorname{dim}_{\mathbb{F}} V .
$$

Proof: Suppose that

$$
\operatorname{dim}_{\mathbb{F}} W=n \quad \text { and } \quad \operatorname{dim}_{\mathbb{F}} V=n+k .
$$

Let $\left(\begin{array}{lll}\mathbf{w}_{1} & \ldots & \mathbf{w}_{n}\end{array}\right)$ be an ordered basis for W, which we complete (using Proposition 3.36) into an ordered basis

$$
\mathfrak{B}=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)
$$

for V. We partition its dual basis accordingly

$$
\mathfrak{B}^{\vee}=\left(\ell^{1}, \ldots, \ell^{n}, m^{1}, \ldots, m^{k}\right),
$$

such that

$$
\ell^{i}\left(\mathbf{w}_{j}\right)=\delta_{j}^{i} \quad \ell^{i}\left(\mathbf{v}_{j}\right)=0 \quad m^{i}\left(\mathbf{w}_{j}\right)=0 \quad \text { and } \quad m^{i}\left(\mathbf{v}_{j}\right)=\delta_{j}^{i} .
$$

We will be done if we prove that $\left(m_{1}, \ldots, m_{k}\right)$ is an ordered basis for W^{0}, for then $\operatorname{dim}_{\mathbb{F}} W^{0}=k$.

By the definition of a basis, every $\ell \in W^{0} \leq V^{\vee}$ can be written as

$$
\ell=\left(a_{1} \ell^{1}+\cdots+a_{n} \ell^{n}\right)+\left(b_{1} m^{1}+\cdots+b_{k} m^{k}\right) .
$$

For every $j=1, \ldots, n$,

$$
0_{\mathbb{F}}=\ell\left(\mathbf{w}_{j}\right)=\left(a_{1} \ell^{1}+\cdots+a_{n} \ell^{n}\right)\left(\mathbf{w}_{j}\right)+\left(b_{1} m^{1}+\cdots+b_{k} m^{k}\right)\left(\mathbf{w}_{j}\right)=a_{j},
$$

proving that

$$
\ell=b_{1} m^{1}+\cdots+b_{k} m^{k},
$$

i.e., $\left(m^{1}, \ldots, m^{k}\right)$ is a generating set for W^{0}; since it is also independent, it is a basis for W^{0}.

4.5.2 The null space of a set of linear forms

The notion of an annihilating set has a dual version:
Definition 4.14 Let V be vector space and let $L \subseteq V^{\vee}$. The null space (קבוצת האפטים) of L is the set of vectors

$$
L_{0}=\left\{\mathbf{v} \in V: \ell(\mathbf{v})=0_{\mathbb{F}} \text { for all } \ell \in L\right\} \subseteq V .
$$

Example: Let V be any vector space and $L=\left\{0_{V^{\vee}}\right\}$. Then,

$$
L_{0}=\left\{\mathbf{v} \in V: 0_{V^{\vee}}(\mathbf{v})=0_{\mathbb{F}}\right\}=V
$$

Example: Let $V=\mathbb{F}_{\text {col }}^{3}$ and let $L=\{\ell\}$ for

$$
\ell\left([x, y, z]^{T}\right)=x+y+z .
$$

Then,

$$
L_{0}=\left\{\left([x, y, z]^{T}\right) \in \mathbb{F}_{\text {col }}^{3}: x+y+z=0\right\},
$$

which we know how to express explicitly. In fact, we know that

$$
L_{0}=\left[\left[\begin{array}{c}
-s-t \\
s \\
t
\end{array}\right]: s, t \in \mathbb{F}\right]=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} .
$$

This example shows that the left-hand side of a linear equation of the type we started this course with is really a linear form, and the solution of a homogeneous equation is nothing but its null space.

Example: Let $V=M_{2}(\mathbb{F})$ and let $\ell=\operatorname{tr}$, i.e.,

$$
\ell\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a+d
$$

It is easy to see that

$$
\{\ell\}_{0}=\left\{\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]: a, b, c \in \mathbb{F}\right\},
$$

or

$$
\{\ell\}_{0}=\operatorname{Span}\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\} .
$$

The following three propositions are the analogs of Propositions 4.11-4.13:

Proposition 4.15 The null space of a set of linear forms is a vector subspace: let V be a vector space and let $L \subseteq V^{\vee}$, then

$$
L_{0} \leq V .
$$

Proof: The set L_{0} is non-empty because it contains 0_{V}. Let $\mathbf{u}, \mathbf{v} \in L_{0}$, i.e.,

$$
\ell(\mathbf{u})=\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \ell \in L .
$$

Then,

$$
\ell(\mathbf{u}+\mathbf{v})=\ell(\mathbf{u})+\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \ell \in L,
$$

which implies that $\mathbf{u}+\mathbf{v} \in L_{0}$. For $\mathbf{u} \in L_{0}$ and $a \in \mathbb{F}$,

$$
\ell(a \mathbf{u})=a \ell(\mathbf{u})=0_{\mathbb{F}} \quad \text { for all } \ell \in L,
$$

which implies that $a \mathbf{u} \in L_{0}$. By definition, L_{0} is a linear subspace of V.

Proposition 4.16 Let $(V,+, \mathbb{F}, \cdot)$ be a vector space and let $L, M \subseteq V^{\vee}$. Then,
(a) If $L \subseteq M$ then $M_{0} \leq L_{0}$.
(b) $L_{0}=(\operatorname{Span} L)_{0}$

Proof: Before we prove it formally, two observations: (i) the larger a set of linear forms is, the more constraints are imposed on its null space, hence its null space should be smaller. (ii) Think of L_{0} as a set of homogeneous linear equations on $\mathbb{F}_{\text {col }}^{n}$ (just as an example - we haven't even required V to be finitely-generated). The span of L is the set of all linear equations that are linear combinations of the equations in L; we know that the space of solutions doesn't change, which explains the second item.
And now to the formal proof. For the first item, let $\mathbf{v} \in M_{0}$, i.e.,

$$
\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \ell \in M .
$$

Since $L \subseteq M$, it follows that

$$
\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \ell \in L,
$$

i.e., $\mathbf{v} \in L_{0}$, proving that $M_{0} \subseteq L_{0}$.

For the second item, let $\mathbf{v} \in L_{0}$, i.e.,

$$
\ell(\mathbf{v})=0_{\mathbb{F}} \quad \text { for all } \ell \in L .
$$

Every $\ell \in \operatorname{Span} L$ is of the form

$$
\ell=a_{1} \ell^{1}+\cdots+a_{n} \ell^{n}
$$

for some $\ell^{1}, \ldots, \ell^{n} \in L$, hence

$$
\ell(\mathbf{v})=\left(a_{1} \ell^{1}+\cdots+a_{n} \ell^{n}\right)(\mathbf{v})=a_{1} \ell^{1}(\mathbf{v})+\cdots+a_{n} \ell^{n}(\mathbf{v})=0_{\mathbb{F}},
$$

proving that $\mathbf{v} \in(\operatorname{Span} L)_{0}$, i.e.,

$$
L_{0} \subseteq(\operatorname{Span} L)_{0} .
$$

Conversely, since $L \subseteq \operatorname{Span} L$, it follows from the first item that $(\operatorname{Span} L)_{0} \subseteq$ L_{0}, proving that $(\operatorname{Span} L)_{0}=L_{0}$.

Proposition 4.17 Let $(V,+, \mathbb{F}, \cdot)$ be a finitely-generated vector space and let $L \leq V^{\vee}$. Then,

$$
\operatorname{dim}_{\mathbb{F}} L+\operatorname{dim}_{\mathbb{F}} L_{0}=\operatorname{dim}_{\mathbb{F}} V
$$

Proof: This is left as an exercise; start with a basis for L_{0}.
We now combine the notions of null sets and annihilators to prove the following:

Proposition 4.18 Let V be a finitely-generated vector space. Let $W \leq V$ and let $L \leq V^{\vee}$. Then,

$$
\begin{equation*}
\left(W^{0}\right)_{0}=W \quad \text { and } \quad\left(L_{0}\right)^{0}=L . \tag{4.1}
\end{equation*}
$$

Proof: By Proposition 4.17 and Proposition 4.13,

$$
\operatorname{dim}_{\mathbb{F}} W^{0}+\operatorname{dim}\left(W^{0}\right)_{0}=\operatorname{dim}_{\mathbb{F}} V
$$

and

$$
\operatorname{dim}_{\mathbb{F}} W+\operatorname{dim}_{\mathbb{F}} W^{0}=\operatorname{dim}_{\mathbb{F}} V,
$$

from which we conclude that W and $\operatorname{dim}\left(W^{0}\right)_{0}$ have the same dimension. It suffices then to show every vector in W is also in $\left(W^{0}\right)_{0}$ (actually, justify this assertion formally).
By definition,

$$
\left(W^{0}\right)_{0}=\left\{\mathbf{v} \in V: \ell(\mathbf{v})=0_{\mathbb{F}} \text { for all } \ell \in W^{0}\right\}
$$

whereas

$$
W^{0}=\left\{\ell \in V^{\vee}: \ell(\mathbf{w})=0_{\mathbb{F}} \text { for all } \mathbf{w} \in W\right\} .
$$

So let $\mathbf{w} \in W$. For every $\ell \in W^{0}$

$$
\ell(\mathbf{w})=0_{\mathbb{F}},
$$

from which follows that $\mathbf{w} \in\left(W^{0}\right)_{0}$, proving that $W \subseteq\left(W^{0}\right)_{0}$, which completes the proof. The second part is left as an exercise.

Corollary 4.19 Let V be a finitely-generated vector space and let $U, W \leq V$. Then,

$$
U=W \quad \text { if and only if } \quad U^{0}=W^{0} .
$$

Likewise, let $L, M \leq V^{\vee}$. Then,

$$
L=M \quad \text { if and only if } \quad L_{0}=M_{0} .
$$

Proof: We prove the first item. One direction is obvious, $U=W$ implies that $U^{0}=W^{0}$. The other direction follows from the fact that $U^{0}=W^{0}$ implies that $\left(U^{0}\right)_{0}=\left(W^{0}\right)_{0}$, along with (4.1). The second item is left as an exercise.

Exercises

(intermediate) 4.15 Let $(V,+, \mathbb{F}, \cdot)$ be a vector space and let $W \leq V$. Define

$$
U=\left\{\ell \in V^{\vee}: W \leq\{\ell\}_{0}\right\} .
$$

Show that $U \leq V^{\vee}$.
(easy) 4.16 Let

$$
\mathbf{w}=(1,1) \in \mathbb{R}^{2} .
$$

Calculate $\{\mathbf{w}\}^{0}$.
(intermediate) 4.17 Let $(V,+, \mathbb{F}, \cdot)$ be a finitely-generated vector space, let $W_{1}, W_{2} \leq V$ and let $L_{1}, L_{2} \leq V^{\vee}$. Show that
(a) $\left(W_{1} \cap W_{2}\right)^{0}=\left(W_{1}\right)^{0}+\left(W_{2}\right)^{0}$.
(b) $\left(W_{1}+W_{2}\right)^{0}=\left(W_{1}\right)^{0} \cap\left(W_{2}\right)^{0}$.
(c) $\left(L_{1} \cap L_{2}\right)_{0}=\left(L_{1}\right)_{0}+\left(L_{2}\right)_{0}$.
(d) $\left(L_{1}+L_{2}\right)_{0}=\left(L_{1}\right)_{0} \cap\left(L_{2}\right)_{0}$.
(intermediate) 4.18 Find a basis for the annihilator of

$$
W=\operatorname{Span}((1,2,-3,4),(0,1,4,-1)) \leq \mathbb{R}^{4} .
$$

(intermediate) 4.19 Let $V=\left(\mathbb{R}^{4},+, \mathbb{R}, \cdot\right)$, and let

$$
\begin{gathered}
\ell_{1}(\mathbf{x})=x^{1}+2 x^{2}+2 x^{3}+x^{4} \quad \ell_{2}(\mathbf{x})=2 x^{1}+x^{4} \\
\ell_{3}(\mathbf{x})=-2 x^{1}-3 x^{3}+3 x^{4} .
\end{gathered}
$$

Find a subspace $W \leq \mathbb{R}^{4}$ such that

$$
W^{0}=\operatorname{Span}\left(\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}\right) .
$$

(intermediate) 4.20 Let V be a finitely-generated vector space and let $L \leq V^{\vee}$. Show that

$$
\left(L_{0}\right)^{0}=L .
$$

Conclude that for $L, M \leq V^{\vee}$,

$$
L=M \quad \text { if and only if } \quad L_{0}=M_{0} .
$$

(harder) 4.21 Prove Proposition 4.17.

4.5.3 Linear systems and linear forms

Let $A \in M_{m \times n}(\mathbb{F})$. We consider the space of solutions

$$
S_{A}=\left\{\mathbf{v} \in \mathbb{F}_{\mathrm{col}}^{n}: A \mathbf{v}=0_{\mathbb{F}_{\mathrm{col}}^{m}}\right\}
$$

of the homogeneous linear system. Each of the m rows of A can be viewed as a linear form acting on an element of $\mathbb{F}_{\mathrm{col}}^{n}$; Thus the set of solutions S_{A} equals,

$$
S_{A}=\left\{\mathbf{v} \in \mathbb{F}_{\mathrm{col}}^{n}: \operatorname{Row}^{i}(A) \mathbf{v}=0, i=1, \ldots, m\right\}=\left\{\operatorname{Row}^{i}(A): i=1, \ldots, m\right\}_{0} .
$$

By Proposition 4.16,

$$
S_{A}=\left(\operatorname{Span}\left\{\operatorname{Row}^{i}(A): i=1, \ldots, m\right\}\right)_{0}=(\mathscr{R}(A))_{0},
$$

i.e., the set of solutions is the null space of the row space of A. Proposition 4.17 asserts that

$$
\operatorname{dim}_{\mathbb{F}} \mathscr{R}(A)+\operatorname{dim}_{\mathbb{F}} S_{A}=\operatorname{dim}_{\mathbb{F}} \mathbb{F}_{\text {col }}^{n}=n .
$$

Recall that the dimension of the row space equals the dimension of the column space, and that this dimension is called the rank of the matrix. Thus,

$$
\operatorname{dim}_{\mathbb{F}} S_{A}=n-\operatorname{rank} A .
$$

In other words, for a homogeneous linear system of m equations in n unknowns, the space of solutions is a linear subspace of $\mathbb{F}_{\text {col }}^{n}$, whose dimension is n minus the rank of A, which we recall is the number of non-zero rows in its row-reduced form (make sure that this makes sense to you).

Example: Consider once again the matrix

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 4 \\
2 & 4 & 2 & 6 \\
3 & 6 & 2 & 5
\end{array}\right],
$$

whose row-reduced form is

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In this case, $n=4$ and $\operatorname{rank} A=2$. As for the space of solutions, its dimension is 2 ,

$$
S_{A}=\left\{\left[\begin{array}{c}
-2 s+t \\
s \\
-4 t \\
t
\end{array}\right]: s, t \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-4 \\
1
\end{array}\right]\right\} .
$$

Example: Let's have a different look on the relation between equations and solutions. Let $V=\mathbb{F}_{\text {col }}^{3}$; then $V^{\vee}=\mathbb{F}_{\text {row }}^{3}$ under the action through row-column multiplication. We use the standard bases for V and V^{\vee}. Consider the linear form

$$
\ell(\mathbf{x})=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right]=x^{1}+x^{2}+x^{3}
$$

The space of solutions, which is the null space of $\{\ell\}$ is

$$
\{\ell\}_{0}=\left\{\left[\begin{array}{c}
-s-t \\
s \\
t
\end{array}\right]: s, t \in \mathbb{F}\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} \leq \mathbb{F}_{\mathrm{col}}^{3} .
$$

The equation represented by the linear form whose coordinates (relative to the standard dual basis) are $[1,1,1]$, induces a space of solutions, which is a two-dimensional subspace of $\mathbb{F}_{\text {col }}^{3}$. As we know, the space of solution does not change if we multiply ℓ by any non-zero scalar: the space of solution is in fact the null space of the one-dimensional subspace of linear forms, whose coordinate representation is

$$
\mathbb{F}[1,1,1]=\{[a, a, a]: a \in \mathbb{F}\} .
$$

Denote the space of solutions by W. We may ask the opposite question: does the space of solutions define the equation whose solution they are. This is really asking: what are all the linear forms ℓ satisfying $\ell(\mathbf{w})=0_{\mathbb{F}}$ for all $\mathbf{w} \in W$. Write such a linear form as

$$
\ell=a_{1} \mathbf{e}^{1}+a_{2} \mathbf{e}^{2}+a_{3} \mathbf{e}^{3}
$$

we require that $\ell \in W^{0}$, which is the case if and only if

$$
\ell\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right)=-a_{1}+a_{2}=0_{\mathbb{F}} \quad \text { and } \quad \ell\left(\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)=-a_{1}+a_{3}=0_{\mathbb{F}},
$$

from which we obtain that $a_{1}=a_{2}=a_{3}$, i.e., ℓ must be of the form

$$
\ell=a\left(\mathbf{e}^{1}+\mathbf{e}^{2}+\mathbf{e}^{3}\right)=a\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{e}^{1} \\
\mathbf{e}^{2} \\
\mathbf{e}^{3}
\end{array}\right],
$$

which is what we expected. This examples show once again the relations between equations and solutions as linear subspaces of vectors and linear forms.

