Chapter 4

Linear Forms

4.1 Definition and examples

Let V be a vector space over F. Often, we want to assign vectors numerical
values (think of measurements). In the context of a vector space over a field
F, the “number” we associate with each vector is a scalar; in other words, a
“measurement” of vectors is a function V' — F. However, a vector space is
not just any old set of points; this set is endowed with an algebraic structure,
and therefore, we may be interested in functions on V' that “communicate”
with this algebraic structure. This leads us to the following definition:

Definition 4.1 Let V be a vector space over F. A linear form (D71an
PRTD) or a linear functional (W15 Sm8pnn) over V is a function { :
V > F (ie., ascalar-valued function with domain V') satisfying the following
conditions: for every u,veV,

l(u+v)=L(u)+(v),
and for every veV and a €T,

lav)=al(v).

In other words, a linear form on a vector space is a scalar-valued function
over that space that “respects” linear operations. Note (once again) the
distinction between operations in V' and operations in F.
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Example: The function ¢:V — [ assigning to every vector v € V' the value
¢(v) = Op is a linear form. Why? because for every u,v eV and a € F,

l(u+v)=0p=0p+0F="L(u)+(v),

and
lav)=0p=al(v).

This linear form is called the zero form (0BX7 N12N). AAA

Example: Let V be an n-dimensional vector space and let
B =(vy,...,Vp)

be an ordered basis. For every ¢ = 1,...,n, we denote by £ : V - F the
function returning the ¢-th coordinate of a vector relative to the basis ‘B.

That is, . '
C(v) = ([v]s)"
More explicitly, if

then ¢i(v) = a’. Why is this a linear form? Because for every u,v eV,
C(u+v) = ([u+v]y) = ([u]s + [v]e)' = ([u]e)"+ ([v]s)' = '(u) + £(v),

where we used here Proposition 3.46. Note the different types of addition:
in the first two terms it is addition in V, in the third term it is addition in

7 |, and in the last two terms it is addition in F.

Likewise, using once again Proposition 3.46, for ue V and ceF,
'(cu) = ([cu]s)’ = (c[u]s)" = c([u]y)’ = cl'(u),
Note that for every i,7=1,...,n,

1 i=j

0 2+

0(v;) = ([vjls)’ 2{

ie., li(v;) = 5; This particular set of linear forms will have an important
role shortly. AAA
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Example: Let V = (F",, +,F,-) and let a € F2 . We define the function

col? row*
ly:V - T by
vl
la(v)=av= [al an] :
/UTL
The function ¢, is a linear form because matrix multiplication is distributive,
namely, for u,veV and ceF,

ly(u+v)=a(u+v)=au+av=">,(u)+l(v),

and
la(cu) =a(cu) =cau=cly(u).

Note how we view the row vector a as “constant” whereas the linear form
l, operates on all v € V. To summarize: every vector a € F2 _ defines via

row

matrix multiplication a linear form on F7 . AAA

Example: Take n =1 and F = R in the previous example; then V = R, and
for every a € R we define the function

ly(z)=auz.

Thus, linear forms coincide in this case with the good old notion of linear
functions R - R. AAA

Example: Let V = (M, (F),+,F,-) and define the function known as the
trace (772pY) of the matrix.

n
tr(A) = Z at.
i=1
It is readily verified that the trace is also a linear form. AAA

Example: Let S be a non-empty set (it doesn’t need to have any other
structure than being a set) and consider the set V = F* of all functions
f S = F. We have seen that V is a vector space over F with respect to
the natural operations of addition and scalar multiplication of field-valued
functions (make sure you remember the vectorial structure of FS). Let s € .S,
and define the function Eval, : V - T,

Eval,(f) = f(s).



154 Chapter /

(Given a function f € F¥ the function Eval, return the value of f at s.)
Then, Eval, is a linear form, because for every f,g€F® and ce T,

Eval,(f +9) = (f +9)(s) = f(s) + g(s) = Eval,(f) + Eval,(g),

and

Evals(c f) = (cf)(s) =c f(s) =c Evals(f).

4.2 Properties of linear forms

In this section we review some important properties of linear forms.

The following is readily proved inductively:

Proposition 4.2 Let { be a linear form on a vector space (V,+,F,-). Then
for every vi,...,v, €V and a',...,a" € F,

C(a'vy+-+a"v,) =a' {(vy) + +a" (V).

Proof: This is left as an exercise. |

Proposition 4.3 Let { be a linear form on a vector space (V,+,F,-). Then

(0y) = Op.

Proof: Let v € V be arbitrary. Then, using the fact that Op v = 0y, and the
properties of £,
E(Ov) = K(O]FV) = O]FE(V) = OF.
|

An important fact about linear forms (in finitely-generated vector spaces) is
that they are completely determined by their action on basis vectors. We
establish this in two separate propositions:
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Proposition 4.4 LetV be a finitely-generated vector space, and let
B = (v1 Vn)

be an ordered basis for V. Then, for every set cy,...,c, of scalars there exists
a linear form {, such that

0(v;) = ¢ for everyi=1,...,n.

Proof: There really is only one way to define such a functional. Since every
v € V has a unique representation as

v=alvy+-+a"V,,
then ¢(v) must be given by
E(V) = al E(Vl) +--+a” K(Vn) = alcl 4+ e+ ClnCn.

To complete the proof, we have to verify that ¢ is a linear form. Let v,w eV

be given by

v=alvy+-+a'V,

w=blvy + -+ D"V,
Then,
viw=(a' +b) v+ + (a"+ ") v,

By the way we defined ¢,

((v)=a'c +--+a"c,
((w)=blcy+---+b"¢cy,
and
((v+w)=(a' +b)cy+-+ (a" +b") cp,
so that indeed /(v + w) = £(v) + £(w). We proceed similarly to show that
U(kv)=kt(v) for keT. [ |

The following complementing proposition asserts that there really was no
other way to define /:
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Proposition 4.5 Let V be a finitely-generated vector space. Let
B = (v1 Vn)
be an ordered basis for V. If two linear forms (., satisfy
0(v;) =0'(vy) foralli=1,....n,

then ¢ =1'.

Proof: By the property of a basis in a finitely-generated vector space, every
v € V' can be represented uniquely as

v=alvi+---+a"v,
for some scalars a',...,a™ Then, by the linearity of ¢, ¢,

((v)=a b(vy) +-+a"(vy) =a l'(vi) +---+a™l'(v,) =0 (V).

Note how we defined the functional ¢. Given the c € [F»

([v]a)!
E(V):[cl cn] : =
([vls)"

The two last propositions have a very important implication: every linear
form can be defined using n scalars. It is difficult not to make a connection
with the notion of coordinates. However, at this stage we haven’t identified
the set of linear forms as a vector space, hence these is yet no meaning to
assign them coordinates. This will be rectified in the next section.

c[v]s.

Take the particular example where V' =" along with the standard basis,
sz(el en).

Then every vector v = (v!,...,v") € V “coincides with its coordinates”, i.e.,
vt = ([v]s)?. We have just shown that to every linear form ¢ corresponds a
unique c € F” . such that

row’

((v)=c[v]e=civ +-- +c o™
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Exercises

(easy) 4.1 Prove using induction that for a linear from ¢ on a vector space
v,
f(a'vi+-+a™vy,) =a' f(vi)+...a" f(vn)

for every a',...,a" eF and vy,...,v, € V.
(intermediate) 4.2 Let V = (R3,+,R,-) and let
vy =(1,0,1) vo=(0,1,-2) and wv3=(-1,-1,0).
(a) Find the linear form ¢ on R3 satisfying
(vy) =1 l(vy)=-2 and {(v3)=3.

That is, what is {(z,y, 2)?
(b) Characterize all linear forms satisfying ¢(vy) = ¢(v2) =0 and ¢(v3) # 0.
(¢) Show that for a linear form such as in the previous article, ¢(2,3,-1) #

0.

(intermediate) 4.3 Let (V,+,F,-) be a finitely-generated vector space and
let v € V' be a non-zero vector, v # 0y,. Prove that there exists a linear form
¢ e VYV, such that ¢(v) # Op.

(intermediate) 4.4 Let (V,+,F,-) be a finitely-generated vector space and
let u,v € V be distinct vectors, u # v. Prove that there exists a linear form

¢ e VY, such that {(u) = {(v).

(intermediate) 4.5 Let (V,+,F,-) be a vector space and let £,m € V'V be
linear forms satisfying that

(v) =0p if and only if ~ m(v) = Op.
Prove that there exists an a € IF such that m = a /.

(intermediate) 4.6 Consider the infinite-dimensional vector space R[X].
Let a,b € R such that a <b. For

P=Yp.X eR[X]

1=0
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we define

b n . . .
[ P(.Z') dl' — Z pll (bz+1 _ az+1)'
a =0

7+

Let @ € R[X]. Prove that the function ¢: R[X] - R defined by

(P) = / ' P(2)Q(x) da

is a linear form. Note: you are not expected to know anything about
integrals—just follow the definitions.

4.3 The dual space

Let V' be a vector space over F. In the previous section we defined the notion
of linear forms over (V,+,FF,-). We denote the set of all linear forms over V/
by

VV={:V T : [is alinear form}.

it is a subset of the set of Func(V,F), which comprises all (i.e., not necessarily
linear) functions f :V — F. Recall that Func(V,TF) is itself a vector space
over [F with respect to the function addition

(f+9)(v) = f(v) +g9(v)

and the scalar multiplication

(cf)(v) =cf(v).

Proposition 4.6 The set of linear forms VV is a linear subspace of the
vector space Func(V,F) (hence, VV is a vector space in its own sake).

Proof: By definition, in order to prove that a set of vectors is a linear sub-
space, we need to prove that it is non-empty, and that it is closed under
addition and scalar multiplication.

The set V'V is non-empty, because it contains at least the zero form, which
we now denote by Oyv. Let f1,05 € VV. The sum /¢, + {5 is well-defined as a
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sum in Func(V,TF); we need to show that /1 + 5 € V'V, i.e., that it is a linear
form. For all u,veV and ceF,

(U1 + L) (u+v)=Lli(u+Vv)+Lla(u+v)
= ((r(u) +£1(v)) + (L2(u) + £2(v))
= (61 (u) + La(u)) + (Li(v) + L2(v))
= (b1 + L) () + (41 + Lo)(V),

and
(él + 62)(611) = El(cu) +€2(cu)
=cli(u) + cly(u)
=c(l1(u) +l3(u))
=C(€1 +€2)(U),

proving that ¢; + ¢ € VV. Likewise, let £ € VV and a € [F; we need to show
that af € V'V, i.e., that it is a linear form. For all u,veV and ce[F,

(al)(u+v)=al(u+v)

=a(l(u)+£4(v))
=al(u)+al(v)

= (af)(u) + (al)(v),

and
(al)(cu)=al(cu)
=a(ct(u))
= c(al(u))
= c(al)(u),
proving that af € VV. This completes the proof. |

Thus, every vector space (V,+,F,-) induces another vector space (VV,+,F,-)
over the same field. The vector space V'V is called the space dual (*5X811) to
V. You should internalize the fact that elements of V'V are also vectors, but
they are at the same time functions over a vector space, V. Elements of V'
and elements of V'V are both vectors, albeit belonging to different spaces. In
particular, there is no meaning to adding an element of V' and an element of
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VV. On the other hand, the elements of Vv “act” on element of V' to yield
scalars.

The action ¢(v) of a linear form ¢ or a vector v can be viewed as a function
taking an element of V'V and an element of V' and returning is a scalar. We
often denote this pairing by

() VVxV > F,

where

Example: For V' = F we have seen that V'V can be identified with F7. -
every a € F?  defined a unique ¢, € V'V defined by

Trow
la(v)=a-v.
It is customary to write

(F’n )\/ ~ ]F‘TL

col Tow’

where the ~ sign mean that the two spaces can be identified (more on that
later). AAA

4.4 Dual bases

Let V be a finitely-generated vector space. What can be said about its dual
space? Is it also finitely-generated? If it is, is there a relation between dimg V'
and dimgp V'V? The theorem below answers this question affirmatively.

Theorem 4.7 LetV be a finitely-generated vector space. Let
B = (v1 Vn)

be an ordered basis for V. Then,

/N

BY = :

En
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is an ordered basis for V¥, called the dual basis (*SX11 0%02) of B, where
0 is the unique linear form satisfying

Ei(vj)=6§- foralli,j=1,...,n,
or equivalently . '
C(v) = ([vls)".

As a result,

Proof: We need to show that 8" is spanning and independent. Suppose that
ai,...,a, are scalars satisfying

alfl +oee +6Ln€n = Ovv

(this is an equality between elements in V). In particular, applying both

sides on v;,
alfl(vj) + -+ anén(vj) = Ovv(Vj) = O]F,

ie.,
aj; = OF

Since this holds for every j =1,...,n, it follows that the linear combination
of the ¢¥’s is trivial, namely, the linear forms ¢ are linearly-independent.

It remains to show that ‘BY is spanning. We will show that any ¢ € IV can
be represented as

C=0(v) 0t + -+ (V) 07,

i.e., it is a linear combination of the linear forms ¢ (note that ¢(v;) are
scalars). By Proposition 4.5 it suffices to verify that both sides yield the
same scalar when acting on basis vectors v;. Indeed,

(C(vi) O+ U(vi) ) (v5) = L(vi) EH (V) + o+ L(va) (V) = U(v;),
which completes the proof. |
Example: Let V = (F?,+,F,-) and let

¢ = (el . en)
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be the standard basis. We denote the basis dual to € by

el
e -
eTL

As we have seen, for v = (z!,...,2") we have

e'(v) = [V]e =1,

that is the ¢-th linear form in the dual standard basis extracts the i-th coor-
dinate of a vector. AAA

Since V'V is a vector space and since 8" is a basis for V'V, every linear form
in VV can be represented using coordinates. Every ¢ € VV has a unique
representation
/N
{= [Cl e Cn] s
———— gn

[E]%V ——
BV

where [(]gv € F7  is the coordinate matrix. We have just proved that
[g]ggv = [€(V1) ce f(Vn):I .

Consider now the following question: given a basis 28 on a finitely-generated
vector space V', and its dual basis, every vector v and every linear form ¢ can
be written using coordinates,

v=23[v]s and 0=[l]pB".

Can we express the scalar ¢(v) obtained by the action of the linear form on
the vector using their respective coordinates?

Let denote the coordinates of v and ¢ as

v=avi+-+a"v,

0=b 0"+ + b7,

namely,
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Then,

() = ibe (Jil ajvj)

a0 (v;)

~
—_

™M=
M=

~
Il
—_

j=1

™M=
M=

~
1l

—_
<
Il

b,'CL‘7 (5;
j=1

i
A

.[tjz

~
Il
—_

Consider the right-hand side; it is the product of the row vector [(]gv and
the column vector [v]g.

We have just proved the following:

We have seen that given an ordered basis B = (vi,...,v,) and its dual
BV = (¢1,...,0") in a finitely-generated vector space, every linear form £ € V'V
can be represented as

(=3 0vi) L
i=1
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This representation has an analog for vectors: every vector v € V' is given by

v = Zn:ﬁi(v) Vi,
i=1

because by definition, ¢1(v) = ([v]s)’.

We end this section with addressing the transition between dual bases:

Proof: By definition of the dual basis,
mj(w,-):éf foralli,j=1,...,n.
It is given that
Wi = ipf Vi,
k=1

and we need to show that

mi =3 e,

s=1
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This is an identity between linear forms; both sides are equal if they yield
the same set of scalars when acting on the basis vectors w;. Indeed, for every
1,7=1,...,n,

This completes the proof. |

Example: Consider once again the vector space (R? +,R,-) endowed with
the two bases

B=((1,2) (2,1)) and ¢=((1,1) (1,-1)).

We have seen that

((1,1) (1,-1))=((1,2) (2@)[%2 —11]7

P
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and
((1,2) (2,1))=((1,1) (1,—1))[_31//22 i’g]

We now calculate the dual bases
1 1
SBY = (2) and ¢y = (22) )

C(v)=([vls)",
we have to find the coordinates of every vector v € R? relative to the basis
B. Write v = (z,y), then

(z,y) = (v)(1,2) + (v)(2,1),

from which we obtain that

Ma,y)=3Qy-2) and  E(z,y) = 5(20-y).

Since

Similarly,
('T7y) = ml(v)(l, 1) + mg(v)(L _1)7
from which we obtain that
m'(z,y)=3(x+y)  and  m*(z,y) = 5(z-y).

Since € = B P we expect that €& =Q BV, i.e.,
)% 2] )
m2] = -1/2 1/2[\e2
Indeed, for every v = (z,vy),
GC+30)(v) =552y -2)+ 3520 -y) = 5(z +y) =m'(v),
and

(04 12)(v) = -5 22y -2) + 4 52r - y) = S - p) = mE(¥).

AAA
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Exercises

(easy) 4.7 Consider the vector space (R?,+,R,-). Find the ordered basis
dual to the ordered basis

B=((34) (57)).

intermediate) 4.8 Let (V, +,IF, ) be a finitely-generated vector space. Prove
i di Let (V, +,F,-) be a finitel d P
that

(a) v =0y if and only if /(v) =0 for all £e V.

(b) ¢=0yv if and only if ¢(v) =0 for all veV.

(intermediate) 4.9 Consider the vector space (C3,+,C,-). Find the basis
dual to the ordered basis

B=((1,0,-1) (1,1,1) (2,2,0)).
(intermediate) 4.10 Let V = (Q?3,+,Q,) and consider the ordered basis
B =((1,0,-1),(1,1,1),(2,2,0)).

(a) Find the basis B dual to 8.

(b) Let £ = (e1, eq,e3) be the standard basis for V. Find the basis £V dual
to &€

(c¢) Find the transition matrix P satisfying 8 = EP.

(d) Find the transition matrix @ satisfying £ = Q8" (write the bases £V
and BV as columns of linear forms).

(e) Find the transition matrix P satisfying & = BP.
(f) Find the transition matrix @ satisfying BY = QEV.

(intermediate) 4.11 Repeat the previous question with £ replaced by
€=((1,1,0),(1,0,1),(0,1,1)).

(intermediate) 4.12 Based on the last two questions, formulate a general
statement and prove it.
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(intermediate) 4.13 Let (V,+,F,-) be a vector space of dimension at least
n. Let A e GL,(F) (an invertible square matrix) and let
(Vl e Vn)
be an independent sequence of vectors. Define the linear forms
!
(pTL

via

©'(v;) = aj foralli,j=1,...,n.

(Recall that this defines the linear forms uniquely.) Show that the linear
forms !, ..., " are linearly-independent. Try to relate this question to the
last three.

(harder) 4.14 Let B = (vy,Va,...) be an infinite (but countable) basis for
a vector space V over a field F. Define a sequence of linear forms BV =
(0L, 0%2,...) by

0'(vj) =95

(a) Show that the functions ¢ are indeed well-defined for all v € V| and
are linear forms.

(b) Show that the sequence BV is linearly-independent.

(¢) Show that BV is not a basis for VV. Le., there exists an ¢ € VV which
is not in the span of BV. Hint: set ¢(v;) =1 for all i ¢ N.

4.5 Null space and annihilator

4.5.1 The annihilator of a set of vectors

Definition 4.10 Let V be a vector space over F and let S €V be a subset
(not necessarily a subspace). The annihilator (002X D¥12P) of S is the
set SO c V'V of linear forms that vanish on all elements in S,

SV={leVY : U(v)=0p forallveS}cV".

(In some places the notation is Ann(S).)
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Example: Let S = {0y}, then the set of linear forms ¢ € V'V satisfying that
((v) =0p for all veS, ie., ¢(0y) =0p is the entirety of V'V, i.e.,

{Ov}°=V".
AAA
Example: Let V = (R%,+,R,-) and let S ={(1,0)}. Then,
SO={leVY : £(1,0)=0p}.
Take the standard basis for V'V,
el(z,y)=x and e*(z,y) =y.
Writing ¢ = ae! + be?, we have that
0(1,0) = Op if and only if @ =0p,
so that
SY={be* : beF} =Fe’
AAA

Example: Let V = (R? +,R,-) and let S = {(1,0),(0,1)}. Then,
SO={leVY : £(1,0)=0r and £(0,1)=0g}.
Using the same basis for V'V, we obtain that both a and b vanish, i.e.,
SO = {0yv}.

AAA

Look at the above three example: first notice that the larger S is, the smaller
S0 is. Second, in all instances SO turned out to be a linear subspace of V'V.
The next two propositions show that this is always the case:

Proposition 4.11 LetV be a vector space over F and let S €V be a subset.
Then,
SO<vY.
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Proof: We need to show that S is non-empty and that it is closed under
addition and scalar multiplication. The set S° is non-empty because Oy € S°.
Let ¢,0"€ S, i.e.,

U(v)=0'(v)=0p for all veS.

Then,
(l+0)(v)=L(v)+l'(v)=0F for all veS,

proving that £+ ¢’ € SV. Likewise, let £ € SY and a € F, then
(al)(v)=al(v)=0p for all veS,

proving that af € S°. By definition, S° < V'V, [ |

Proposition 4.12 Let (V,+,F,-) be a vector space and let S, T V. Then,

(a) If ST then TO < SY.
(b) S°=(SpanS)°

Proof: For the first item, let £ € T9, i.e.,

0(v) =0p for all veT.
Since S ¢ T, it follows that

(v) =0p for all veSs,

i.e., £ € SO proving that 70 c 59,

For the second item, let £ € S°, i.e.,
0(v) =0p for all veS.
Every v € Span S is of the form

v=a'vi+--+a"v,
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for some vq,...,v, €.5, hence
((v)=a' t(vy)+--+a"l(v,) = Op,
proving that ¢ € (SpanS)?, i.e.,
S% c (Span S)°.

Conversely, since S ¢ Span S, it follows from the first item that (SpanS)? ¢
SO proving that (Span.S)? = S°. [ |

Thus far, S was just any old set; consider now the case there S = W is a
subspace of V', in which case we have two subspaces, W and W9, of spaces,
V and V'V, having the same dimension. As we show the dimensions of W
and WO are inter-related:

Proposition 4.13 Let (V,+,F,-) be a finitely-generated vector space and let
W <V. Then,

Proof: Suppose that
dimpgW =n and dimpV =n+k.

Let (W1 Wn) be an ordered basis for W, which we complete (using
Proposition 3.36) into an ordered basis

B =(Wi,...,Wp,Vi,...,Vg)
for V. We partition its dual basis accordingly
BY = (4., 00 mh, ... m"),
such that
O'(wj) =6 0'(vj)=0 m'(w;) =0 and m'(v;) =0}

We will be done if we prove that (mq,...,my) is an ordered basis for W9,
for then dimp W0 = k.
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By the definition of a basis, every £ € W0 < VV can be written as
(= (a0t + -+ a ™) + (bym! +--- + bym").
For every 7=1,...,n,
Op = £(w;) = (a1l + - + a ) (w;) + (bym!' + -+ + bym*) (w;) = a;,

proving that
0=bm!+--+bym”,

ie., (m!',...,mF) is a generating set for W9; since it is also independent, it
is a basis for W9, [ |

4.5.2 The null space of a set of linear forms

The notion of an annihilating set has a dual version:

Definition 4.14 Let V' be vector space and let L € VV. The null space
(00BRT NR2P) of L is the set of vectors

Lo={veV : {(v)=0p forallle L} V.

Example: Let V' be any vector space and L = {Oyv}. Then,
LOZ{VEV : OVV(V):OF}:V

Example: Let V =F3  and let L = {¢} for
(([z,y,2] ) =0 +y+2.

Then,
LO = {([x7yaz]T) € Fz)ol P rty+z= O},

which we know how to express explicitly. In fact, we know that

-s—1 -1] -1
Ly = S : s,telF|=Span<| 11],] 0
t 0 1

This example shows that the left-hand side of a linear equation of the type
we started this course with is really a linear form, and the solution of a
homogeneous equation is nothing but its null space. AAA
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Example: Let V = My(F) and let £ = tr, i.e.,

(-

{z}oz{l‘z _ba] :a,b,ce]F},
sl 21 )

The following three propositions are the analogs of Propositions 4.11-4.13:

It is easy to see that

or

AAA

Proposition 4.15 The null space of a set of linear forms is a vector sub-
space: let V' be a vector space and let L € V'V, then

Lo<V.

Proof: The set Ly is non-empty because it contains Oy . Let u,v € Ly, i.e.,
(u) =4(v) =0p for all £ € L.

Then,
l(u+v)=L(u)+L(v)=0F for all L€ L,

which implies that u+v e Ly. For ue Ly and a € F,
l(au) =al(u) =0p for all £ € L,
which implies that au € Ly. By definition, Lg is a linear subspace of V. W

Proposition 4.16 Let (V,+,F,-) be a vector space and let L,M < VV.
Then,

(a) If L< M then My < Ly.
(b) Lo = (Span L)
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Proof: Before we prove it formally, two observations: (i) the larger a set
of linear forms is, the more constraints are imposed on its null space, hence
its null space should be smaller. (ii) Think of Ly as a set of homogeneous
linear equations on F” | (just as an example—we haven’t even required V' to
be finitely-generated). The span of L is the set of all linear equations that
are linear combinations of the equations in L; we know that the space of
solutions doesn’t change, which explains the second item.

And now to the formal proof. For the first item, let v € M,, i.e.,
0(v) =0p for all £ € M.

Since L ¢ M, it follows that
((v) =0p for all £ € L,

i.e., v e Ly, proving that My c L.

For the second item, let v € Ly, i.e.,
(v) =0p for all /€ L.
Every ¢ € Span L is of the form
C=alt +- +a, "
for some ¢1,... /" € L, hence
((v) = (arl + -+ anl™) (v) = a0 (v) + -+ + a, 0" (v) = O,
proving that v € (Span L), i.e.,
Lo € (Span L)j.

Conversely, since L € Span L, it follows from the first item that (Span L), €
Ly, proving that (SpanL)g = Ly. |

Proposition 4.17 Let (V,+,F,-) be a finitely-generated vector space and let
L<VV. Then,
dim]p L+ dlmF LO = dlIIl]F V.
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Proof: This is left as an exercise; start with a basis for Lj. |

We now combine the notions of null sets and annihilators to prove the fol-
lowing;:

Proposition 4.18 Let V be a finitely-generated vector space. Let W <V
and let L <VV. Then,

(W% =W and (Lo)° = L. (4.1)

Proof: By Proposition 4.17 and Proposition 4.13,
dimp WO + dim(W?)g = dimp V
and

from which we conclude that W and dim(W?), have the same dimension.
It suffices then to show every vector in W is also in (W?°), (actually, justify
this assertion formally).

By definition,

(Wo={veV : £(v)=0p for all £ W°},
whereas

WO={leVY : {(w) =0 for all we W},
So let w € W. For every £ € W0

14 (W) = O]F,
from which follows that w e (W?),, proving that W c (W?),, which com-
pletes the proof. The second part is left as an exercise. |

Corollary 4.19 LetV be a finitely-generated vector space and let U, W <V,
Then,
U=W if and only if U°=wo,

Likewise, let L, M <VV. Then,

L=M if and only if Lo = M,.
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Proof: We prove the first item. One direction is obvious, U = W implies that
U° = WO The other direction follows from the fact that U° = W° implies
that (U%)g = (W?)g, along with (4.1). The second item is left as an exercise.
|

Exercises

(intermediate) 4.15 Let (V,+,F,-) be a vector space and let W < V. De-
fine

U={leVY : W< {l}o}.
Show that U < V'V.

(easy) 4.16 Let
w=(1,1) e R%

Calculate {w}°.

(intermediate) 4.17 Let (V,+,F,-) be a finitely-generated vector space, let
Wi, Wy <V and let Ly, Ly, < VV. Show that

(a) (W nWy)0 = (T7)0 + (W3)O.
(b) (Wy +W5)0 = (W1)0n (Ws)°.
(¢) (LinLy)o=(L1)o+ (L2)o-
(d) (Lyi+ L2)o=(L1)on (L2)o.

(intermediate) 4.18 Find a basis for the annihilator of
W =Span ((1,2,-3,4),(0,1,4,-1)) <R%.
(intermediate) 4.19 Let V = (R*, +R,-), and let
01(x) = 2" + 222 + 223 + 2 lo(x) = 22" + 2*

l3(x) = -22" - 32° + 3z,

Find a subspace W < R* such that

Wo = Span({fl,fg,fg}).
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(intermediate) 4.20 Let V be a finitely-generated vector space and let
L <VV. Show that
(LO)O = L

Conclude that for L,M <VV,
L=M if and only if Lo = M,.

(harder) 4.21 Prove Proposition 4.17.

4.5.3 Linear systems and linear forms
Let A € My (F). We consider the space of solutions
SA = {V € IFZOI : Av = Oﬂrgl}

of the homogeneous linear system. Each of the m rows of A can be viewed
as a linear form acting on an element of F” ; Thus the set of solutions Sy
equals,

Sy={veF, : Row'(A)v=0, i=1,...,m}={Row'(4) : i=1,...,m},.
By Proposition 4.16,
Sa = (Span{Row'(A) : i=1,... ,m})o =(%#(A))o,

i.e., the set of solutions is the null space of the row space of A. Proposi-
tion 4.17 asserts that
dimp Z(A) + dimp S = dimpF7 | = n.

Recall that the dimension of the row space equals the dimension of the column
space, and that this dimension is called the rank of the matrix. Thus,

dimp S4 =n —rankA.

In other words, for a homogeneous linear system of m equations in n un-
knowns, the space of solutions is a linear subspace of F7 |, whose dimension
is n minus the rank of A, which we recall is the number of non-zero rows in
its row-reduced form (make sure that this makes sense to you).
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Example: Consider once again the matrix

001 4

2 4 2 6f,

36 25
whose row-reduced form is

1 2 0 -1

001 4

000 O

In this case, n = 4 and rankA = 2. As for the space of solutions, its dimension
is 2,

-2s5+1 -2 1

5 1 0

Sy = iy : s,te R} =Span o l°1-4
t 0 1

Example: Let’s have a different look on the relation between equations and
solutions. Let V' =F3 ; then Vv =F3_ under the action through row-column
multiplication. We use the standard bases for V' and VV. Consider the linear

form

7l

K(x)=[1 1 1] 22| =zt + 2% + 23
3

The space of solutions, which is the null space of {¢} is

-s—1 -1 -1
{l}o = s : s, telFp=Spani| 1 |,[ O | <F2,.
t 0 1

The equation represented by the linear form whose coordinates (relative to
the standard dual basis) are [1,1,1], induces a space of solutions, which is
a two-dimensional subspace of F? . As we know, the space of solution does
not change if we multiply ¢ by any non-zero scalar: the space of solution is
in fact the null space of the one-dimensional subspace of linear forms, whose
coordinate representation is

F[1,1,1] ={[a,a,a] : aeF}.
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Denote the space of solutions by W. We may ask the opposite question:
does the space of solutions define the equation whose solution they are. This
is really asking: what are all the linear forms ¢ satisfying ¢(w) = Op for all
w e W. Write such a linear form as

_ 1 2 3
{=a,e +are’ +ase’,

we require that ¢ € W0, which is the case if and only if

-1 -1
14 1 =—6L1+6L2=0]F and 14 0 =—CL1+6L3=O]F,
0 1

from which we obtain that a; = as = as, i.e., £ must be of the form

el
(=a(e'+e*+e)=all 1 1]|e?],
&3

which is what we expected. This examples show once again the relations
between equations and solutions as linear subspaces of vectors and linear
forms. AAA
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