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Abstract Non-Euclidean, or incompatible elasticity is an elastic theory for pre-stressed
materials, which is based on a modeling of the elastic body as a Riemannian manifold.
In this paper we derive a dimensionally-reduced model of the so-called membrane
limit of a thin incompatible body. By generalizing classical dimension reduction tech-
niques to the Riemannian setting, we are able to prove a general theorem that applies
to an elastic body of arbitrary dimension, arbitrary slender dimension, and arbitrary
metric. The limiting model implies the minimization of an integral functional defined
over immersions of a limiting submanifold in Euclidean space. The limiting energy
only depends on the first derivative of the immersion, and for frame-indifferent mod-
els, only on the resulting pullback metric induced on the submanifold, i.e., there are
no bending contributions.

Keywords Riemannian manifolds · Nonlinear elasticity · Incompatible elasticity ·
Membranes · Gamma-convergence

1 Introduction

In recent years there has been a renewed interest in the elastic properties of bodies that
have an intrinsically non-Euclidean geometry. The original interest in such systems
stemmed from the study of crystalline defects, in which case the intrinsic geometry
exhibits singularities; see Bilby and co-workers [5,6], Kondo [18], Wang [30], and
Kröner [19]. The motivation for the recent interest in non-Euclidean bodies arises
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from the study of growing tissues [11,3,2], thermal expansion [27], and other mech-
anisms of differential expansion of shrinkage [16]; in all these examples the intrinsic
geometry can be assumed to be smooth.

Mathematically, we model an elastic body as a three-dimensional Riemannian
manifold, (M,g), equipped with an energy function that assigns an energy to every
configuration f : M→ R3 of the manifold into the ambient Euclidean space, (R3,e).
This energy is a measure of the strain, i.e., of the deviation of the pullback metric
f ?e from the intrinsic metric g. The body is said to be non-Euclidean if the intrinsic
metric has non-zero Riemannian curvature, in which case it cannot be immersed iso-
metrically in three-dimensional Euclidean space. The elastostatic problem consists of
finding the configuration f that minimizes the elastic energy given possibly boundary
conditions and external forces.

A central theme in material sciences is the derivation of dimensionally-reduced
models, which are applicable to elastic bodies that display one or more slender axes.
In such models the elastic body is viewed as a lower-dimensional limit of thin bodies
(which can be viewed as the mid-surface). The derivation of dimensionally reduced
models goes back to Euler, D. Bernoulli, Cauchy, and Kirchhoff [15], and in the last
century, to name just a few, to von Karman [29], E. and F. Cosserat, Love [24], and
Koiter [17].

Dimensionally-reduced models are commonly classified according to two main
criteria: the dimension of the limiting manifold (which may be either 1 or 2) and the
energy scaling of the reduced energy functional. Plates and shells are examples of
two-dimensional reduced models in which the limiting manifold can be embedded
in R3 smoothly enough so that the main energy contribution comes from the second
fundamental form (bending effects). Membranes are examples of two-dimensional re-
duced models in which the main energy contribution is from metric deviations of the
two-dimensional pullback metric from the metric of the limiting manifold (stretching
effects). Rods are examples of one-dimensional reduced models.

Until about 20 years ago, dimension reduction analyses were based essentially
on formal asymptotic methods and uncontrolled ansatzes. The rigorous derivation
of dimensionally-reduced models was first achieved in the Euclidean case, where
the bodies have a natural rest configuration with respect to which deviations can be
measured. The membrane limit was derived by Le Dret and Raoult [21,22], and gen-
eralized by Braides et al. [7] and Babadjian and Francfort [4], whereas the plate and
shells limits were derived by James et al. [13] and [14]. The rod limit was derived
by Mora and Müller [26]. For non-Euclidean bodies the limiting plate theory was
derived by Lewicka and Pakzad [23], whereas Kupferman and Solomon [20] proved
a general theorem that yields plate, shell and rod limits in non-Euclidean cases. All
the above mentioned work relies on Γ -convergence techniques [10].

In this work we derive the membrane limit of non-Euclidean elasticity. A typical
application of such limit would be the study of a thin plant tissue under stretching
conditions. We consider here pure displacement problems without body forces; the
inclusion of external forces and/or surface traction is not expected to involve any
complications [21].

We now describe our main results; precise definitions and formulations are given
in the next section. We denote by Ωh a family of n-dimensional submanifolds of an
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n-dimensional manifold (M,g) that converge to an (n− k)-dimensional manifold S;
here h is the thickness of the domains. With every configuration fh : Ωh→Rn (which
is regular enough and satisfies the boundary conditions) we associate an energy

Ih( fh) =−
∫

Ωh

W (d fh)dvolg,

where −
∫

denotes volume average, and W is an h-independent energy density satis-
fying some regularity, growth and coercivity conditions, as well as a homogeneity
condition. Considering pure displacement problems, we prove that Ih Γ -converges as
h→ 0 to a functional that assigns, to regular enough configurations F : S→ Rn that
satisfy the boundary conditions, an energy

I(F) =−
∫
S

QW0(dF)dvolg|S ,

where QW0 is the quasiconvex envelope of a projection of the restriction of W to
S. Moreover, every sequence fh of (possibly approximate) minimizers of Ih has a
subsequence that converges to a minimizer of I.

The basic tools are the analytic techniques developed in [21] along with the geo-
metric framework developed in [20]. The main difference between our analysis and
that in [21] is that the current analysis applies to an arbitrary Riemannian setting and
to arbitrary dimensions. As such, it does not distinguish a priori between “plate-like”,
“shell-like” or “rod-like” bodies, and neither between Euclidean and non-Euclidean
geometries.

Moreover, the Riemannian setting reveals the geometric content of classical no-
tions in elasticity and analysis. It requires the revision and the generalization of the
notions of quasiconvexity, measurable selection theorems, and Carathéodory func-
tions. In additon, the material science notion of homogeneity needs to be reinter-
preted, which leads to new insights into its geometric meaning. Finally, the geometric
analysis “toolbox” constructed in [20] is expanded to treat different function spaces
and more general energy densities.

2 Problem statement and main results

2.1 Modeling of slender bodies

We start by presenting the general geometric framework. Let M be a smooth n-
dimensional oriented manifold; let S ⊂M be a smooth m-dimensional compact ori-
ented submanifold with Lipschitz-continuous boundary; let k denote the codimension
of S in M. We endow M with a metric g, and denote the induced metric on S by g|S.

We view TS as a sub-bundle of TM|S, and denote its orthogonal complement,
the normal bundle of S in M, by NS, so that

TM|S ∼= TS⊕NS.

Let h be a continuous positive parameter, and define a family of tubular neighbor-
hoods of S by

Ωh = {p ∈M : dist(p,S)< h} ⊂M.
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Fig. 1 Schematic illustration of the manifolds M, Ωh, S, Γh and ∂S.

These tubular neighborhoods inherit the metric g. Our smoothness and compactness
assumptions on S imply that for small enough h (say h ∈ (0,h0] for some h0 > 0) the
exponential map,

exp : {(p,ξ ) ∈NS : |ξ |< h}→Ωh

is a diffeomorphism between an open subset of NS and Ωh. Therefore, we have a
structure of fiber bundle π : Ωh → S, with the fiber being a k-dimensional ball, and
the projection π is obtained by moving along the geodesic from a point p ∈Ωh to its
nearest neighbor in S.

2.2 Configurations and boundary conditions

We view Ωh as a family of (shrinking) bodies. A configuration of Ωh is a map fh :
Ωh→ Rn from the so-called material manifold (Ωh,g) to the physical space (Rn,e),
where e is the Euclidean metric.

In the elastic context, we consider a pure displacement problem, where the bound-
ary conditions are imposed on the “outer ring” of Ωh,

Γh = {ξ ∈Ωh : π(ξ ) ∈ ∂S}.

A sketch of the manifolds M, Ωh, S and the boundary manifolds Γh and ∂S are shown
in Figure 1.

We impose the boundary conditions by specifying a mapping of ∂S into Rn, and
extending it linearly to Γh via a mapping of normal vectors. Specifically, let Fbc be
a mapping ∂S→ Rn and q⊥bc be a section of (NS∗⊗Rn)|∂S (an assumption on the
regularity of these mappings will be imposed later). A mapping fh : Ωh→Rn satisfies
the boundary conditions if

fh(ξ ) = Fbc(π(ξ ))+(q⊥bc)π(ξ )(ξ ) ξ ∈ Γh, (2.1)
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where we identify ξ ∈ Γh with its image under the diffeomorphism of Ωh to an open
set in NS.

The condition (2.1) can be written in a more compact form. For a section q⊥ ∈
Γ (S;NS∗⊗Rn), the pullback π∗q⊥ is a section in Γ (Ωh;π∗NS∗⊗Rn), and

(π∗q⊥)ξ (η) = q⊥
π(ξ )(η),

where ξ ∈ Ωh and η ∈ (π∗NS)ξ
∼= NSπ(ξ ). With these identifications we can write

(q⊥bc)π(ξ )(ξ ) = (π∗q⊥bc)ξ (ξ ). Introducing the tautological section λ ∈ Γ (Ωh;π∗NS)
defined by

λξ = ξ ∈ (π∗NS)ξ ,

we can write (2.1) as follows:

f |Γh = Fbc ◦π +π
∗q⊥bc ◦λ . (2.2)

2.3 The energy functional

The assumption whereby the bodies Ωh are hyper-elasticity means that to each ad-
missible (in a sense to be made precise below) configuration fh corresponds an elastic
energy of the form

−
∫

Ωh

W (d fh)dvolg, (2.3)

where
W : T ∗Ωh0 ⊗Rn→ R.

is an elastic energy density; note that W is independent of h.
For q ∈ T ∗Ωh0 ⊗Rn, we denote by |q| the norm that is inherited from both g and

e. We assume W to be continuous, and that there exists a p ∈ (1,∞) such that:

1. Growth condition: |W (q)| ≤C(1+ |q|p),
2. Coercivity: W (q)≥ α|q|p−β ,
3. Lipschitz property: for q,q′ ∈ T ∗x Ωh0 ⊗Rn,

|W (q)−W (q′)| ≤C(1+ |q|p−1 + |q′|p−1)|q−q′|,

4. Homogeneity over fibers, which will be defined in the next section. When (Ωh,g)
is Euclidean, this condition amounts to W : Ωh×Rn×n→ R being in fact a map-
ping S×Rn×n → R, i.e., the spatial dependence of the energy density only de-
pends on the projection on the mid-surface.

Under these conditions, the total elastic energy (2.3) is defined for all fh ∈W 1,p(Ωh;Rn).
A prototypical energy density that satisfies these conditions for p = 2 is

W (·) = dist2(·,SO(Ωh0 ;Rn)), (2.4)

where SO(Ωh0 ;Rn) denotes the metric and orientation preserving transformations
T Ωh0 → Rn. This energy density measures how far a configuration is from being a
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local isometry. Note however that we do not assume W to satisfy frame-indifference
or isotropy.

The space of admissible configurations is defined by requiring that (2.3) be well-
defined, as well as the satisfaction of the boundary conditions (2.2). We denote:

W 1,p
bc (Ωh;Rn) = { f ∈W 1,p(Ωh;Rn) : f |Γh = Fbc ◦π +π

∗q⊥bc ◦λ}.

We assume that Fbc and q⊥bc are regular enough such that the spaces W 1,p
bc (Ωh;Rn) are

not empty for small enough h. Note that each W 1,p
bc (Ωh;Rn) is an affine space with

respect to the vector space W 1,p
0 (Ωh;Rn).

For technical reasons it is convenient to extend the domain of the energy func-
tional to configurations Lp(Ωh;Rn) that may not satisfy either regularity or boundary
conditions as follows:

Ih( f ) =

{
−
∫

Ωh
W (d f )dvolg f ∈W 1,p

bc (Ωh;Rn)

∞ otherwise,
(2.5)

where −
∫

denotes a volume average, namely

−
∫

Ωh

α dvolg =

∫
Ωh

α dvolg∫
Ωh

dvolg
.

2.4 Main result

We now define an energy density for configurations of the mid-surface F : S→ Rn.
The restriction W |S is a map T ∗Ωh|S⊗Rn→ R, which we may identify with a map
(T ∗S⊕NS∗)⊗Rn→ R. We then define

W0 : T ∗S⊗Rn→ R

as follows:
W0(q) = min

r∈(NS∗⊗Rn)π(q)

W |S(q⊕ r).

Note that the coercivity condition on W implies that the minimum is indeed attained.
Let QW0 : T ∗S⊗Rn → R be the quasiconvex envelope of W0 (for more details on
quasiconvex functions in a Riemannian setting see next section). The growth condi-
tion imposed on W implies that W0 and QW0 satisfy similar conditions (see Lemma
3.10 and Corollary 3.4 below).

We are now ready to state our main result:

Theorem 2.1 The sequence of functionals (Ih)h≤h0 Γ -converges in the strong Lp

topology, as h→ 0, to a limit I : Lp(S;Rn)→ R defined by:

I(F) =

{
−
∫
S QW0(dF)dvolg|S F ∈W 1,p

bc (S;Rn),

∞ otherwise,

where W 1,p
bc (S;Rn) = {F ∈W 1,p(S;Rn) : F |∂S = Fbc}.
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Note that each Ih is defined over a different functional space, which requires a
slight modification in the definition of Γ -convergence; see next section.

A classical corollary of Γ -convergence implies that I can be viewed an (n− k)-
dimensional approximation to the n-dimensional elastic functional Ih for small h, in
the following sense:

Corollary 2.1 Let fh ∈W 1,p
bc (Ωh;Rn) be a sequence of (approximate) minimizers of

Ih, that is,

Ih( fh) = inf
Lp(Ωh;Rn)

Ih(·)+ r(h),

where limh→0 r(h) = 0. Then ( fh) is a relatively compact sequence (with respect to
the strong Lp topology), and all its limits points are minimizers of I. Moreover,

lim
h→0

inf
Lp(Ωh;Rn)

Ih(·) = min
Lp(S;Rn)

I(·).

3 Preliminaries

3.1 Geometric setting

3.1.1 Decomposition of TM|S

As stated in the previous section, we view Ωh as a restriction of NS via the exponen-
tial map, where NS is the normal bundle of S in M; we denote by π the projection
from NS or Ωh into S.

We define the projection operators

P‖ : TM|S→ TS and P⊥ : TM|S→NS,

and the corresponding inclusions

ι
‖ : TS ↪→ TM|S and ι

⊥ : NS ↪→ TM|S.

3.1.2 Pullback bundles

Let E → S and F → NS (or Ωh) be vector bundles. The pullback π∗E is a vector
bundle over NS, such that for ξ ∈ NS, the fiber (π∗E)ξ is identified with the fiber
Eπ(ξ ). Let Φ : π∗E→ F , i.e.,

Φξ : (π∗E)ξ → Fξ .

Since (π∗E)ξ is canonically identified with Eπ(ξ ), we can unambiguously apply Φξ

to elements of Eπ(ξ ).
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3.1.3 Connections and parallel transport

Let ∇ denote the Levi-Civita connection on TM, and by abuse of notation, also on
its restriction to TM|S. The induced connection on NS is defined by

∇
⊥ = P⊥ ◦∇◦ ι

⊥.

Let ξ ∈Ωh, and denote by Πξ the parallel transport with respect to ∇ from Tπ(ξ )M

to TξM along the geodesic from π(ξ ) to ξ . That is, Π is a bundle map

Π : π
∗TM|S→ T Ωh,

that satisfies
gξ (Πξ u,Πξ v) = gπ(ξ )(u,v),

for every ξ ∈Ωh and u,v ∈ Tπ(ξ )M.

3.1.4 Homogeneity

With parallel transport defined, we can now define “homogeneity over fibers” of the
energy density W ,

Definition 3.1 W is homogenous over fibers if for every q ∈ T ∗
ξ

Ωh⊗Rn,

Wξ (q) =Wπ(ξ )(q◦Πξ ◦Π
−1
π(ξ )

),

(Πξ ◦Π
−1
π(ξ )

is the parallel transport Tπ(ξ )Ωh→ Tξ Ωh along the geodesic connecting
π(ξ ) to ξ ). Equivalently,

W = π
∗W |S ◦Π

∗.

In the classical (Euclidean) context, homogeneity of the energy density means
that its dependence on the infinitesimal deformation does not depend on position.
In a Riemannian setting, such a statement is problematic since there is no canonical
identification of the tangent spaces at different points. A natural generalization of ho-
mogeneity is invariance under parallel transport. Note however that parallel transport
is dependent on the trajectory between the end points, and therefore homogeneity
requires an invariance that is independent on the trajectory. In a coordinate system,
homogeneity means that the spatial dependence of W is only through the entries gi j of
the Riemannian metric. The prototypical energy density (2.4) is an example of such
density.

Homogeneity over fibers is a weaker property, which can be defined for tubular
neighborhoods of a submanifold. It implies invariance under parallel transport along
normal geodesics, while allowing inhomogeneity in the “spatial” directions. In the
particular case of a Euclidean metric, homogeneity over fibers means that the energy
density does not depend explicitly on the normal coordinate. As such, it is not an
intrinsic material property, however it is a sufficient condition for our purposes.

An immediate consequence of homogeneity over fibers is the following:
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π∗NS NS

π∗TS TS

T Ωh
ι
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oo
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�� dπ

EE

Fig. 2 Commutative diagram for σ , ι and dπ .

Lemma 3.1 For every q ∈ T ∗M|S⊗Rn,

W |S (q)≥W0(q◦ ι
‖),

or equivalently,
W |S ≥W0 ◦ ι

‖∗.

Moreover, if W is homogenous over fibers, then for every q ∈ T ∗
ξ

Ωh⊗Rn,

Wξ (q)≥ (W0)π(ξ )(q◦Πξ ◦Π
−1
π(ξ )
◦ ι
‖),

or equivalently,
W ≥ π

∗(W0 ◦ ι
‖∗)◦Π

∗.

Proof : From the definition of W0, for every q ∈ T ∗M|S⊗Rn,

W |S (q)≥W0(q◦ ι
‖) = (W0 ◦ ι

‖∗)(q).

The second part of the lemma is immediate from this inequality and the definition of
homogeneity over fibers. n

3.1.5 Approximating Π and g

We now construct another bundle isomorphism

σ ⊕ ι : π
∗TS⊕π

∗NS∼= π
∗TM|S→ T Ωh

(see Figure 2) that satisfies dπ ◦ ι = 0, dπ ◦σ = Id and Π−σ⊕ ι = O(h); the relation
between σ ⊕ ι and π makes it simpler to analyze than Π , and our assumptions on W
will imply that W is ”almost” homogenous over fibers with respect to the parallel-
transport-like map σ ⊕ ι . We will use this bundle isomorphism to define another
metric, g̃, on Ωh, such that σ⊕ ι is its parallel transport. The metric g̃ approximates g
in a sense that will be made precise. We will then repeatedly switch between the two
metrics, thus exploiting the simpler structure of g̃.

Let ι : π∗NS ↪→ TNS denote the canonical identification of the vector bundle NS

with its own vertical tangent space. Explicitly, for ξ ∈NS and η ∈ (π∗NS)ξ , there is
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a canonical identification of η with an element of (NS)π(ξ ). We then define a curve
γ : I→NS,

γ(t) = ξ +η t,

and identify ιξ (η) = γ̇(0). Clearly dπ : TNS→ π∗TS and ι satisfy:

dπ ◦ ι = 0.

To fully determine an isomorphism TNS∼= π∗TS⊕π∗NS we need a map

σ : π
∗TS→ TNS,

such that
dπ ◦σ = Id .

To this end we use the induced connection on NS. Define σ to be the unique map
such that for any curve α : I→ S, and any parallel normal field γ →NS along α , we
have

σγ(0)(α̇) = γ̇.

In other words, given α̇ ∈ TS and ξ ∈ NSπ(α̇), σξ (α̇) is the equivalence class of a
curve γ : I→NS along α , that satisfies

γ(0) = ξ and ∇
⊥
α̇ γ̇ = 0.

Since γ is a curve along α , that is, π ◦ γ = α , we have, by differentiation, that indeed
dπ ◦σ = Id.

Note that we defined the range of σ ⊕ ι : π∗TM|S→ TNS to be the total bundle
TNS, which means that π is viewed as a projection π : NS→ S. Restricting π to Ωh,
we may view σ ⊕ ι as a mapping π∗TM|S→ T Ωh, similar to Π .

The following lemmas are concerned with the deviation of σ ⊕ ι from Π and its
consequences:

Lemma 3.2 The restrictions of σ ⊕ ι and Π to bundle maps over Ωh (i.e. when π is
viewed as a mapping Ωh→ S) satisfy

σ ⊕ ι−Π = O(h).

That is, there exists C > 0, independent of h, such that for every v ∈ TM|S and ξ ∈
(Ωh)π(v),

|(σ ⊕ ι−Π)ξ (v)| ≤Ch|v|

Proof : See Lemma 3.1 in [20]. n

An important corollary of Lemma 3.2 is that W is almost homogeneous over fibers
with respect to σ ⊕ ι :

Corollary 3.1 There exists C > 0 such that for every q ∈ T ∗Ωh⊗Rn,

|W (q)−π
∗W |S ◦ (σ ⊕ ι)∗(q)| ≤Ch(1+ |q|p).
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Proof : By the homogeneity over fibers and the Lipschitz property of W :

|W (q)−π
∗W |S ◦ (σ ⊕ ι)∗(q)|= |π∗W |S ◦Π

∗(q)−π
∗W |S ◦ (σ ⊕ ι)∗(q)|

= |π∗W |S(q◦Π)−π
∗W |S ◦ (q◦ (σ ⊕ ι))|

≤C(1+ |q◦Π |p−1 + |q◦ (σ ⊕ ι)|p−1)|q◦ (Π −σ ⊕ ι)|
≤C(1+ |q|p−1)|q| ·h≤Ch(1+ |q|p).

n
Let g̃ denote the unique metric on Ωh such that g̃|S = g|S and σ⊕ι is an isometry.

The following corollary follows immediately from Lemma 3.2 (see [20] for details).

Corollary 3.2 1.
g̃−g= O(h),

that is, |g̃(u,v)−g(u,v)| ≤Ch|u||v| for every u,v ∈ T Ωh.
2.

dvolg̃−dvolg = O(h).

3. For small enough h, the Lp (resp. W 1,p) norm on (Ωh,g) is equivalent to the Lp

(resp. W 1,p) norm on (Ωh, g̃).

We now state some further properties of the metric g̃. We show that dvolg̃ de-
composes into a product η ∧ω where η is related to the volume form on S and ω

is a k-form. This decomposition will allow us to use repeatedly Fubini’s theorem.
Moreover, it will be shown to satisfy nice properties upon the rescaling of the tubular
neighborhoods Ωh. The definitions are given below; for full details and proofs see
[20].

Let E,F →M be vector bundles and let χ : E→ F be a morphism of vector bun-
dles. Denote by Λ aχ : Λ aE →Λ aF the associated vector bundle morphism between
the ath exterior powers of E and F . Write

ρ = (σ ⊕ ι)−1∗ ◦ (π∗P‖)∗ : π
∗T ∗S→ T ∗Ωh

θ = (σ ⊕ ι)−1∗ ◦ (π∗P⊥)∗ : π
∗NS∗→ T ∗Ωh.

Note that

σ
∗ ◦ρ = Id, ι

∗ ◦θ = Id, σ
∗ ◦θ = 0, ι

∗ ◦ρ = 0. (3.1)

Moreover, equations (3.1) uniquely characterize ρ and θ . Taking exterior powers, we
have

Λ
i
ρ : Λ

i
π
∗T ∗S→Λ

iT ∗Ωh, Λ
j
θ : Λ

j
π
∗NS∗→Λ

jT ∗Ωh,

and equations (3.1) then imply that⊕
i+ j=l

Λ
i
ρ ∧Λ

j
θ = Λ

l(σ ⊕ ι)−1∗.

Let η̃ be the unit norm section of Λ n−kT ∗S belonging to the orientation class, i.e.
η̃ = dvolg|S . Let ω̃ be the unit norm section of Λ kNS∗ belonging to the orientation
class determined by the orientations of M and S. Define

η = Λ
n−k

ρ ◦π
∗
η̃ , ω = Λ

k
θ ◦π

∗
ω̃.
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In particular, η ∈ An−k(Ωh) and ω ∈ Ak(Ωh). It follows from the definition that

η ∧ω = dvolg̃. (3.2)

Lemma 3.3 (properties of η and ω) Denote by π? and π? the pullback and push-
forward of forms on S and on Ωh. Then

η = π
?dvolg|S and π?(ω) = vkhk,

where vk is the volume of the k-dimensional unit ball.

Lemma 3.4 We have

π?dvolg
|Ωh|

−
dvolg|S
|S|

= O(h), |S|νkhk−|Ωh|= O(h1+k). (3.3)

3.1.6 Rescaling of tubular neighborhoods

There is a natural notion of strong convergence for functions defined over shrinking
tubular neighborhoods; see next subsection. The notion of weak convergence turns
out to be more subtle. To define it we will need to rescale the tubular neighborhoods
(for more details and proofs, see [20]).

Define the rescaling operator µh : Ωh0 →Ωh0h by

µh(ξ ) = hξ .

Clearly π ◦µh = π . We assume that h0 is small enough such that part 3 in Corollary
3.2 holds.

Lemma 3.5 1. For every ξ ∈Ωh0 ,

dµh ◦σξ = σhξ , dµh ◦ ιξ = h ιhξ .

2.

µ
?
h ω = hk

ω, µ
?
h η = η .

3. Let f ∈ L1(Ωh0h). Then

−
∫

Ωh0h

f dvolg =
1+O(h)
νkhk

0|S|

∫
Ωh0

( f ◦µh)η ∧ω.
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3.2 Convergence in tubular neighborhoods

We start by defining strong convergence over shrinking domains:

Definition 3.2 Let fh ∈ Lp(Ωh;Rn) and F ∈ Lp(S;Rn). We say that fh → F in the
strong Lp topology if

lim
h→0
−
∫

Ωh

| fh−F ◦π|p dvolg = 0.

In other words, defining

‖ fh‖p
Lp(Ωh;Rn)

=−
∫

Ωh

| fh|p dvolg,

fh→ F if for every ε > 0
fh ∈ Bε(F ◦π)

for every small enough h.

We now discuss the relations between both strong and weak convergence in tubu-
lar neighborhoods and “standard” convergence of mappings rescaled to mappings
over Ωh0 . The following lemma establishes the equivalence between both notions for
strong convergence:

Lemma 3.6 Let fh ∈ Lp(Ωh0h;Rn) and F ∈ Lp(S;Rn). Then, fh → F in Lp if and
only if fh ◦µh→ F ◦π in the strong Lp(Ωh0 ;Rn) topology.

Proof : It follows from Lemma 3.5 and the relation π ◦µh = π that

−
∫

Ωh0h

| fh−F ◦π|p dvolg =
1+O(h)
νkhk

0|S|

∫
Ωh0

(| fh−F ◦π|p ◦µh)ω ∧η =

=
1+O(h)
νkhk

0|S|

∫
Ωh0

| fh ◦µh−F ◦π|p ω ∧η .

Hence fh→ F if and only if the function fh ◦µh→ F ◦π in Lp(Ωh0 ;Rn) with respect
to the metric g̃. Since Lp convergence in (Ωh0 ,g) is equivalent to Lp convergence in
(Ωh0 , g̃) (Corollary 3.2), the proof is complete. n

To address weak convergence we first need a technical lemma, which basically
states that if the normal derivative of a mapping is zero, than the mapping does not
depend on the normal coordinate.

Lemma 3.7 Suppose that f ∈W 1,p(Ωh;Rn) satisfies d f ◦ ι = 0. Then, there exists
an F ∈W 1,p(S;Rn) such that f = F ◦π .

Proof : Let p ∈ S be given and let γ : I→ π−1(p) be a curve in the fiber of Ωh above
p. Since π ◦ γ = p, it follows that

dπ(γ̇) = 0.
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Since dπ ◦ ι = 0 and dimImι = dimker(dπ) = k, we have that Imι = ker(dπ), there-
fore γ̇ ∈ Imι , and since d f ◦ ι is follows that

d f (γ̇) = 0,

hence f ◦ γ = const, and there exists an F : S→ Rn such that f = F ◦π .
Note that F can be expressed as

F =
π?(F ◦π ω)

π?(ω)
=

π?( f ω)

π?(ω)
=

1
νkhk π?( f ω),

hence F ∈W 1,p(S;Rn). n
The following lemma generalizes to sequences over tubular neighborhoods the

classical fact that bounded sequences in a reflexive Banach space have a weakly com-
pact subsequence.

Lemma 3.8 Suppose that fh ∈W 1,p(Ωh0h;Rn) is a uniformly bounded sequence (each
fh with its respective volume-averaged norm). Then there exists a F ∈W 1,p(S;Rn)
and a subsequence fhn such that fhn ◦ µhn ⇀ F ◦π in W 1,p(Ωh0 ;Rn). In particular,
fhn → F in the strong Lp topology.

Proof : Part 3 of Lemma 3.5 implies that a sequence yh ∈ Lp(Ωh0h) is uniformly
bounded if and only if the sequence yh ◦µh is uniformly bounded in Lp(Ωh0). There-
fore the boundedness of fh in W 1,p(Ωh0h;Rn) implies that fh◦µh is uniformly bounded
in Lp(Ωh0 ;Rn) and that

∫
Ωh0
|d fh|p ◦µh η ∧ω is uniformly bounded.

For f ∈W 1,p(Ωh0h;Rn) and ξ ∈Ωh0 ,

|d f |2g̃ ◦µh(ξ ) = g̃hξ (dhξ f ,dhξ f ) = gπ(ξ )(dhξ f ◦ (σ ⊕ ι)hξ ,dhξ f ◦ (σ ⊕ ι)hξ ) =

= gπ(ξ )(dhξ f ◦ (σ ⊕0)hξ ,dhξ f ◦ (σ ⊕0)hξ )+

+gπ(ξ )(dhξ f ◦ (0⊕ ι)hξ ,dhξ f ◦ (0⊕ ι)hξ ).

The last equation follows from the definition of the inner product on the cotangent
bundle and the fact that (dhξ f ◦ (0⊕ ι)hξ )

] ∈ NS and that (dhξ f ◦ (σ ⊕0)hξ )
] ∈ TS.

Since
∫

Ωh0
|d fh|p ◦µh η ∧ω is uniformly bounded, it follows that∫

Ωh0

(gπ(ξ )(dhξ f ◦ (σ ⊕0)hξ ,dhξ f ◦ (σ ⊕0)hξ ))
p/2

η ∧ω(ξ ),

and ∫
Ωh0

(gπ(ξ )(dhξ f ◦ (0⊕ ι)hξ ,dhξ f ◦ (0⊕ ι)hξ ))
p/2

η ∧ω(ξ )

are also uniformly bounded. On the other hand, part 1 of Lemma 3.5 implies that

|d( f ◦µh)|2g̃(ξ ) = g̃ξ (dhξ f ◦dξ µ,dhξ f ◦dξ µ) =

= gπ(ξ )(dhξ f ◦dξ µ ◦ (σ ⊕ ι)ξ ,dhξ f ◦dξ µ ◦ (σ ⊕ ι)ξ ) =

= gπ(ξ )(dhξ f ◦ (σ ⊕hι)hξ ,dhξ f ◦ (σ ⊕hι)hξ ) =

= gπ(ξ )(dhξ f ◦ (σ ⊕0)hξ ,dhξ f ◦ (σ ⊕0)hξ )+

+h2gπ(ξ )(dhξ f ◦ (0⊕ ι)hξ ,dhξ f ◦ (0⊕ ι)hξ ),

(3.4)
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and therefore
∫

Ωh0
|d( fh◦µh)|pg̃ η∧ω is uniformly bounded, hence fh◦µh is a bounded

sequence in W 1,p(Ωh0 ;Rn). It follows that fh ◦µh has a subsequence weakly conver-
gent in W 1,p(Ωh0 ;Rn) (recall that by Corollary 3.2 convergence with respect to g is
equivalent to convergence with respect to g̃); denote the limit by f . Equation (3.4)
implies that

∫
Ωh0
|d( fh ◦µh)◦ ι |pη ∧ω = O(hp), hence d f ◦ ι = 0 a.e.

Applying Lemma 3.7, there exists an F ∈W 1,p(S;Rn) such that f = F ◦π . There-
fore, fhn ◦ µhn ⇀ F ◦ π in W 1,p(Ωh0 ;Rn), and in particular fhn ◦ µhn → F ◦ π in
Lp(Ωh0 ;Rn). By Lemma 3.6, fhn → F in the strong Lp topology. n

3.3 Γ -convergence

The main theorem of this paper is concerned with Γ -convergence of functionals
Ih : Lp(Ωh;Rn)→ R̄ to a functional I : Lp(S;Rn)→ R̄. Since the standard defini-
tion of Γ -convergence requires the functionals to be defined on the same space, we
need a definition of Γ -convergence over shrinking tubular neighborhoods, and estab-
lish its properties. The proof of properties satisfied by Γ -convergence over shrinking
domains is essentially the same as for fixed domains, and will therefore be omitted;
see [10] for details.

Definition 3.3 Let Ih : Lp(Ωh;Rn)→ R̄ and I : Lp(S;Rn)→ R̄. We will say that Ih
Γ -converges to Ĩ in the strong Lp topology if

À Lower-semicontinuity: for every sequence fh→ F ,

I(F)≤ liminf
h→0

Ih( fh).

Á Recovery sequence: for every F there exists a sequence fh→ F such that

I(F) = lim
h→0

Ih( fh).

An equivalent topological definition is given by the following lemma:

Lemma 3.9 Ih
Γ−→ I if and only if for every F,

lim
ε→0

liminf
h→0

inf
Bε (F◦π)

Ih(·) = lim
ε→0

limsup
h→0

inf
Bε (F◦π)

Ih(·) = I(F).

Proposition 3.1 (Urysohn’s property) If for every sequence hn → 0 there exists a
subsequence hnk such that

Ihnk

Γ−→ I,

then Ih
Γ−→ I.

Proposition 3.2 (Sequential compactness) Every sequence of functionals Ih : Lp(Ωh;Rn)→
R̄ has a Γ -converging partial limit I : Lp(S;Rn)→ R̄.

Propositions 3.1 and 3.2 immediately imply the following corollary:

Corollary 3.3 Ih
Γ−→ I if and only if I is the limit of every Γ -convergent subsequence.



16 Raz Kupferman, Cy Maor

3.4 Quasiconvexity

Definition 3.4 Let (M,g) be a Riemannian manifold, and let U : T ∗M⊗Rm→R be
a fiber-wise locally integrable function. We say that U is quasiconvex if for every
p ∈M, every A ∈ T ∗p M⊗Rm, every open bounded set Dp ⊂ TpM, and every ϕ ∈
C∞

0 (Dp;Rm),

U(A)≤−
∫

Dp

U(A+dφ ◦κ)ωp, (3.5)

where κ : π∗TpM→ T TpM is the canonical identification, and ωp is the n-form

ωp = dvolg|p ◦Λ
n
κ
−1.

The integrand in (3.5) reads as follows: for ξ ∈ Dp ⊂ TpM and η ∈ TpM,

[dφ ◦κ(ξ )](η) = dξ φ ◦κξ (η) = dξ φ([ξ +ηt]) ∈ Rm,

hence U(A+ dφ ◦κ) is indeed a map from Dp to Rm. As for the volume form ωp,
choosing a coordinate system (x1, . . . ,xn) in M, and denoting by (∂1, . . . ,∂n) the cor-
responding coordinates on TpM, we have that ωp is of the form

ωp =
√

detgi j(p)dpx1 ◦κ
−1∧·· ·∧dpxn ◦κ

−1 =
√

detgi j(p)d∂1∧·· ·∧d∂n.

The constant
√

detgi j(p) cancels upon volume average, and therefore the above def-
inition reduces, after choosing coordinates, to the classical definition of quasiconvex-
ity, see e.g. [1] or [9] (it also shows that the definition is independent of the metric).

In the proof of the main theorem we will need the following two relations between
quasiconvexity and lower-semicontinuity, which are extensions of classical results to
the Riemannian setting (see [1]); the proofs are in Appendix B. In these theorems,
we assume that (M,g) is a Riemannian manifold of finite volume that can be covered
by a finite number of charts (note that S and therefore Ωh, satisfy this condition), and
that U : T ∗M⊗Rm→ R is a Carathéodory function (see Appendix A) that satisfies
the growth condition

−β ≤U(q)≤C(1+ |q|p) (3.6)

for some β ,C > 0 and p ∈ (1,∞). Both theorems also hold also if W 1,p is replaced
with W 1,p

0 .

Theorem 3.1 Under the above conditions, the functional IA : W 1,p(A;Rm)→ R de-
fined by

IA( f ) :=
∫

A
U(d f ) dvolg,

where A⊂M is an open subset, is weakly sequential lower-semicontinuous for every
A if and only if U is quasiconvex.
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Theorem 3.2 Under the above conditions, the weakly sequential lower-semicontinuous
envelope of the functional IM : W 1,p(M;Rm)→ R (as defined in the previous theo-
rem) is Γ IM : W 1,p(M;Rm)→ R given by

Γ IM( f ) :=
∫
M

QU(d f ) dvolg,

where QU(q) = sup{V (q) : V ≤U is quasiconvex} is the quasiconvex envelope of U;
moreover, QU is a Carathéodory quasiconvex function.

We now show that Theorem 3.2 applies to W0:

Lemma 3.10 W0 is continuous (and in particular Carathéodory) and satisfies the
same growth and coercivity conditions as W (possibly with different constants).

Proof : The proof of the growth and coercivity condition is the same as in Proposition
1 in [21].

To prove the continuity, we prove that W0 is both lower- and upper-semicontinuous.
Let q,qi ∈ T ∗S⊗Rn such that qi → q, and let ri ∈ NS∗

π(qi)
⊗Rn such that W0(qi) =

W |S(qi⊕ri). Let qi be a subsequence (not relabeled) such that W0(qi) converges. The
growth property of W0 and the coercivity property of W imply that

α|ri|p−β ≤W |S(qi⊕ ri) =W0(qi)≤C(1+ |qi|p),

and since |qi| is a bounded sequence, so is |ri|. Since ri ∈ (NS∗⊗Rn)π(qi) and π(qi)→
π(q), there is a convergent subsequence rik → r ∈ (NS∗⊗Rn)π(q). Therefore,

lim
i→∞

W0(qi) = lim
k→∞

W |S(qik ⊕ rik)→W |S(q⊕ r)≥W0(q).

Since this holds for every convergent subsequence of the original sequence W0(qi),
W0 is lower-semicontinuous.

To prove upper-semicontinuity, let q,qi ∈ T ∗S⊗Rn such that qi → q, let r ∈
NS∗

π(q)⊗Rn such that W0(q) =W |S(q⊕ r), and let ρ be a section of NS∗⊗Rn such
that ρ(π(q)) = r. Then, by the continuity of W ,

W0(q) =W |S(q⊕ r) = lim
i→∞

W |S(qi⊕ρ(π(qi)))≥ limsup
i→∞

W0(qi),

hence W0 is upper-semicontinuous. n

It follows that Theorems 3.1 applies to QW0:

Corollary 3.4 QW0 is a Carathéodory function and satisfies (3.6).

Proof : From Lemma 3.10, QW0(q) ≤W0(q) ≤ C(1+ |q|p) for some C > 0. Also,
observe that the constant function −β is a quasiconvex function not larger than W0,
hence QW0 ≥ −β . Lemma 3.10 also implies that Theorem 3.2 applies to W0, and
therefore QW0 is a Carathéodory function. n
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4 Proof of the main results

We restate our main Theorem:

The sequence of functionals (Ih)h≤h0 define by (2.5) Γ -converges to I : Lp(S;Rn)→
R̄ defined by:

I(F) =

{
−
∫
S QW0(dF)dvolg|S F ∈W 1,p

bc (S;Rn),

∞ otherwise.

To prove this theorem, we use Corollary 3.3. That is, we prove that I is the limit
of every Γ -converging subsequence of Ih. Explicitly, we assume that Ih is a (not rela-
beled) Γ -convergent subsequence with limit I0 : Lp(S;Rn)→ R̄, and show that I0 = I.
The proof is long hence we divide it into several steps: (1) if F /∈W 1,p

bc (S;Rn) then
I0(F) = I(F); (2) if F ∈W 1,p

bc (S;Rn) then I0(F) ≥ I(F); and (3) if F ∈W 1,p
bc (S;Rn)

then I0(F)≤ I(F). With a slight abuse of notation, we write Ωh instead of Ωh0h when-
ever rescaling arguments are concerned, as it does not cause confusion and makes the
proof more readable.

Step 1: I0(F) = I(F) when F does not satisfy either the regularity or the boundary
conditions

Proposition 4.1 If F ∈ Lp(S;Rn)\W 1,p
bc (S;Rn) then I0(F) = ∞ = I(F).

Proof : Let F ∈ Lp(S;Rn) be such that I0(F)< ∞; we will show that F ∈W 1,p
bc (S;Rn).

Let fh→ F be a recovery sequence, namely,

Ih( fh)→ I0(F)< ∞.

We can assume that Ih( fh) is uniformly bounded by some constant C < ∞ for suffi-
ciently small h, hence fh ∈W 1,p

bc (Ωh;Rn). Since fh→ F in Lp, it follows that ‖ fh‖Lp

is bounded uniformly in h. From the coercivity of W , we have

C ≥ Ih( fh) =−
∫

Ωh

W (d fh)dvolg ≥ α−
∫

Ωh

|d fh|p dvolg−β ,

hence ‖d fh‖Lp is also uniformly bounded, hence fh is uniformly bounded in W 1,p
bc (Ωh;Rn).

By Lemma 3.8, there is a (not relabeled) subsequence such that fh ◦ µh ⇀ F ◦π in
W 1,p(Ωh0 ;Rn). In particular, F ◦π ∈W 1,p(Ωh0 ;Rn), hence F ∈W 1,p(S;Rn).

It remains to show that F |∂S = Fbc. Indeed, since fh ∈W 1,p
bc (Ωh;Rn), it is im-

mediate that fh ◦ µh|Γh0
= Fbc ◦π + hπ∗q⊥bc ◦λ . Therefore fh ◦ µh|Γh0

→ Fbc ◦π uni-
formly in Γh0 . By the continuity of the trace operator as a mapping W 1,p(Ωh0 ;Rn)→
Lp(Γh0 ;Rn), we have that F ◦π|Γh0

= Fbc ◦π , hence F |∂S = Fbc. n
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Step 2: I0(F)≥ I(F) when F satisfies both the regularity and the boundary conditions

Proposition 4.2 I0(F)≥ I(F) for every F ∈W 1,p
bc (S;Rn).

Proof : Let F ∈W 1,p
bc (S;Rn) be given. Let fh→ F be a recovery sequence, namely,

I0(F) = lim
h→0

Ih( fh).

If I0(F) = ∞ then the claim is trivial. Otherwise, Ih( fh) is bounded for sufficiently
small h, and therefore fh ∈W 1,p

bc (Ωh;Rn) and

Ih( fh) =−
∫

Ωh

W (d fh)dvolg.

The coercivity of W implies that d fh is uniformly bounded in Lp, hence by the
Poincaré inequality, fh is uniformly bounded in W 1,p(Ωh;Rn) (note that we need here
a version of the Poincaré inequality in which the function is prescribed on a subset
of the boundary that has positive (n−1)-dimensional measure; see Theorem 6.1-8 in
[8] for the Euclidean case; the non-Euclidean case is analogous).

By Lemma 3.8, Lemma 3.6 and the uniqueness of the limit,

fh ◦µh ⇀ F ◦π in W 1,p(Ωh0 ;Rn).

By Corollary 3.1, Lemma 3.1, and the definition of QW0:

Ih( fh) =−
∫

Ωh

W (d fh)dvolg

=−
∫

Ωh

π
∗W |S ◦ (σ ⊕ ι)∗(d fh)dvolg+O(h)

≥−
∫

Ωh

π
∗W0 ◦π

∗
ι
‖∗ ◦ (σ ⊕ ι)∗(d fh)dvolg+O(h)

≥−
∫

Ωh

π
∗QW0 ◦π

∗
ι
‖∗ ◦ (σ ⊕ ι)∗(d fh)dvolg+O(h)

=−
∫

Ωh

π
∗QW0 ◦σ

∗(d fh)dvolg+O(h).

The growth condition of QW0 implies that π∗QW0 ◦ σ∗(d fh) ∈ L1(Ωh), hence
from the third part of Lemma 3.5 we have that

Ih( fh)≥
1+O(h)
νkhk

0|S|

∫
Ωh0

(π∗QW0 ◦σ
∗(d fh)◦µh)η ∧ω +O(h). (4.1)

We next show that

π
∗QW0 ◦σ

∗(d fh)◦µh = π
∗QW0 ◦σ

∗(d( fh ◦µh)). (4.2)

Indeed, on the one hand, for ξ ∈Ω :

π
∗QW0 ◦σ

∗(d fh)◦µh(ξ ) = π
∗QW0(d fh ◦σ)(hξ )

= (QW0)π(hξ )(dhξ fh ◦σhξ ),
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whereas from the first part of Lemma 3.5.

π
∗QW0 ◦σ

∗(d( fh ◦µh))(ξ ) = (QW0)π(ξ )(dξ ( fh ◦µh)◦σξ )

= (QW0)π(ξ )(dhξ fh ◦dξ µh ◦σξ )

= (QW0)π(ξ )(dhξ fh ◦σhξ ).

Substituting (4.2) into (4.1):

Ih( fh)≥
1+O(h)
νkhk

0|S|

∫
Ωh0

π
∗QW0 ◦σ

∗(d( fh ◦µh))η ∧ω +O(h).

Since I0(F) = limh→0 Ih( fh), it follows that

I0(F)≥ liminf
h→0

J( fh ◦µh), (4.3)

where J : W 1,p(Ωh0 ;Rn)→ R is defined by

J( f ) :=
1

νkhk
0|S|

∫
Ωh0

π
∗QW0 ◦σ

∗(d f )η ∧ω.

Lemma 4.1 below shows that the quasiconvexity of QW0 implies the quasiconvex-
ity of π∗QW0 ◦σ∗ : T ∗Ωh0 ⊗Rn→ R. By Corollary 3.4, QW0 is a Carathéodory that
satisfies (3.6), and therefore the same holds for π∗QW0 ◦σ∗, hence, by Theorem 3.1,
J is sequentially weak lower-semicontinuous in W 1,p(Ωh0 ;Rn). Since fh ◦µh ⇀ F ◦π

in W 1,p(Ωh0 ;Rn), it follows that

I0(F)≥ J(F ◦π).

It remain to calculate J(F ◦π),

J(F ◦π) =
1

νkhk
0|S|

∫
Ωh0

π
∗QW0 ◦σ

∗(d(F ◦π))η ∧ω =

=
1

νkhk
0|S|

∫
Ωh0

π
∗QW0(dF)η ∧ω =

=
1

νkhk
0|S|

∫
Ωh0

π
?(QW0(dF)dvolg|S)∧ω =

=
1

νkhk
0|S|

∫
S

π?(π
?(QW0(dF)dvolg|S)∧ω) =

=−
∫

QW0(dF)dvolg|S = I(F).

where in the passage from the first to the second line we used the fact that dπ ◦
σ = Idπ∗TS; in the passage from the second to the third line we used the identity
(π∗QW0)(dF) = π∗(QW0(dF)), Lemma 3.3 and Fubini’s theorem; in the passage
form the third to the fourth line we used Fubini’s theorem along with the definition of
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the push-forward operator π?; in the passage from the fourth to the fifth line we used
the property of the push-forward operator,

π?(π
?
α ∧β ) = α ∧π?(β ),

and Lemma 3.3. This concludes the proof. n
The following lemma, which is used in the proof of proposition 4.2, is a gener-

alization of a property proved in [21] (part of the proof of Prop. 6). It states that a
function that is quasiconvex on S can be extended to a quasiconvex function on Ωh,
via a combination of pullback and projection.

Lemma 4.1 Let U : T ∗S⊗Rn→R be quasiconvex. Then, π∗U ◦σ∗ : T ∗Ωh⊗Rn→R
is quasiconvex.

Proof : Fix h, ξ ∈ Ωh and A ∈ T ∗
ξ

Ωh⊗Rn and let Dξ ⊂ Tξ Ωh be some bounded set
(which we will choose later). We need to prove that for every ϕ ∈C∞

0 (Dξ ;Rn),

(π∗U ◦σ
∗)

ξ
(A)≤−

∫
Dξ

(π∗U ◦σ
∗)

ξ
(A+dϕ ◦κ)ωξ

where κ and ωξ are as in Definition 3.4.
Denote

Tξ Ω
‖
h := Imσξ = σξ (Tπ(ξ )S),

Tξ Ω
⊥
h := Imιξ = ιξ (NSπ(ξ )).

Obviously, Tξ Ωh = Tξ Ω
‖
h ⊕ Tξ Ω⊥h , and denote by P⊥ : Tξ Ωh → Tξ Ω⊥h and P‖ :

Tξ Ωh→ Tξ Ω
‖
h the projections.

Observe that ωξ = ω‖ ∧ω⊥, where ω‖ and ω⊥ are respectively, (n− k) and k

forms on Tξ Ω
‖
h and Tξ Ω⊥h (to simplify the notation, we identify ω‖ with P‖

?
ω‖ and

ω⊥ with P⊥?ω⊥). Indeed, we can choose local coordinates on Ωh at ξ such that the
induced coordinates on Tξ Ωh are (x1, . . . ,xn−k,z1, . . . ,zk), where (x1, . . . ,xn−k) and

(z1, . . . ,zk) are bases for Tξ Ω
‖
h and Tξ Ω⊥h , respectively. In these coordinates,

ωξ = dvolg|ξ ◦Λ
n
κ
−1 = adx1∧ . . .∧dxn−k ∧dz1∧ . . .∧dzk,

where a is some (constant) number. Now define ω‖ := adx1∧ . . .∧dxn−k and ω⊥ :=
dz1∧ . . .∧dzk.

Choose Dξ such that Dξ = D‖×D⊥, where D‖ and D⊥ are bounded subsets of

Tξ Ω
‖
h and Tξ Ω⊥h , respectively. Restricting P⊥ to Dξ , we have∫

Dξ

(π∗U ◦σ
∗)

ξ
(A+dϕ ◦κ)ωξ =

∫
D⊥

P⊥?((π∗U ◦σ
∗)

ξ
(A+dϕ ◦κ)ω‖∧ω

⊥)

=
∫

D⊥
P⊥?((π∗U ◦σ

∗)
ξ
(A+dϕ ◦κ)ω‖)∧ω

⊥

=
∫

D⊥
P⊥?((π∗U)

ξ
(A◦σξ +dϕ ◦κ ◦σξ )ω

‖)∧ω
⊥.

(4.4)
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We now analyze the integral P⊥?((π∗U)
ξ
(A◦σξ +dϕ ◦κ ◦σξ )ω

‖). Let (x,z) be
a point in Dξ , where x ∈D‖ and z ∈D⊥. Define ϕz : D‖→Rn by ϕz(·) := ϕ(·,z). Let
α ∈ D‖. We then have

d(x,z)ϕ ◦κ(x,z)(α) = d(x,z)ϕ([(x,z)+αt]) =
d
dt

ϕ ((x,z)+αt)

=
d
dt

ϕz (x+αt) = dxϕz([x+αt]) = dxϕz ◦κx(α),

which implies that
d(x,z)ϕ ◦κ(x,z) ◦σξ = dxϕz ◦κx ◦σξ , (4.5)

since the image of σξ is in Tξ Ω
‖
h . Since σξ is a linear mapping,

dyσξ = κσξ (y) ◦σξ ◦ (κS
y )
−1,

where y ∈ Tπ(ξ )S and κS
y : Tπ(ξ )S→ TyTπ(ξ )S is the canonical identification. There-

fore, equation (4.5) implies that

d(x,z)ϕ ◦κ(x,z) ◦σξ = d
σ
−1
ξ

(x)

(
ϕz ◦σξ

)
◦κ

S

σ
−1
ξ

(x)
.

Fixing z, we have that on the fiber D‖×{z},

(π∗U)
ξ
(A◦σξ +dϕ ◦κ ◦σξ ) = (σ−1

ξ
)∗
(

Uπ(ξ )

(
A◦σξ +d

(
ϕz ◦σξ

)
◦κ

S
))

.

Denoting by p the mapping σ
−1
ξ

(D‖)→{z}, we then have, using the change of vari-

ables formula P⊥?
(

σ
−1
ξ

)?
= p?,

P⊥?((π∗U)
ξ
(A◦σξ +dϕ ◦κ ◦σξ )ω

‖)

= P⊥?
(
(σ−1

ξ
)∗
(

Uπ(ξ )

(
A◦σξ +d

(
ϕz ◦σξ

)
◦κ

S
))

(σ−1
ξ

)?(σ−1
ξ

)?ω
‖
)

= p?
(

Uπ(ξ )

(
A◦σξ +d

(
ϕz ◦σξ

)
◦κ

S
)
(σ−1

ξ
)?ω

‖
)
.

(4.6)

Since up to a constant, (σ−1
ξ

)?ω‖ is just the form dvolg|S |π(ξ ) ◦Λ n−k(κS)−1, the
quasiconvexity of U implies that

p?
(

Uπ(ξ )

(
A◦σξ +d

(
ϕz ◦σξ

)
◦κ

S
)
(σ−1

ξ
)?ω

‖
)

≥Uπ(ξ )

(
A◦σξ

)
p?
(
(σ−1

ξ
)?ω

‖
)
= (π∗U ◦σ

∗)
ξ
(A)P⊥?

(
ω
‖
)
,

(4.7)

where in the last step we used again the change of variables formula.
Combining equations (4.6)-(4.7), and inserting them into equation (4.4), we have∫

Dξ

(π∗U ◦σ
∗)

ξ
(A+dϕ ◦κ)ωξ ≥ (π∗U ◦σ

∗)
ξ
(A)

∫
D⊥

P⊥?
(

ω
‖
)
∧ω

⊥

= (π∗U ◦σ
∗)

ξ
(A)

∫
Dξ

ωξ ,

which completes the proof. n
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Step 3: I0(F)≤ I(F) when F satisfies both the regularity and the boundary conditions

Proposition 4.3 I0(F)≤ I(F) for every F ∈W 1,p
bc (S;Rn).

Proof : Let F ∈W 1,p
bc (S;Rn) and consider a sequence fh ∈W 1,p

bc (Ωh;Rn) defined by

fh = F ◦π +π
∗q⊥ ◦λ ,

where q⊥ ∈ {r ∈ Γ (S;NS∗⊗Rn) : r|∂S = q⊥bc} (a simple argument using a partition
of unity of S shows that this set is non-empty). That is, for every ξ ∈Ωh,

fh(ξ ) = F(π(ξ ))+q⊥
π(ξ )(ξ ).

It is easy to see that fh→ F in Lp, hence by the lower-semicontinuity property of
the Γ -limit:

I0(F)≤ liminf
h→0

Ih( fh) = liminf
h→0

−
∫

Ωh

W (d fh)dvolg. (4.8)

From Proposition 6.2 in [20], we have that

|d fh ◦Π −π
∗(dF⊕q⊥)| ≤Ch(1+ |d fh|).

It follows from the Lipschitz and the homogeneity over fibers properties of W that

−
∫

Ωh

W (d fh)dvolg =−
∫

Ωh

π
∗W |S (d fh ◦Π)dvolg

=−
∫

Ωh

π
∗W |S (π

∗(dF⊕q⊥))dvolg+O(h)

=
∫
S

W |S (dF⊕q⊥)
π?dvolg
|Ωh|

+O(h),

where in the last step we used Fubini’s theorem to first integrate over the fibers. Using
Lemma 3.4 to evaluate π?dvolg/|Ωh|, Equation (4.8) reduces to

I0(F)≤−
∫
S

W |S (dF⊕q⊥)dvolg|S .

This inequality holds for every q⊥ ∈ {r ∈ Γ (S;NS∗⊗Rn) : r|∂S = q⊥bc}. Since {r ∈
Γ (S;NS∗⊗Rn) : r|∂S = q⊥bc} is dense in Lp(S;NS∗⊗Rn), it follows from the Lips-
chitz property of W that

I0(F)≤ inf
q⊥∈Lp(S;NS∗⊗Rn)

−
∫
S

W |S (dF⊕q⊥)dvolg|S . (4.9)

By the definition of W0, there exists a function q⊥0 : S→NS∗⊗Rn such that

W |S (dF⊕q⊥0 ) =W0(dF). (4.10)

Thus, it seems that we can bound the infimum on the right hand side of (4.9) with
−
∫
SW0(dF)dvolg|S . There is however one caveat: there is not a priori guarantee that
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q⊥0 is measurable. Lemma 4.2 below proves that there exists q⊥0 ∈ Lp(S;NS∗⊗Rn)

that satisfies (4.10), hence for every F ∈W 1,p
bc (S;Rn):

I0(F)≤−
∫
S

W0(dF)dvolg|S ≡ G(F). (4.11)

We introduce the following notation: for a function H : W 1,p
bc (S;Rn)→ R we set

H̃ : Lp(S;Rn)→ R to be

H̃(F) =

{
H(F) F ∈W 1,p

bc (S;Rn)

∞ otherwise.

Equation (4.11) implies that I0(F)≤ G̃(F) for every F ∈ Lp(S;Rn). Since, moreover,
I0 is a Γ -limit, it is lower-semicontinuous with respect to the strong Lp-topology,
and therefore I0 ≤ Γ G̃, where Γ G̃ denoted the lower-semicontinuous envelope (with
respect to the same topology) of G̃.

Next denote by ΓwG the sequential lower-semicontinuous envelope of G with
respect to the weak topology in W 1,p

bc (S;Rn). Lemma 5 in [21] implies that Γ̃wG =

Γ G̃, hence I0 ≤ Γ̃wG; in particular, for F ∈W 1,p
bc (S;Rn), I0(F) ≤ ΓwG(F). Finally, it

follows from [1] that

ΓwG(F) =−
∫
S

QW0(dF)dvolg|S = I(F),

which completes the proof. n

Lemma 4.2 There exists q⊥0 ∈ Lp(S;NS∗⊗Rn) that satisfies

W |S (dF⊕q⊥0 ) =W0(dF).

Proof : We first prove that there exists a measurable q⊥0 : S→ NS∗ ⊗Rn such the
equality above holds, and then prove that it is in Lp.

Define W⊥ =W |S(dF⊕·) : NS∗⊗Rn→R. We are looking for a measurable sec-
tion q⊥0 that minimizes W⊥ on every fiber. The measurable selection theorem (Theo-
rem A.1) deals with the existence of such measurable sections. However, while W⊥

satisfies the regularity assumptions in the theorem (it is a Carathéodory function as (i)
it is fiber-wise continuous due to the continuity of W |S, and (ii) for every smooth sec-
tion η ∈Γ (S;NS∗⊗Rn), W⊥ ◦η is measurable as a composition of a continuous and
a measurable function (see Appendix A)), the measurable selection theorem cannot
be applied directly to W⊥, as the fiber is a vector space and hence not compact. We
therefore proceed by using the coercivity and growth properties of W to overcome
this problem of non-compactness.

The coercivity and growth properties imply that for every x∈ S and ξ ∈NS∗⊗Rn,

α|ξ |p−β <W⊥(ξ )

and
inf

η∈(NS∗⊗Rn)x

W⊥(η)<C(1+ |dxF |p).
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Hence, if we denote by SN the set {x ∈ S : |dxF |p < N}, the measurable selection
theorem (Corollary A.1) can be applied to W⊥|SN , since the minimizer on every fiber

lies in a ball of radius
(

C(1+N)+β

α

)1/p
. Denote this measurable minimizer by q⊥0,N ,

and construct q⊥0 by

q⊥0 (x) = q⊥0,N(x), N = min{M ∈ N : x ∈ SM}.

Since, up to a null set, ∪NSN = S, q⊥0 is well defined on almost every point in S. It is
obviously measurable, since for every N, q⊥0,N is measurable.

Finally, q⊥0 ∈ Lp(S;NS∗⊗Rn) since

α

∫
S
|q⊥0 |p dvolg|S −β ·Vol(S)≤

∫
S

W |S(dF⊕q⊥0 )dvolg|S

≤
∫
S

W (dF⊕0)dvolg|S

≤C
∫
S
(1+ |dF |p)dvolg|S < ∞.

n

We have thus completed the proof of Theorem 2.1. We finish this section by a
proof of the main corollary:

Let fh ∈W 1,p
bc (Ωh;Rn) be a sequence of (approximate) minimizers of Ih. Then

( fh) is a relatively compact sequence (with respect to the strong Lp topology),
and all its limits points are minimizers of I. Moreover,

lim
h→0

inf
Lp(Ωh;Rn)

Ih(·) = min
Lp(S;Rn)

I(·).

Proof : Let fh be a sequence of approximate minimizers of Ih. We first prove that it
is relatively compact, i.e., that every subsequence (not relabeled) of fh has a subse-
quence that converges in Lp.

Let g ∈W 1,p
bc (S;Rn) be arbitrary and let gh ∈ Lp(Ωh;Rn) be a recovery sequence

for g. Then,

inf
Lp

Ih(·)≤ Ih(gh)−→
h→0

I(g)< ∞,

due to the growth property of QW0. This shows that infLp Ih(·) is bounded.
It follows that Ih( fh) is bounded, hence by coercivity d fh is uniformly bounded

in Lp, and together with the Poincaré inequality, fh is uniformly bounded in W 1,p.
Lemma 3.8 implies the existence of a subsequence fh→ F in Lp, proving the relative
compactness of fh.

We now prove that F is a minimizer of I. Let g ∈ Lp(S;Rn) be an arbitrary func-
tion, and let gh ∈ Lp(Ωh;Rn) be a recovery sequence for g. Therefore,

I(g) = lim
h→0

Ih(gh)≥ lim
h→0

inf
Lp

Ih(·) = lim
h→0

Ih( fh)≥ I(F),
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where the last inequality follows from the lower-semicontinuity property of Γ -convergence.
Since g is arbitrary, F is a minimizer of I. Moreover, by choosing g = F we conclude
that

I(F) = lim
h→0

inf
Lp

Ih(·).

n

5 Discussion

This paper generalizes the work of Le Dret and Raoult [21,22] to a general Rieman-
nian setting and general dimension and co-dimension, hence is applicable to slender
pre-stressed bodies. We now emphasize the main differences between the present
analysis and the prior work that was derived in the Euclidean setting; these can be
partitioned into analytical issues and modeling issues.

Analytical issues Thin bodies are modeled as a family of tubular neighborhoods Ωh
of a Riemmanian manifold (M,g), that converges to a lower-dimensional subman-
ifold S. Accordingly, we defined a notion of convergences of functions Lp(Ωh;Rn)
to functions Lp(S;Rn). The fact that configurations for different h are defined over
different functional spaces requires only minor adaptations in the Γ -convergence ap-
proach, since the latter is not affected by the Riemannian structure. Other analytic
notions, however, such as quasiconvexity and measure theoretic issues require a more
detailed attention.

The Γ -limit of a sequence of functionals is lower-semicontinuous. As weak lower-
semicontinuity of an integral functional is closely related to the quasiconvexity of the
integrand, we had to properly define the notion of quasiconvexity of functions over
manifolds (Definition 3.4) and show that the classical results in [1] remains valid in
this settings (Appendix B). As in the Euclidean case, the limit energy density QW0 is
the quasiconvex envelope of W0, which is a projection of the original energy density
W to the limiting submanifold.

For the energy functional to be well-defined, the density has to be sufficiently
regular. We assume W to be continuous and show that this also implies the conti-
nuity of W0 (Lemma 3.10). The more challenging step is to show that QW0 is suf-
ficiently regular, and specifically, a Carathéodory function. To do so, we need to
properly define Carathéodory functions over fiber bundles (see Appendix A), and
show that the quasiconvex envelope of a Carathéodory function over fiber bundles
is again a Carathéodory function (Theorem 3.2 and Corollary 3.4). This notion of
Carathéodory functions is also needed for the theorems regarding quasiconvexity and
lower-semicontinuity mentioned above.

Finally, a generalization of the related notion of normal integrand to functions
over fiber bundles enables us to prove a generalization of a measurable selection the-
orem, which shows the existence of a measurable minimizing section (Theorem A.1
and Corollary A.1), which is needed in the proof of Lemma 4.2.
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Modeling issues and properties of the limit energy density The main assumption
on the energy density W is its homogeneity over fibers (other than that, there are
only regularity assumptions). In particular, we do not assume frame-indifference or
isotropy. However, if the energy density does satisfy either of them, so does the limit
energy density QW0; the proofs are essentially the same as in Theorems 9 and 13 in
[21]. Since our setting is not necessarily Euclidean, isotropy here means invariance
of the energy density under orientation preserving isometries of the relevant manifold
((M,g) in the case of W , (S,g|S) in the case of QW0). If W satisfies frame indiffer-
ence, the frame indifference of QW0 implies that the limit functional I depends on an
immersion F ∈W 1,p

bc (S;Rn), only through the pullback metric on S induced by F , that
is F?e. In other words, as expected, the only contribution to the membrane energy is
from stretching of the limiting submanifold, in contrast to bending dominated limits,
such as in [20].

The absence of bending contributions to the energy holds even without assuming
frame indifference, as the limiting energy functional depends only on first derivatives
of an immersion of the limiting submanifold S. Moreover, the membrane energy does
not “know” whether it is a limit of a Euclidean or a non-Euclidean problem, in the
following sense. Since dimS < n, the Nash-Kuiper embedding theorem implies that
S can be C1-isometrically embedded in the Euclidean space Rn. Consider (S,g|S) as
a sub-manifold of Rn, and let Ω ′h be its tubular neighborhoods; they are Euclidean
shells. We may then define an energy density W ′ on Ω ′h, with (W ′)0 =W0. The limit-
ing membrane model for S as a submanifold of (Rn,e) with energy density W ′ is the
same as the one obtained for S as a submanifold of (M,g) with energy density W .

The homogeneity over fibers assumption enables us to relate between energy den-
sities on the limit submanifold S and on the tubular neighborhoods Ωh, and is there-
fore essential to the proof of Proposition 4.2 (it can be slightly weakened as long
as Corollary 3.1 holds for some positive power of h). Indeed, in [7] and [4] it is
shown that for Euclidean plate membranes the limit energy density is substantially
different (and more complicated) when the inhomogeneity is in the normal directions
(when choosing coordinates, homogeneity over fibers allows inhomogeneity only in
the tangent directions). Note also that while homogeneity or inhomogeneity is usu-
ally stated in a specific coordinate system, our definition does not depend on the
coordinate system, hence it reveals the geometric essence of this notion. Moreover,
our coordinate-free approach can also be used to treat slender bodies of “varying
thickness”, considered in [7], since their notion of varying thickness is coordinate-
dependent and can be viewed as tubular neighborhoods of constant “thickness” when
M is endowed with an appropriate metric.

The stronger and more common notion of homogeneity (which was assumed
in [21,22]), implies that the energy density at one point determines it everywhere.
This notion can also be generalized to the non-Euclidean case via parallel transport.
Note, however, that unlike the Euclidean case, parallel transport is generally path-
dependent. Thus, while in the Euclidean case every energy density at a point extends
to a homogeneous energy density over the entire manifold, this is not so in the non-
Euclidean case. This issue does not arise in our analysis, as homogeneity over fibers
implies a specific choice of non-intersecting paths (the fibers) along which parallel
transport is calculated.
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A Measurability issues on Riemannian manifolds

The main result in this section is a generalization of a measurable selection theorem to fiber bundles over
manifolds. First, we give some basic definitions.

A.1 Normal integrands and Carathéodory functions

Definition A.1 Let M be an m-dimensional differentiable manifold. A function f : M→ R̄ is measurable
if for every chart X : U ⊂ Rm →M, f ◦X : U → R̄ is (Lebesgue) measurable. Similarly, if N is an n-
dimensional differentiable manifold, a function f :M→N is measurable if for every chart Y :V ⊂Rn→N,
Y−1 ◦ f ◦X is (Lebesgue) measurable on its domain of definition.

A standard argument shows that it is enough to check measurability over an atlas. This definition gives
a natural notion of Lebesgue-induced measurable subsets of a differentiable manifold (which obviously
contain the Borel σ -algebra); for short, we will call these subsets Lebesgue measurable. We may therefore
extend our definition of measurability to functions f : A→ N, where A is a (measurable) subset of M.
Again, similar to the Euclidean case, if {Ai} is a countable measurable partition of M, and fi : Ai→N are
measurable for every i, then f = ∪ fi : M→N is a measurable function.

A Riemannian metric on the differentiable manifold M induces a measure on this Lebesgue σ -algebra.
As in the Euclidean case, the corresponding Lp space coincides with the completion of the smooth func-
tions with respect to the Lp norm.

We now define the notions of normal integrands and Carathéodory functions. Let F ⊂ Rl be a Borel
set, and let π : E→M be a fiber bundle with fiber F . we define a “hybrid” σ -algebra on E as the σ -algebra
generated by the Borel σ -algebra on F and the Lebesgue σ -algebra on M.

Definition A.2 Let π : E→M be as above. A function f : E→ R̄ is a normal integrand if

1. f is measurable with respect to the hybrid σ -algebra.
2. for almost every p ∈M, f |Ep is lower-semicontinuous.

A normal integrand satisfies the following property: if ρ is a measurable section of E, then f ◦ ρ :
M→ R̄ is measurable. Note that the definition of a normal integrand can be extended to the case where
π : E→ A is a vector bundle over some measurable subset A⊂M.

Definition A.3 Let π : E→M be as above. A function f : E→ R̄ is a Carathéodory function if

1. for every smooth section ρ of E, f ◦ρ : M→ R̄ is measurable.
2. for almost every p ∈M, f |Ep is continuous.

These definitions coincide with the classical definitions of normal integrands and Carathéodory func-
tions over the trivial bundles Rn×F (see e.g. [12] or [28]). A standard argument, based on a local trivial-
ization of the bundle, shows that a function is a normal integrand (resp. Carathéodory function) if and only
if it is locally a normal integrand (resp. Carathéodory function) in the classical sense. It can therefore be
deduced that a function f is Carathéodory if and only if both f and (− f ) are normal integrands.

A.2 A measurable selection theorem

Theorem A.1 Let F ⊂Rl be a compact set, and let π : E→M be a fiber-bundle with fiber F. Let f : E→ R̄
be a normal integrand. Then there exists a measurable section ρ :M→ E such that for almost every p∈M

f ◦ρ(p) = min
ξ∈Ep
{ f (ξ )}.
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Proof : First, we cover M with a countable atlas Xi : Ui → M, where Ui are open sets in Rn, and let
Yi : Ui×F→ E be a corresponding atlas of E. By the measurable selection theorem for trivial bundles (see
e.g. [12]), there exists a measurable vi : Ui→ F such that

f ◦Yi(x,vi(x)) = min
a∈F

f ◦Yi(x,a) ∀x ∈Ui

Define ρi(p) = Yi(X−1
i (p),νi ◦X−1

i (p)). This is a measurable section of E|Xi(Ui) that satisfies

f ◦ρi(p) = min
ξ∈Ep
{ f (ξ )} ∀p ∈ Xi(Ui).

Define next a section ρ : M→ E by

ρ(p) = ρN(p), N = min{i ∈ N : p ∈Ui}.

ρ is obviously measurable and satisfies f ◦ρ(p) = minξ∈Ep{ f (ξ )} for almost every p ∈M. n

Corollary A.1 The theorem also holds for a normal integrand f ′ : E ′ → R̄, where π ′ : E ′ → A is a fiber
bundle with a compact fiber F over a base A which is a measurable subset of M.

Proof : Extend f ′ to f : E → R̄ by defining it to be −∞ on E \E ′. f is a normal integrand, hence we can
apply the theorem to f , and then restrict the resulting ρ : M→ E to A. n

B On quasiconvexity and lower-semicontinuity

In this section we prove Theorems 3.1–3.2 that generalize classical results on the relation between quasi-
convexity and lower-semicontinuity in the Riemannian setting. The proofs are basically applications of the
main results of [1]. Let (M,g) be a Riemannian manifold of finite volume that can be covered by a finite
number of charts, let U : T ∗M⊗Rm → R be a Carathéodory function that satisfies the growth condition
−β ≤U(q) ≤ C (1+ |q|p). The growth condition and the finite number of charts assumption imply that
when choosing coordinates, U satisfies the growth assumptions (II.2) and (II.6) in [1] (actually, U + β

satisfies the conditions, but since we assumed that M has finite volume, the addition of a constant to the
integrand is immaterial). First we prove Theorem 3.1:

Under the above conditions , the functional IA : W 1,p(A;Rm)→ R defined by

IA( f ) :=
∫

A
U(d f ) dvolg,

where A ⊂M is an open subset, is weakly sequential lower-semicontinuous for every A if and
only if U is quasiconvex.

Proof : First assume that IA is weakly sequential lower-semicontinuous in W 1,p(A;Rm) for some open
A⊂M contained in a coordinate neighborhood. Using coordinates, we apply Theorem [II.2] in [1], and get
that U is quasiconvex in T ∗A⊗Rm. Since quasiconvexity is a fiber-wise condition, if U |A is quasiconvex
for every open A⊂M, then U is quasiconvex (as in Definition 3.4).

Now assume that U is quasiconvex. Let f , fn ∈W 1,p(M;Rm) such that fn ⇀ f . We can partition
M, up to a null-set, into a finite number of disjoint open sets {Ai} such that for every i, Ai is contained
in a coordinate neighborhood. Since U is a Carathéodory quasiconvex function and satisfies the growth
condition (3.6), it follows from Theorem [II.4] in [1] that IAi is weakly sequential lower-semicontinuous
in W 1,p(M;Rm). Therefore,

liminf
n→∞

IM( fn) = ∑
i

liminf
n→∞

IAi ( fn|Ai )≥∑
i

IAi ( f |Ai ) = IM( f ),

which shows that IM is weakly sequential lower-semicontinuous, and therefore IA is weakly sequential
lower-semicontinuous for every open A⊂M. n

Next we prove Theorem 3.2:
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Under the above conditions, the weakly sequential lower-semicontinuous envelope of the func-
tional IM : W 1,p(M;Rm)→ R is Γ IM : W 1,p(M;Rm)→ R given by

Γ IM( f ) :=
∫
M

QU(d f ) dvolg,

where QU(q) = sup{V (q) : V ≤U is quasiconvex} is the quasiconvex envelope of U; moreover
QU is a Carathéodory quasiconvex function.

Proof : Let A⊂M be a coordinate neighborhood. We apply Statement [III.7] in [1] to get that the weakly
sequential lower-semicontinuous envelope of IA is

Γ IA( f ) :=
∫

A
Q(U |A)(d f ) dvolg.

Because quasiconvexity is a fiberwise condition, the restriction of the quasiconvex envelope is the qua-
siconvex envelope of the restriction, and therefore we can replace Q(U |A) with (QU)|A. Theorem [III.6]
in [1] implies that (QU)|A is a Carathéodory function, and since being a Carathéodory function is a lo-
cal condition (see Appendix A), we have that QU is indeed Carathéodory. It is also quasiconvex, since
generally the supremum of quasiconvex functions is quasiconvex (again, this is a fiberwise argument, and
therefore it is true since it holds in the Euclidean case). By Theorem 3.1, Γ IM is weakly sequential lower-
semicontinuous, hence it is bounded by the sequentially lower-semicontinuous envelope of IM, denoted
by ĨM.

Next, for a given f ∈W 1,∞(A;Rm)⊂W 1,p(A;Rm), Statement [III.7] also implies that for every ε > 0
there exists a sequence fn ∈ f +W 1,∞

0 (A;Rm) such that fn− f ∗⇀ 0 in W 1,∞
0 (A;Rm) and liminfn IA( fn) ≤

Γ IA( f )+ ε . This follows from the fact that in the notation of [1],

Γ IA( f ) = lim
r→∞

F0(r, f ,A) = lim
r→∞

[
inf{liminf

n→∞
IA( fk) : fn− f ∗⇀ 0 in W 1,∞

0 (A;Rm) and |dun|∞ ≤ r}
]
.

See also Theorem 3.8 in [25].
For the reverse inequality, let {Ai} be a finite partition (up to a null-set) of M, such that for every i, Ai

is an open set contained in a coordinate neighborhood, and let f ∈W 1,∞(M;Rm). Fix ε > 0. For every i,
let f n

i ∈ f |Ai +W 1,∞
0 (Ai;Rm) be a sequence such that f n

i − f |Ai
∗
⇀n 0 in W 1,∞

0 (Ai;Rm) and

liminf
n→∞

IAi ( f n
i )≤ Γ IA( f |Ai )+

ε

2i .

Obviously, f n := ∪i f n
i
∗
⇀ f in W 1,∞(M;Rm), and therefore

ĨM( f )≤ liminf
n→∞

IM( f n) = liminf
n→∞

∑
i

IAi ( f n
i )≤∑

i
Γ IA( f |Ai )+ ε = Γ IM( f )+ ε,

and since ε is arbitrary, it shows that ĨM( f ) ≤ Γ IM( f ) for every f ∈W 1,∞(M;Rm). To extend this to
W 1,p(M;Rm), observe that W 1,∞(M;Rm) is dense in W 1,p(M;Rm) with respect to the strong W 1,p topol-
ogy, and that Γ IM is continuous in W 1,p(M;Rm) with respect to this topology (see Proposition B.1 below).
Hence, given f ∈W 1,p(M;Rm), let fn ∈W 1,∞(M;Rm) such that fn→ f , and we obtain that

ĨM( f )≤ liminf
n→∞

ĨM( fn) = liminf
n→∞

Γ IM( fn) = Γ IM( f ),

which completes the proof.
n

The strong continuity of Γ IM follows from the following generalization of the Carathéodory conti-
nuity theorem:

Proposition B.1 Let M and U satisfy the assumptions as above. Then the functional IM : W 1,p(M;Rm)→
R is continuous with respect to the strong W 1,p topology.
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Proof : This is an immediate consequence of the analogous Euclidean proposition (see e.g. [10], Example
1.22). Indeed, let Ai be an open partition (up to a null set) of M, such that for every i, Ai is contained
in a coordinate neighborhood. For every i, U |Ai is a Carathéodory function that satisfies (3.6), since U
does. Hence, by the Carathéodory continuity theorem, IAi is strongly continuous in W 1,p(Ai;Rm). Let
f , fn ∈W 1,p(M;Rm) such that fn→ f . In particular, for every i, fn|Ai → f |Ai in W 1,p(Ai;Rm). Therefore,

lim
n→∞

IM( fn) = lim
n→∞

∑
i

IAi ( fn|Ai ) = ∑
i

IAi ( f |Ai ) = IM( f ).

n
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29. von Kármán, T.: Festigkeitsprobleme im maschinenbau. In: Encyclopädie der Mathematischen Wis-
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