
1. Hilbert spaces

1.1 Definitions

1.1.1 Vector spaces

Definition 1.1 — Vector space ( �*9&)8& "(9/). A vector space over a field F
is a set V that has the structure of an additive group. Moreover, a product
F ×V → V , denoted (a,x)� ax, is defined, satisfying:

¿ Distributivity in V : a(x+y) = ax+ay.
¡ Distributivity in F : (a +b)x = ax+bx.
¬ Homogeneity in F : a(bx) = (ab)x.
√ Scalar unit element: 1 ⋅x = x.

The elements of V are called vectors; the elements of F are called scalars.
Throughout this course the field F will be either the field of complex numbers C
(V is a complex vector space) or the field of reals R (V is a real vector space).

Definition 1.2 Let V be a vector space. A (finite) set of vectors {x1, . . . ,xn} ⊂V
is called linearly independent ( �;*9!*1*- .**&-; *;-") if the identity

n�
k=1

akxk = 0

implies that ak = 0 for all k. Otherwise, this set of elements is said to be linearly
dependent.
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Definition 1.3 If a vector space V contains n linearly independent vectors and
every n+1 vectors are linearly dependent, then we say that V has dimension n:

dimV = n.

If dimV ≠ n for every n ∈N (for every n there exist n linearly independent vectors)
then we say that V has infinite dimension.

Proposition 1.1 Let V be a vector space. Suppose that dimV = n and let(x1, . . . ,xn) be linearly independent (a basis). Then, every y ∈ V has a unique
representation

y = n�
k=1

akxk.

Proof. Obvious. �
Definition 1.4 Let V be a vector space. A subset Y ⊂ V is called a vector
subspace (�*9&)8& "(9/ ;;) (or a linear subspace) if it is a vector space with
respect to the same addition and scalar multiplication operations (the vector space
structure on Y is inherited from the vector space structure on V ).

Proposition 1.2 Let V be a vector space. A subset Y ⊂ V is a vector subspace
if and only if 0 ∈Y and for all y1,y2 ∈Y and a1,a2 ∈F ,

a1y1+a2y2 ∈Y ,

i.e., the subset Y is closed under linear combinations.

Proof. Easy. �
Comment 1.1 By definition, every linear subspace is closed under vector space
operations (it is algebraically closed). This should not be confused with the topo-
logical notion of closedness, which is defined once we endow the vector space with
a topology. A linear subspace may not be closed in the topological sense.

Definition 1.5 Let V and Y be vector spaces over the same field F ; let D ⊆ V
be a vector subspace. A mapping T ∶D →Y is said to be a linear transforma-
tion ( �;*9!*1*- %8;3%) if for all x1,x2 ∈D and a1a2 ∈F :

T(a1x1+a2x2) = a1 T(x1)+a2T(x2).



1.1 Definitions 9

The set D is called the domain ( �.&(;) of T . The set

Image(T) = {T(x) ∶ x ∈D} ⊆Y

is called the image (�%1&/;) of T . If D = V =Y we call T a linear transformation
on V . If Y =F we call T a linear functional (�*9!*1*- -1&*781&5).

Comment 1.2 Linear transformations preserve the vector space operations, and
are therefore the natural isomorphisms in the category of vector spaces. This should
be kept in mind, as the natural isomorphisms may change as we endow the vector
space with additional structure1.

Inverse transformation

If T ∶ Domain(T) → Image(T) is one-to-one (injective) then we can define an
inverse transformation

T−1 ∶ Image(T)→Domain(T),
such that

T−1(T x) = x and T(T−1y) = y

for all x ∈Domain(T) and y ∈ Image(T).
Notation 1.1 In these notes we will use A�B to denote injections, A�B to denote
surjections, and A� B to denote bijections.

Proposition 1.3 Let V be a vector space and D ⊂ V a linear subspace. Let
T ∶D →Y be a linear transformation. Then, Image(T) is a linear subspace of Y .

Proof. Since 0 ∈D ,
Image(T) ∋ T(0) = 0.

Let x,y ∈ Image(T). By definition, there exist u,v ∈D such that

x = T(u) and y = T(v).
By the linearity of T , for every a,b ∈F :

Image(T) ∋ T(au+bv) = ax+by.

Thus, Image(T) is closed under linear combinations. �
1A digression on categories: A category is an algebraic structure that comprises objects that are

linked by morphisms. A category has two basic properties: the ability to compose the morphisms
associatively and the existence of an identity morphism for each object.

A simple example is the category of sets, whose morphisms are functions. Another example is
the category of groups, whose morphisms are homomorphisms. A third example is the category
of topological spaces, whose morphisms are the continuous functions. As you can see, the chosen
morphisms are not just arbitrary associative maps. They are maps that preserve a certain structure in
each class of objects.
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1.1.2 Normed spaces

A vector space is a set endowed with an algebraic structure. We now endow vector
spaces with additional structures – all of them involving topologies. Thus, the vector
space is endowed with a notion of convergence.

Definition 1.6 — Metric space. A metric space ( �*9)/ "(9/) is a set X ,
endowed with a function d ∶X ×X →R, such that

¿ Positivity: d(x,y) ≥ 0 with equality iff x = y.
¡ Symmetry: d(x,y) = d(y,x).
¬ Triangle inequality: d(x,y) ≤ d(x,z)+d(z,y).

Please note that a metric space does not need to be a vector space. On the other
hand, a metric defines a topology on X generated by open balls,

B(x,r) = {y ∈X � d(x,y) < r}.
As topological spaces, metric spaces are paracompact (every open cover has an open
refinement that is locally finite), Hausdorff spaces, and hence normal (given any
disjoint closed sets E and F , there are open neighborhoods U of E and V of F that
are also disjoint). Metric spaces are first countable (each point has a countable
neighborhood base) since one can use balls with rational radius as a neighborhood
base.

Definition 1.7 — Norm. A norm (�%/9&1) over a vector space V is a mapping� ⋅� ∶ V →R such that

¿ Positivity: �x� ≥ 0 with equality iff x = 0.
¡ Homogeneity: �ax� = �a ��x�.
¬ Triangle inequality: �x+y� ≤ �x�+�y�.

A normed space ( �*/9&1 "(9/) is a pair (V ,� ⋅�), where V is a vector space and� ⋅� is a norm over V .

A norm is a function that assigns a size to vectors. Any norm on a vector space
induces a metric:

Proposition 1.4 Let (V ,� ⋅�) be a normed space. Then

d(x,y) = �x−y�
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is a metric on V .

Proof. Obvious. �
The converse is not necessarily true unless certain conditions hold:

Proposition 1.5 Let V be a vector space endowed with a metric d. If the follow-
ing two conditions hold:

¿ Translation invariance: d(x+ z,y+ z) = d(x,y)
¡ Homogeneity: d(ax,ay) = �a �d(x,y),

then �x� = d(x,0)
is a norm on V .

Exercise 1.1 Prove Prop. 1.5. �

1.1.3 Inner-product spaces

Vector spaces are a very useful construct (e.g., in physics). But to be even more
useful, we often need to endow them with structure beyond the notion of a size.

Definition 1.8 — Inner product space. A complex vector field V is called
an inner-product space (�;*/*15 %-5,/ "(9/) if there exists a product (⋅, ⋅) ∶
V ×V →C, satisfying:

¿ Symmetry: (x,y) = (y,x).
¡ Bilinearity: (x+y,z) = (x,z)+(y,z).
¬ Homogeneity: (ax,y) = a(x,y).
√ Positivity: (x,x) ≥ 0 with equality iff x = 0.

An inner-product space is also called a pre-Hilbert space.

Proposition 1.6 An inner-product (H,(⋅, ⋅)) space satisfies:
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¿ (x,y+ z) = (x,y)+(x,z).
¡ (x,ay) = a(x,y).

Proof. Obvious. �

Proposition 1.7 — Cauchy-Schwarz inequality. Let (H,(⋅, ⋅)) be an inner-
product space. Define � ⋅� = (⋅, ⋅)1�2. Then, for every x,y ∈H,

�(x,y)� ≤ �x��y�.

Proof. There are many different proofs to this proposition2. For x,y ∈ H define
u = x��x� and v = y��y�. Using the positivity, symmetry, and bilinearity of the
inner-product:

0 ≤ (u−(u,v)v,u−(u,v)v)
= 1+ �(u,v)�2− �(u,v)�2− �(u,v)�2
= 1− �(u,v)�2.

That is, �(x,y)�
�x��y� ≤ 1.

Equality holds if and only if u and v are co-linear, i.e., if and only if x and y are
co-linear. �

Corollary 1.8 — Triangle inequality. In every inner product space H,

�x+y� ≤ �x�+�y�.

Proof. Applying the Cauchy-Schwarz inequality

�x+y�2 = (x+y,x+y) = �x�2+�y�2+2Re(x,y)
≤ �x�2+�y�2+2�(x,y)�
≤ �x�2+�y�2+2�x��y� = (�x�+�y�)2.

�
2There is a book called The Cauchy-Schwarz Master Class which presents more proofs that you

want.
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Corollary 1.9 An inner-product space is a normed space with respect to the
norm: �x� = (x,x)1�2.

Proof. Obvious. �
Thus, every inner-product space is automatically a normed space and consequently
a metric space. The (default) topology associated with an inner-product space is that
induced by the metric (i..e, the open sets are generated by open metric balls).

Exercise 1.2 Show that the inner product (H,(⋅, ⋅)) is continuous with respect
to each of its arguments:

(∀x,y ∈H)(∀e > 0)(∃d > 0) ∶ (∀z ∈H � �z−x� < d)(�(z,y)−(x,y)� < e).
�

Exercise 1.3 Let (H,(⋅, ⋅)) be a complex inner-product space. Define

�x,y� =Re(x,y).
Show that (H,�⋅, ⋅�) is a real inner-product space. �

Exercise 1.4 Prove that if a collection of non-zero vectors {x1, . . . ,xn} in an
inner-product space are mutually orthogonal then they are linearly independent.
�

Exercise 1.5 Prove that in an inner-product space x = 0 iff (x,y) = 0 for all y. �

Exercise 1.6 Let (H,(⋅, ⋅)) be an inner-product space. Show that the following
conditions are equivalent:

¿ (x,y) = 0.
¡ �x+ly� = �x−ly� for all l ∈C.
¬ �x� ≤ �x+ly� for all l ∈C.
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�

Exercise 1.7 Consider the vector space V = C1[0,1] (continuously-
differentiable functions over the unit interval) and define the product (⋅, ⋅) ∶
V ×V →C:

( f ,g) =� 1

0
f (x)g(x)dx.

¿ Is (⋅, ⋅) an inner-product?
¡ Set V0 = { f ∈ V � f (0) = 0}. Is (V0,(⋅, ⋅)) an inner-product?

�

Proposition 1.10 — Parallelogram identity ( �;*-*"8/% 0&*&&:). In every inner-
product space (H,(⋅, ⋅)):

�x+y�2+�x−y�2 = 2��x�2+�y�2� .
(This equation is called the parallelogram identity because it asserts that in a
parallelogram the sum of the squares of the sides equals to the sum of the squares
of the diagonals.)

x

y

x+y

x−y

Proof. For every x,y ∈H:

�x±y�2 = �x�2+�y�2±2 Re(x,y).
The identity follows from adding both equations. �
An inner product defines a norm. What about a converse? Suppose we are given
the the norm induced by an inner product. Can we recover the inner product? The
answer is positive, as shown by the following proposition:
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Proposition 1.11 — Polarization identity (�%*7'*9-&5% ;&%'). In an inner-product
space (H,(⋅, ⋅)),

(x,y) = 1
4
��x+y�2−�x−y�2+ ı�x+ ıy�2− ı�x− ıy�2� .

Proof. It is easy to see that

�x+y�2−�x−y�2 = 4 Re(x,y).
Setting y� ıy,

�x+ ıy�2−�x− ıy�2 = −4 Re ı(x,y) = 4 Im(x,y).
Multiplying the second equation by ı and adding it to the first equation we obtain
the desired result. �
Comment 1.3 In a real inner-product space:

(x,y) = 1
4
��x+y�2−�x−y�2� .

Definition 1.9 Let (H,(⋅, ⋅)) be an inner-product space. x,y ∈H are said to be
orthogonal ( �.*"7*1) if (x,y) = 0; we denote x ⊥ y.

Proposition 1.12 Orthogonal vectors in an inner-product space satisfy Pytago-
ras’ law: �x+y�2 = �x�2+�y�2.

Proof. Obvious. �

Exercise 1.8 Show that a norm � ⋅� over a real vector space V is induced from
an inner-product over V if and only if the parallelogram law holds. Hint: set

(x,y) = 1
2
��x+y�2−�x�2−�y�2� ,

and show that it is an inner product and that the induced norm is indeed � ⋅�. �



16 Hilbert spaces

Exercise 1.9 Show that the `p spaces (the spaces of sequences with the appro-
priate norms) can be turned into an inner-product space (i.e., the norm can be
induced from an inner-product) only for p = 2. �

1.1.4 Hilbert spaces

Definition 1.10 — Hilbert space. A complete inner-product space is called a
Hilbert space. (Recall: a space is complete ( �.-:) if every Cauchy sequence
converges.)

Comment 1.4 An inner-product space (H,(⋅, ⋅)) is a Hilbert space if it is complete
with respect to the metric

d(x,y) = (x−y,x−y)1�2.
Completeness is a property of metric spaces. A sequence (xn) ⊂H is a Cauchy
sequence if for all e > 0 there exists an N ∈N such that for every m,n >N:

�xn−xm� < e.

Exercise 1.10 Let H1, . . . ,Hn be a finite collection of inner-product spaces.
Define the space

H =H1×⋅ ⋅ ⋅×Hn,

along with coordinate-wise vector space operations. Define a product (⋅, ⋅)H ∶
H×H→C:

((x1, . . . ,xn),(y1, . . . ,yn))H = n�
k=1
(xk,yk)Hk .

¿ Show that (⋅, ⋅)H is an inner-product on H.
¡ Show that convergence in H is equivalent to component-wise convergence

in each of the Hk.
¬ Show that H is complete if and only if all the Hk are complete.

�

We mentioned the fact that an inner-product space is also called a pre-Hilbert space.
The reason for this nomenclature is the following theorem: any inner-product space
can be completed canonically into a Hilbert space. This completion is analogous to
the completion of the field of rationals into the field of reals.
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Theorem 1.13 — Completion. Let (G ,(⋅, ⋅)G ) be an inner-product space. Then,
there exists a Hilbert space (H ,(⋅, ⋅)H ), such that:

¿ There exists a linear injection T ∶ G �H , that preserves the inner-product,(x,y)G = (T x,Ty)H for all x,y ∈ G (i.e., elements in G can be identified
with elements in H ).

¡ Image(T) is dense in H (i.e., G is identified with “almost all of" H ).

Moreover, the inclusion of G in H is unique: For any linear inner-product
preserving injection T1 ∶ G �H1 where H1 is a Hilbert space and Image(T1) is
dense in H1, there is a linear isomorphism S ∶H �H1, such that T1 = S○T (i.e.,
H and H1 are isomorphic in the category of inner-product spaces). In other
words, the completion G is unique modulo isomorphisms.

Proof. We start by defining the space H . Consider the set of Cauchy sequences(xn) in G . Two Cauchy sequences (xn) and (yn) are defined to be equivalent
(denoted (xn) ∼ (yn)) if

lim
n→∞�xn−yn� = 0.

It is easy to see that this establishes an equivalence relation among all Cauchy
sequences in G . We denote the equivalence class of a Cauchy sequence (xn) by [xn]
and define H as the set of equivalence classes.

We endow H with a vector space structure by defining

a[xn]+b [yn] = [axn+b zn].
(It is easy to see that this definition is independent of representing elements.)

Let (xn) and (yn) be Cauchy sequence in G . Consider the series

lim
n→∞(xn,yn)G .

This limit exists because

�(xn,yn)G −(xm,ym)G � = �(xn,yn)G −(xn,ym)G +(xn,ym)G −(xm,ym)G �
(triangle ineq.) ≤ �(xn,yn−ym)G �+ �(xn−xm,ym)G �

(Cauchy-Schwarz) ≤ �xn�G �yn−ym�G +�xn−xm��ym�G ,
Since Cauchy sequences are bounded (easy!), there exists an M > 0 such that for all
m,n, �(xn,yn)G −(xm,ym)G � ≤M (�yn−ym�G +�xn−xm�G ) .
It follows that (xn,yn)G is a Cauchy sequence in F , hence converges (because F is
complete).
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Moreover, if (un) ∼ (xn) and (vn) ∼ (yn) then,

�(xn,yn)G −(un,vn)G � = �(xn,yn)G −(xn,vn)G +(xn,vn)G −(un,vn)G �≤ �(xn,yn−vn)G �+ �(xn−un,vn)G �≤ �xn�G �yn−vn�G +�xn−vn�G �vn�G ,
from which follows that

lim
n→∞(xn,yn)G = lim

n→∞(un,vn)G .
Thus, we can define unambiguously a product (⋅, ⋅)H ∶H →F ;

([xn],[yn])H = lim
n→∞(xn,yn)G .

It remains to show that (⋅, ⋅)H is indeed an inner product (do it).

The next step is to define the inclusion T ∶ G �H . For x ∈ G let

T x = [(x,x, . . .)],
namely, it maps every vector in G into the equivalence class of a constant sequence.
By the definition of the linear structure on H , T is linear. It is preserves the
inner-product as

(T x,Ty)H = lim
n→∞((T x)n,(Ty)n)G = lim

n→∞(x,y)G = (x,y)G .
The next step is to show that Image(T) is dense in H . Let h ∈H and let (xn) be a
representative of h. Since (xn) is a Cauchy sequence in G ,

lim
n→∞�T xn−h�H = lim

n→∞ lim
k→∞�xn−xk�G = 0.

which proves that T xn→ h, and therefore Image(T) is dense in H .

The next step is to show that H is complete. Let (hn) be a Cauchy sequence in
H . For every n let (xn,k) be a Cauchy sequence in G in the equivalence class of hn.
Since Image(T) is dense in H , there exists for every n a yn ∈ G , such that

�Tyn−hn�H = lim
k→∞�yn−xn,k�G ≤ 1

n
.

It follows that

�yn−ym�G = �Tyn−Tym�H≤ �Tyn−hn�H +�hn−hm�H +�hm−Tym�H
≤ �hn−hm�H + 1

n
+ 1

m
,

i.e., (yn) is a Cauchy sequence in G and therefore h = [yn] is an element of H .
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We will show that
lim

n→∞�hn−h�H = 0,

which will prove that any Cauchy sequence in H converges.

By definition,
lim

n→∞�hn−h�H = lim
n→∞ lim

k→∞�xn,k −yk�G .
Now �xn,k −yk�G ≤ �xn,k −yn�G +�yn−yk�G ,
and

lim
n→∞ lim

k→∞�xn,k −yn�G ≤ lim
n→∞

1
n
= 0 and lim

n→∞ lim
k→∞�yn−yk�G = 0.

The last step is to show the uniqueness of the completion modulo isomorphisms. Let
h ∈H . Since Image(T) is dense in H , there exists a sequence (yn) ⊂ G , such that

lim
n→∞�Tyn−h�H = 0.

It follows that (Tyn) is a Cauchy sequence in H , and because T preserves the
inner-product, (yn) is a Cauchy sequence in G . It follows that (T1yn) is a Cauchy
sequence in H1, and because the latter is complete (T1yn) has a limit in H1. This
limit is independent of the choice of the sequence (yn), hence it is a function of h,
which we denote by

S(h) = lim
n→∞T1Yn.

We leave it as an exercise to show that S satisfies the required properties. �

Exercise 1.11 Complete the missing details in the above proof. �

1.1.5 Examples of Hilbert spaces

1. The space Rn is a real vector space. The mapping

(x,y)� n�
i=1

xiyi

is an inner product. The induced metric

d(x,y) = � n�
i=1
(xi−yi)2�

1�2

is called the Euclidean metric. It is known that Rn is complete with respect to
this metric, hence it is a Hilbert space (in fact, any finite-dimensional normed
space is complete, so that the notion of completeness is only of interest in
infinite-dimensional spaces).
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2. The space Cn is a complex vector space. The mapping

(x,y)� n�
i=1

xiyi

as an inner product. Cn endowed with this metric is a Hilbert space.
3. Consider the space of square summable sequences:

`2 = �x ∈CN � ∞�
n=1
�xn�2 <∞� .

It is a complex vector space with respect to pointwise operations. We define

(x,y) = ∞�
i=1

xiyi.

This series converges absolutely as for every finite n, the Cauchy-Schwarz
inequality implies:

n�
i=1
�xiyi� ≤ � n�

i=1
�xi�2�

1�2� n�
i=1
�yi�2�

1�2
,

and the right hand side is uniformly bounded. It can be shown that `2 is
complete. Moreover, it is easy to show that the subset of rational-valued
sequences that have a finite number of non-zero terms is dense in `2, i.e., `2 is
a separable ( �*-*952) Hilbert space (has a countable dense subset).

Exercise 1.12 Prove (“by hand") that `2 is complete. �

4. Let W be a bounded set in Rn and let C(W) be the set of continuous complex-
valued functions on its closure3. This space is made into a complex vector
space by pointwise addition and scalar multiplication:

( f +g)(x) = f (x)+g(x) and (a f )(x) = a f (x).
We define on C(W) an inner product

( f ,g) =�
W

f (x)g(x)dx,

with the corresponding norm:

� f � = ��
W
� f (x)�2 dx�1�2

.

3The fact that the domain is compact is crucial; we shall see later in this course that such a structure
cannot be applied for continuous functions over open domains.
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This space is not complete and hence not a Hilbert space. To show that, let
x0 ∈W and r > 0 be such that B(x0,2r) ⊂W. Define the sequence of functions,

fn(x) =
�����������

1 �x−x0� ≤ r
1+n(r− �x−x0�) r ≤ �x−x0� ≤ r+1�n
0 �x−x0� > 1+1�n,

which are defined for sufficiently large n.

x0

fn = 1 fn = 0

The functions fn are continuous and converge pointwise to the discontinuous
function

f (x) = �������
1 �x−x0� ≤ r
0 �x−x0� > r.

The sequence ( fn) is a Cauchy sequence as for n >m,

� fn− fm� ≤ (�B(x0,r+1�m)�B(x0,r)�)1�2 ,
which tends to zero as m,n→∞. Suppose that the space was complete. It
would imply the existence of a function g ∈C(W), such that

lim
n→∞� fn−g� = lim

n→∞��W
� fn(x)−g(x)�2�1�2 = 0.

By Lebesgue’s bounded convergence (�%/&2(% ;&21,;%% )5:/) theorem

lim
n→∞� fn−g� = lim

n→∞��W
� f (x)−g(x)�2�1�2 = 0,

i.e., g = f a.e., which is a contradiction.
The completion of C(W) with respect to this metric is isomorphic to the
Hilbert space L2(W) of square integrable functions.

Comment 1.5 The construction provided by the completion theorem is not conve-
nient to work with. We prefer to work with functions rather than with equivalence
classes of Cauchy sequences of functions.

TA material 1.1 — Hilbert-Schmidt matrices. Let M be a collection of all infinite
matrices over C that only have a finite number of non-zero elements. For A ∈M
we denote by n(A) the smallest number for which Ai j = 0 for all i, j > n(A). (i)
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Show that M is a vector space over C with respect to matrix addition and scalar
multiplication. (ii) Define (A,B) = Tr(AB∗)
and show that it is an inner-product. (iii) Show that M is not complete. (iv) Show
that it is possible to identify the completion H of M with the set

H = �������A = (ai j)∞i, j=1 � ∞�
i, j=1
�ai j�2 <∞

������� ,
along with the inner-product

(A,B) = ∞�
i, j=1

Ai jBi j.

This space is known as the space of Hilbert-Schmidt matrices.

Exercise 1.13 Prove that every finite-dimensional inner product space is com-
plete (and hence a Hilbert space). �

TA material 1.2 — Sobolev spaces. Endow the space Ck(R) with the inner-
product

( f ,g) =�
i≤k
�
R

di f
dxi

dig
dxi

dx�
Its completion is denoted Hk(R) (or W k,2(R)). Define the notion of a weak deriva-
tive and show that if it exists, then it is unique. Show how to identify Hk(R) with
the space of functions that have square-integrable k weak derivatives.

1.2 Convexity and projection

Orthogonality is one of the central concepts in the theory of Hilbert spaces. Another
concept, intimately related to orthogonality, is orthogonal projection (�;"7*1 %-)%).
Before getting to projections we need to develop the notion of a convex set. Convex-
ity, is a purely algebraic concept, but as we will see, it interacts with the topology
induced by the inner-product.

1.2.1 Convexity

Definition 1.11 — Convex set. Let V be a vector space. A subset C ⊂ V is
called convex (�9&/8) if

∀x,y ∈C and ∀0 ≤ t ≤ 1 tx+(1− t)y ∈C .
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(The segment that connects any two points in C is in C ). Differently stated, for
all t ∈ [0,1]:

tC +(1− t)C ⊂C .

C

A

B

Lemma 1.14 For any collection of sets {C
a

} and D
a

and every t ∈R:

t �
a∈AC

a

= �
a∈AtC

a

,

and �
a∈AC

a

+�
a∈AD

a

⊂ �
a∈A(Ca

+D
a

).

Proof. First,
t �

a∈AC
a

= {tx � x ∈C
a

∀a} = �
a∈AtC

a

.

Second, if
x ∈ �

a∈AC
a

+�
a∈AD

a

,

then there is a c ∈ C
a

for all a and a d ∈ D
b

for all b , such that x = c+d. Now
c+d =C

a

+D
a

for all a , hence

x ∈ �
a∈A(Ca

+D
a

).
�

Proposition 1.15 — Convexity is closed under intersections. Let V be a
vector space. Let {C

a

⊂ V � a ∈ A} be a collection of convex sets (not necessarily
countable). Then

C = �
a∈AC

a

is convex.
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Proof. An “obscure" proof relies on Lemma 1.14. For all t ∈ [0,1]:
tC +(1− t)C = t �

a∈AC
a

+(1− t)�
a∈AC

a

= �
a∈AtC

a

+�
a∈A(1− t)C

a

⊂ �
a∈A(tCa

+(1− t)C
a

)
⊂ �

a∈AC
a

=C .

Now for a more transparent proof: let x,y ∈C . By definition:

(∀a ∈ A)(x,y ∈C
a

).
Since all the C

a

are convex:

(∀a ∈ A)(∀0 ≤ t ≤ 1)(tx+(1− t)y ∈C
a

) .
Interchanging the order of the quantifiers,

(∀0 ≤ t ≤ 1)(∀a ∈ A)(tx+(1− t)y ∈C
a

) ,
which implies that (∀0 ≤ t ≤ 1)(tx+(1− t)y ∈C ).

�

Proposition 1.16 — Convex sets are closed under convex linear combina-
tions. Let V be a vector space. Let C ⊂ V be a convex set. Then for every(x1, . . . ,xn) ⊂C and every non-negative (t1, . . . ,tn) real numbers that sum up to 1,

n�
i=1

tixi ∈C . (1.1)

Proof. Equation (1.1) holds for n = 2 by the very definition of convexity. Suppose
(1.1) were true for n = k. Given

(x1, . . . ,xk+1) ⊂C and (t1, . . . ,tk+1) ≥ 0,
k+1�
i=1

ti = 1,

define t =∑k
i=1 ti. Then,

k+1�
i=1

tixi = k�
i=1

tixi+ tk+1xk+1 = t
k�

i=1

ti
t

xi

�����������∈C

+(1− t)xk+1

�����������������������������������������������������������������������������������������������������������∈C �
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Proposition 1.17 Let (X ,� ⋅�) be a normed space and C ⊂X a convex subset.
Then,

¿ The closure C is convex.
¡ The interior C ○ is convex.

Comment 1.6 Interior and closure are topological concepts, whereas convexity is
a vector space concept. The connection between the two stems from the fact that a
normed space has both a topology and a vector space structure.

Proof. ¿ Let x,y ∈C . For every e > 0 there are points x
e

,y
e

∈C with

�x−x
e

� < e and �y−y
e

� < e.

Let 0 ≤ t ≤ 1. Then, tx
e

+(1− t)y
e

∈C and

�(tx+(1− t)y)−(tx
e

+(1− t)y
e

)� ≤ t�x−x
e

�+(1− t)�y−y
e

� < e,

which implies that tx+(1− t)y ∈C , hence C is convex.

¡ Let x,y ∈C ○. By definition of the interior there exists an r > 0 such that

B(x,r) ⊂C and B(y,r) ⊂C .

Since C is convex,

∀t ∈ [0,1] t B(x,r)+(1− t)B(y,r) ⊂C ,

but
B(tx+(1− t)y,r) ⊂ t B(x,r)+(1− t)B(y,r),

which proves that tx+(1− t)y ∈C ○. Hence, C ○ is convex.

x ytx+(1− t)y

�
� Examples 1.1

• Every open ball B(a,r) in a normed vector space is convex, for if x,y ∈
B(a,r), then for all 0 ≤ t ≤ 1:

�tx+(1− t)y−a� = �t(x−a)+(1− t)(y−a)� ≤ t �x−a�+(1− t)�y−a� < r.
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• Every linear subspace of a vector space is convex, because it is closed under
any linear combinations and in particular, convex ones. For example, let
V = L2[0,1] and let C be the subset of polynomials. C is a linear subspace
of V , hence it is convex.

• Let W ⊂Rn be a domain and consider the Hilbert space L2(W). The subset of
functions that are non-negative (up to a set of measure zero) is convex (but it
is not a linear subspace).

�

Exercise 1.14 Let V be a vector space and C ⊂ V . The convex hull (�9W/8) of
C is defined by

Conv(C) = {x ∈ V � x is a convex combinations of elements in C} .
Show that Conv(C) is the smallest convex set that contains C. �

Exercise 1.15

¿ Prove Carathéodory’s theorem: let A ⊂ Rn and let x ∈ Conv(A). Then x
is a convex combination of n+1 points in A or less. (Hint: suppose that
x is a convex combination of x1, . . . ,xp ∈ A, where p > n+1. Use the fact
that {xi−x1}p

i=2 are linearly dependent to show that x can be written as a
convex sum of p−1 points).

¡ Show that Carathéodory’s theorem may fail if the dimension of the vector
space is infinite.

�

1.2.2 Orthogonal projection

Definition 1.12 Let (H,(⋅, ⋅)) be an inner-product space, and let S ⊂H (it can
be any subset; not necessarily a vector subspace). We denote by S⊥ the set of
vectors that are perpendicular to all the elements in S ,

S⊥ = {x ∈H � (x,y) = 0 ∀y ∈ S}.
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Proposition 1.18 Let (H,(⋅, ⋅)) be an inner-product space. Let S ⊂H. The setS⊥ is a closed linear subspace of H, and

S ∩S⊥ ⊂ {0},

Proof. We start by showing that S⊥ is a linear subspace. Let x,y ∈ S⊥, i.e.,

∀z ∈ S (x,z) = (y,z) = 0.

For all a,b ∈F ,

∀z ∈ S (ax+by,z) = a(x,z)+b(y,z) = 0,

which implies that ax+by ∈ S⊥, i.e., S⊥ is a linear subspace.

We next show that S⊥ is closed. Let (xn) be a sequence in S⊥ that converges to
x ∈H. By the continuity of the inner product,

∀z ∈ S (x,z) = lim
n→∞(xn,z) = 0,

i.e., x ∈ S⊥.
Suppose x ∈ S ∩S⊥. As an element in S⊥, x is orthogonal to all the elements in S,
and in particular to itself, hence (x,x) = 0, which by the defining property of the
inner-product implies that x = 0. �

Exercise 1.16 Show that S⊥ = �
x∈S{x}

⊥.
�

Exercise 1.17

¿ Show that if M and N are closed subspaces of a Hilbert space H , and N
is finite dimensional, then M+N is a closed subspace (hint: induction on
the dimension of N).

¡ Show that M+N may not be closed if N is infinite dimensional.

�
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The following theorem states that given a closed convex set C in a Hilbert space H ,
every point in H has a unique point in C that is the closest to it among all points in
C :

Theorem 1.19 Let (H ,(⋅, ⋅)) be a Hilbert space and C ⊂H closed and convex.
Then, ∀x ∈H ∃!y ∈C such that �x−y� = d(x,C ),
where

d(x,C ) = inf
y∈C �x−y�.

The mapping x� y is called the projection (�%-)%) of x onto the set C and it is
denoted by PC .

Comment 1.7 Note the conditions of this theorem. The space must be complete
and the subset must be convex and closed. We will see how these conditions are
needed in the proof. A very important point is that the space must be an inner-product
space. Projections do not generally exist in (complete) normed spaces.

Proof. We start by showing the existence of a distance minimizer. By the definition
of the infimum, there exists a sequence (yn) ⊂C satisfying,

lim
n→∞d(x,yn) = d(x,C ).

Since C is convex, 1
2(yn+ym) ∈C for all m,n, and therefore,

�1
2(yn+ym)−x� ≥ d(x,C ).

By the parallelogram identity (which is where the inner-product property enters),�a−b�2 = 2(�a�2+2�b�2)−�a+b�2, and so

0 ≤ �yn−ym�2 = �(yn−x)−(ym−x)�2
= 2�yn−x�2+2�ym−x�2−�yn+ym−2x�2
≤ 2�yn−x�2+2�ym−x�2−2d(x,C ) m,n→∞�→ 0.

It follows that (yn) is a Cauchy sequence and hence converges to a limit y (which is
where completeness is essential). Since C is closed, y ∈C . Finally, by the continuity
of the norm, �x−y� = lim

n→∞�x−yn� = d(x,C ),
which completes the existence proof of a distance minimizer.

Next, we show the uniqueness of the distance minimizer. Suppose that y,z ∈C both
satisfy �y−x� = �z−x� = d(x,C ).
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By the parallelogram identity,

�y+ z−2x�2+�y− z�2 = 2�y−x�2+2�z−x�2,
i.e.,

� y+z
2 −x�2 = d2(x,C )− 1

4�y− z�.
If y ≠ z then (y+ z)�2, which belongs to C is closer to x than the distance of x from
C , which is a contradiction.

C 
x 

y 

z 

(y+z)/2 

�
TA material 1.3 — Projections in Banach spaces. The existence of a unique
projection does not hold in general in complete normed spaces (i.e., Banach spaces).
A distance minimizer does exist in finite-dimensional normed spaces, but it may not
be unique)=. In infinite-dimensional Banach spaces distance minimizers may fail to
exist.

TA material 1.4 — Conditional expectations. The following is an important ap-
plication of orthogonal projections. Let (W,F ,P) be a probability space, and let
A ⊂F be a sub-s -algebra. Let X ∶W→C be a random variable (i.e., a measurable
function) satisfying �X�1 <∞. The random variable Y ∶W→C is called the condi-
tional expectation of X with respect to the s -algebra A if (i) Y is A -measurable,
and (ii) for every A ∈A ,

�
A

Y dP =�
A

X dP.

Prove that the conditional expectation exists and is unique in L1(W,F ,P). (Note
that L1 is not a Hilbert space, so that the construction has to start with the subspace
L2(W,F ,P), and end up with a density argument.)

Proposition 1.20 Let H be a Hilbert space. Let C be a closed convex set. The
mapping PC ∶H →C is idempotent, PC ○PC = PC .

Proof. Obvious, since PC = Id on C . �
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Exercise 1.18 Let (H ,(⋅, ⋅)) be a Hilbert space and let PA and PB be orthogonal
projections on closed subspaces A and B.

¿ Show that if PAPB is an orthogonal projection then it projects on A∩B.
¡ Show that PAPB is an orthogonal projection if and only if PAPB = PBPA.
¬ Show that if PAPB is an orthogonal projection then PA+PB−PAPB is an

orthogonal projection on A+B.
√ Find an example in which PAPB ≠ PBPA.

�

The next proposition has a geometric interpretation: the segment connecting a
point x �∈ C with its projection PC x makes an obtuse angle with any segment con-
necting PC x with another point in C . The proposition states that this is in fact a
characterization of the projection.

Proposition 1.21 Let C be a closed convex set in a Hilbert space (H ,(⋅, ⋅)).
Then for every x ∈H ,

z = PC x

if and only if

z ∈C and ∀y ∈C Re(x− z,y− z) ≤ 0.

x

y

z = PC x

C

Proof. Suppose first that z = PC x. By definition z ∈C . Let y ∈C . Since C is convex
then ty+(1− t)z ∋C for all t ∈ [0,1], and since z is the unique distance minimizer
from x in C :

0 > �x− z�2−�x−(ty+(1− t)z)�2
= �x− z�2−�(x− z)− t(y− z)�2
= −t2�y− z�2+2t Re(x− z,y− z).

Thus, for all 0 < t ≤ 1,
Re(x− z,y− z) < 1

2 t�y− z�2.
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Letting t → 0 we get that Re(x− z,y− z) ≤ 0.

Conversely, suppose that z ∈C and that for every y ∈C ,

Re(x− z,y− z) ≤ 0.

For every y ∈C ,

�x−y�2−�x− z�2 = �(x− z)+(z−y)�2−�x− z�2
= �y− z�2−2Re(x− z,y− z) ≥ 0,

which implies that z is the distance minimizer, hence z = PC x. �

Corollary 1.22 — Projections are distance reducing. Let C be a closed con-
vex set in a Hilbert space (H ,(⋅, ⋅)). Then for all x,y ∈H ,

Re(PC x−PC y,x−y) ≥ �PC x−PC y�2
and �PC x−PC y�2 ≤ �x−y�2.

xy

PC xPC y

C

Proof. By Proposition 1.21, with PC y as an arbitrary point in C ,

Re(x−PC x,PC y−PC x) ≤ 0.

Similarly, with PC x as an arbitrary point in C

Re(y−PC y,PC x−PC y) ≤ 0.

Adding up both inequalities:

Re((x−y)−(PC x−PC y),PC x−PC y) ≥ 0,

which proves the first assertion.

Next, using the first assertion and the Cauchy-Schwarz inequality,

�PC x−PC y�2 ≤Re(PC x−PC y,x−y)
≤ �(PC x−PC y,x−y)�
≤ �PC x−PC y��x−y�,

and it remains to divide by �PC x−PC y�. �
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The next corollary characterizes the projection in the case of a closed linear subspace
(which is a particular case of a closed convex set).

Corollary 1.23 Let M by a closed linear subspace of a Hilbert space (H ,(⋅, ⋅))
Then,

y = PM x

if and only if
y ∈M and x−y ∈M ⊥.

x

y = PM x

y+m

y−m

M

Proof. Let y ∈M and suppose that x−y ∈M ⊥. Then, for all m ∈M :

(x−y,m−y�∈M
) = 0 ≤ 0,

hence y = PM x by Proposition 1.21.

Conversely, suppose that y = PM x and let m ∈M . By Proposition 1.21,

Re(y−x,y−m) ≤ 0.

We may replace m by y−m ∈M , hence for all m ∈M :

Re(y−x,m) ≤ 0.

Since we may replace m by (−m), it follows that for all m ∈M :

Re(y−x,m) = 0.

Replacing m by ım we obtain Im(y−x,m) = 0. �
Finite dimensional case

This last characterization of the projection provides a constructive way to calculate
the projection when M is a finite-dimensional subspace (hence a closed subspace).
Let n = dimM and let (e1, . . . ,en)
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be a set of linearly independent vectors in M (i.e., a basis for M ). Let x ∈H . Then,
x−PM x is orthogonal to each of the basis vectors:

(x−PM x,e`) = 0 for ` = 1, . . . ,n.

Expanding PM x with respect to the given basis:

PM x = n�
k=1

akek,

we obtain,

(x,e`) = n�
k=1

ak(ek,e`) = 0 for ` = 1, . . . ,n.

The matrix G whose entries are Gi j = (ei,e j) is known as the Gram matrix. Because
the ei’s are linearly independent, this matrix is non-singular, and

ak = n�̀=1
G−1

k` (x,e`),
i.e., we have an explicit expression for the projection of any vector:

PM x = n�
k=1

n�̀=1
G−1

k` (x,e`)ek.

Exercise 1.19 Let H = L2(R) and set

M = { f ∈H � f (t) = f (−t) a.e.}.
¿ Show that M is a closed subspace.
¡ Express the projection PM explicitly.
¬ Find M ⊥.

�

Exercise 1.20 What is the orthogonal complement of the following sets of
L2[0,1]?

¿ The set of polynomials.
¡ The set of polynomials in x2.
¬ The set of polynomials with a0 = 0.
√ The set of polynomials with coefficients summing up to zero.
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�

Theorem 1.24 — Projection theorem (�%-)%% )5:/). Let M be a closed linear
subspace of a Hilbert space (H ,(⋅, ⋅)). Then every vector x ∈H has a unique
decomposition

x =m+n m ∈M , n ∈M ⊥.
Furthermore, m = PM x. In other words,

H =M ⊕M ⊥.

Proof. Let x ∈H . By Corollary 1.23

x−PM x ∈M ⊥,
hence

x = PM x+(x−PM x)
satisfies the required properties of the decomposition.

Next, we show that the decomposition is unique. Assume

x =m1+n1 =m2+n2,

where m1,m2 ∈M and n1,n2 ∈M ⊥. Then,

M ∋m1−m2 = n2−n1 ∈M ⊥.
Uniqueness follows from the fact that M ∩M ⊥ = {0}.

�
TA material 1.5 Show that the projection theorem does not holds when the condi-
tions are not satisfied. Take for example H = `2, with the linear subspace

M = {(an) ∈ `2 � ∃N ∶ ∀n >N an = 0}.
This linear subspace it not closed, and its orthogonal complement is {0}, i.e.,

M ⊕M ⊥ =M ≠H .

Corollary 1.25 For every linear subspace M of a Hilbert space H ,

(M ⊥)⊥ =M .
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Proof. Let m ∈M . By the definition of M ⊥:
∀n ∈M ⊥ (m,n) = 0,

which implies that m ∈ (M ⊥)⊥, i.e.,

M ⊆ (M ⊥)⊥.
By Proposition 1.18 any orthogonal complement is closed. If a set is contained in a
closed set, so is its closure (prove it!),

M ⊆ (M ⊥)⊥.
Let x ∈ (M ⊥)⊥. Since M is a closed linear subspace, there exists a (unique)
decomposition

x =m+n, m ∈M n ∈ (M )⊥.
Taking an inner product with n, using the fact that m ⊥ n:

�n�2 = (x,n).
Since M ⊂M , then (M )⊥ ⊃ (M )⊥
(the smaller the set, the larger its orthogonal complement). Thus

n ∈ (M )⊥,
and therefore n ⊥ x. It follows that n = 0, which means that x ∈M , i.e.,

(M ⊥)⊥ ⊆M .

This completes the proof. �

Corollary 1.26 Let M be a closed linear subspace of a Hilbert space (H ,(⋅, ⋅)).
Then, every x ∈H has a decomposition

x = PM x+PM ⊥x,

and �x�2 = �PM x�2+�PM ⊥x�2.

Proof. As a consequence of the projection theorem, using the fact that both M and
M ⊥ are closed and the fact that (M ⊥)⊥ =M :

x = PM x�∈M
+(x−PM x)����������������������������������������∈M ⊥

x = (x−PM ⊥x)�����������������������������������������������∈M
+PM ⊥x�∈M ⊥

.
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By the uniqueness of the decomposition, both decompositions are identical, which
proves the first part. The second identity follows from Pythagoras’ law. �

Corollary 1.27 — A projection is linear, norm-reducing and idempotent.
Let M be a closed linear subspace of a Hilbert space (H ,(⋅, ⋅)). Then the
projection PM is a linear operator satisfying P2

M = PM , and

∀x ∈H �PM x� ≤ �x�.

Proof. ¿ We have already seen that PM is idempotent.

¡ The norm reducing property follows from

�x�2 = �PM x�2+�PM ⊥x�2 ≥ �PM x�2.
¬ It remains to show that PM is linear. Let x,y ∈H . It follows from Corollary 1.26
that

x = PM x+PM ⊥x
y = PM y+PM ⊥y,

hence
x+y = (PM x+PM y)��������������������������������������������������������������������∈M

+(PM ⊥x+PM ⊥y)����������������������������������������������������������������������������������∈M ⊥
.

On the other hand, it also follows from Corollary 1.26 that

x+y = PM (x+y)����������������������������������������∈M
+PM ⊥(x+y)�����������������������������������������������∈M ⊥

.

By the uniqueness of the decomposition,

PM (x+y) = PM x+PM y.

Similarly,
ax = aPM x+aPM ⊥x,

but also
ax = PM (ax)+PM ⊥(ax),

and from the uniqueness of the decomposition,

PM (ax) = aPM x.

�
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The next theorem shows that the last corollary is in fact a characterization of
projections: there is a one-to-one correspondence between closed subspaces of H
and orthogonal projections.

Theorem 1.28 — Every linear, norm-reducing, idempotent operator is a
projection. Let (H ,(⋅, ⋅)) be a Hilbert space and let P ∶H →H be a linear,
norm reducing, idempotent operator. Then P is a projection on a closed linear
subspace of H .

Proof. The first step is to identify the closed subspace of H that P projects onto.
Define

M = {x ∈H � Px = x}
N = {y ∈H ∶ � Py = 0}.

Both M and N are linear subspaces of H . If x ∈M ∩N then x =Px = 0, namely,

M ∩N = {0},
Both M and N are closed because for every x,y ∈H :

�Px−Py� = �P(x−y)� ≤ �x−y�,
from which follows that if xn ∈M is a sequence with limit x ∈H , then

�x−Px� = lim
n→∞�xn−Px� = lim

n→∞�Pxn−Px� ≤ lim
n→∞�xn−x� = 0,

i.e., Px = x, hence x ∈M . By a similar argument ee show that N is closed.

Let x ∈H . We write
x = Px+(Id−P)x.

By the idempotence of P,

Px ∈M and (Id−P)x ∈N .

To prove that P = PM it remains to show that N =M ⊥ (because of the uniqueness
of the decomposition). Let

x ∈N ⊥ and y = Px−x.

Obviously, y ∈N , hence (x,y) = 0, and

�x�2 ≥ �Px�2 = �x+y�2 = �x�2+�y�2 ≥ �x�2,
i.e., y = 0, i.e., x = Px, i.e., x ∈M . We have just shown that

N ⊥ ⊆M .
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Take now x ∈M . By the projection theorem, there exists a unique decomposition,

x�∈M
= u�∈N

+ v�∈N ⊥
.

But since N ⊥ ⊆M , it follows that u is both in M and in N , i.e., it is zero and
x ∈N ⊥, namely

M ⊆N ⊥.
Thus N ⊥ =M and further N = (N ⊥)⊥ =M ⊥. This concludes the proof. �

1.3 Linear functionals

Among all linear maps between normed spaces stand out the linear maps into the
field of scalars. The study of linear functionals is a central theme in functional
analysis.

1.3.1 Boundedness and continuity

Definition 1.13 Let (X1,� ⋅�1) and (X2,� ⋅�2) be normed spaces and let D ⊆X1
be a linear subspace. A linear transformation T ∶D→X2 is said to be continuous
if ∀x ∈D lim

y→x
�Ty−T x�2→ 0.

It is said to be bounded if there exists a constant C > 0 such that

∀x ∈D �T x�2 ≤C�x�1.
If T is bounded, then the lowest bound C is called the norm of T :

�T� = sup
0≠x∈D

�T x�2�x�1 = sup
0≠x∈D �T

x
�x�1�2

= sup�x�1=1
�T x�2.

(Recall that if X ′ =R then we call T a linear functional.)

Comments 1.1

¿ We are dealing here with normed spaces; no inner-product is needed.
¡ As for now, we call �T� a norm, but we need to show that it is indeed a norm

on a vector space.
¬ If T is bounded then

∀x ∈D �T x� ≤ �T��x�.
√ All linear operators between finite-dimensional normed spaces are bounded.

This notion is therefore only relevant to infinite-dimensional cases.
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Proposition 1.29 — Boundedness and continuity are equivalent. Let(X1,� ⋅�1) and (X2,� ⋅�2) be normed spaces. A linear operator T ∶D ⊆X1→X2
is bounded if and only if it is continuous.

Proof. ¿ Suppose T is bounded. Then,

�T x−Ty�2 = �T(x−y)�2 ≤ �T��x−y�1,
and y→ x implies Ty→ T x.

¿ Suppose that T is continuous at 0 ∈D . Then there exists a d > 0 such that

∀y ∈B(0,d) �Ty−0�2 ≤ 1.

Using the homogeneity of the norm and the linearity of T :

∀x ∈D �T x�2 = 2
d

�x�1 �T �d

2
x
�x�1
��

2
≤ 2

d

�x�1.
which implies that T is bounded, �T� ≤ 2�d . �
Comment 1.8 We have only used the continuity of T at zero. This means that if T
is continuous at zero, then it is bounded, and hence continuous everywhere.

� Examples 1.2

1. An orthogonal projection in a Hilbert space is bounded, since

�PM x� ≤ �x�,
i.e., �PM � ≤ 1. Since PM x = x for x ∈M , it follows that

�PM � = sup�x�=1
�PM x� ≥ sup

x∈M �x�=1
�PM x� = sup

x∈M �x�=1
�x� = 1,

�PM � = 1.
2. Let H = L2[0,1] and let D =C[0,1] ⊂ L2[0,1]. Define the linear functional

T ∶D →R,
T f = f (0).

This operator is unbounded (and hence not-continuous), for take the sequence
of functions,

fn(x) =
�������

1−nx 0 ≤ x ≤ 1
n

0 otherwise
.

Then � fn�→ 0, whereas �T fn� = � fn(0)� = 1, i.e.,

lim
n→∞
�T fn�� fn� =∞.
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3. Consider the Hilbert space H =L2[0,1]with D the subspace of differentiable
functions with derivatives in H . Define the linear operator T ∶D →H ,

(T f )(x) = f ′(x).
This operator is unbounded. Take for example the sequence of functions,

fn(x) = � 1√
2pn

e−nx2�2�1�2
.

Then � fn� = 1 and limn→∞ �T fn� =∞.
4. Important example! Let H be a Hilbert space. Set y ∈H and define the

functional:
Ty = (⋅,y).

This functional is linear, and it is bounded as

�y� = �(y,y)��y� ≤ sup
x≠0

�(x,y)�
�x� ≤ sup

x≠0

�y��x�
�x� = �y�,

hence
�T� = sup

x≠0

�Ty(x)��x� = �y�.
In other words, to every y ∈H corresponds a bounded linear functional Ty.

�

1.3.2 Extension of bounded linear functionals

Lemma 1.30 Given a bounded linear functional T defined on a dense linear
subspace D of a Hilbert space (H ,(⋅, ⋅)), it has a unique extension T̄ over H .
Moreover, �T̄� = �T�.

Proof. We start by defining T̄ . For x ∈H , take a sequence (xn) ⊂D that converges
to x. Consider the sequence T xn. Since T is linear and bounded,

�T xn−T xm� ≤ �T(xn−xm)� ≤ �T��xn−xm�,
which implies that (T xn) is a scalar-valued Cauchy sequence. The limit does not
depend on the chosen sequence: if (yn) ⊂D converges to x as well, then

lim
n→∞ �T xn−Tyn� ≤ lim

n→∞�T��xn−yn� = 0.

Thus, we can define unambiguously

T̄ x = lim
n→∞T xn.
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For x ∈D we can take the constant sequence xn = x, hence

T̄ x = lim
n→∞T xn = T x,

which shows that T̄ is indeed an extension of T : T̄ �D = T .

Next, we show that T̄ is linear. Let x,y ∈D . Let xn,yn ∈D converge to x,y, respec-
tively, then:

T̄(ax+by) = lim
n→∞T(axn+byn) = a lim

n→∞T xn+b lim
n→∞Tyn = a T̄ x+b T̄ y.

It remains to calculate the norm of T̄ :

�T̄� = sup
x≠0

�T̄ x�
�x� = sup

x≠0

limn→∞ �T xn��x� ≤ sup
x≠0

�T� limn→∞ �xn��x� = �T�,
and since �T̄� is an extension of T : �T̄� = �T�. �
The following theorem is an instance of the Hahn-Banach theorem, which we will
meet when we study Banach spaces:

Theorem 1.31 — Extension theorem. Given a bounded linear functional T
defined on a linear subspace D of a Hilbert space (H ,(⋅, ⋅)), it can be extended
into a linear functional over all H , without changing its norm. That is, there
exists a linear functional T̄ on H , such that T̄ �D = T and �T̄� = �T�.

Proof. By the previous lemma we may assume without loss of generality that D is
a closed linear subspace of H . We define

T̄ = T ○PD .

Since T̄ is a composition of two linear operators, it is linear. Also, T̄ �D = T . Finally,

�T̄� = �T ○PD� ≤ �T��PD� = �T�.
Since T̄ is an extension of T it follows that �T̄� = �T�. �
TA material 1.6 — Hamel basis.

Definition 1.14 Let V be a vector space. A set of vectors {v
a

� a ∈ A} ⊂ V is
called a Hamel basis (or algebraic basis) if every v ∈ V has a unique representa-
tion as a linear combination of a finite number of vectors from {v

a

� a ∈ A}.
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Proposition 1.32 Every vector space V has a Hamel basis.

Exercise 1.21 Prove it. Hint: use the axiom of choice. �

Proposition 1.33 Let (X ,� ⋅�) be an infinite-dimensional normed space. Then,
there exists an unbounded linear functional on X .

Proof. Let {x
a

� a ∈ A} be a Hamel basis. Since X is infinite-dimensional there is
a sequence (x

an) such that {x
an � n ∈N}

is linearly independent.

For x =∑
a∈A t

a

x
a

define

F(x) = ∞�
n=1

n�x
an�tan .

It is easy to see that this is a linear functional. However, it is not continuous. Define

yn = x
an

n�x
an� ,

Then, yn→ 0 by F(yn) = 1 for all n. �
1.3.3 The Riesz representation theorem

The next (very important) theorem asserts that all bounded linear functionals on a
Hilbert space can be represented as an inner-product with a fixed element of H :

Theorem 1.34 — Riesz representation theorem, 1907. Let H be a Hilbert
space and T a bounded linear functional on H . Then,

(∃!yT ∈H ) ∶ T = (⋅ ,yT ),
and moreover �T� = �yT �.

Comment 1.9 The representation theorem was proved by Frigyes Riesz (1880–
1956), a Hungarian mathematician, and brother of the mathematician Marcel Riesz
(1886–1969).

Proof. We start by proving the uniqueness of the representation. If y and z satisfy
T = (⋅ ,y) = (⋅ ,z), then

�y− z�2 = (y− z,y− z) = (y− z,y)−(y− z,z) = T(y− z)−T(y− z) = 0,
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which implies that y = z.

Next, we show the existence of yT . Since T is linear it follows that kerT is a linear
subspace of H . Since T is moreover continuous it follows that kerT is closed, as(xn) ⊂ kerT with limit x ∈H , implies that

T x = lim
n→∞T xn = 0,

i.e., x ∈ kerT .

If kerT =H , then
∀x ∈H T x = 0 = (x,0),

and the theorem is proved with yT = 0.

If kerT ≠H , then we will show that dim(kerT)⊥ = 1. Let y1,y2 ∈ (kerT)⊥, and set

y = T(y2)y1−T(y1)y2 ∈ (kerT)⊥.
By the linearity of T , T(y) = 0, i.e., y ∈ kerT , but since kerT ∩ (kerT)⊥ = {0}, it
follows that

T(y2)y1 = T(y1)y2,

i.e., every two vectors (kerT)⊥ are co-linear.

Take y0 ∈ (kerT)⊥ with �y0� = 1. Then,

(kerT)⊥ = Span{y0}.
Then, set

yT = T(y0)y0.

By the projection theorem, for every x ∈H ,

x = (x,y0)y0��������������������������∈(kerT)⊥
+[x−(x,y0)y0]���������������������������������������������������������������∈kerT

,

and applying T ,
T(x) = (x,y0)T(y0) = (x,yT ).

Finally, we have already seen that �T� = �yT �. �
The space dual to a Hilbert space

Consider the set of all bounded linear functionals on a Hilbert space. These form a
vector space by the pointwise operations,

(aT +bS)(x) = a T(x)+b S(x).
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We denote this vector space by H ∗; it is called the space dual (�*-!&$ "(9/) to H .
The Riesz representation theorem states that there is a bijection H ∗�H , T � yT .
H ∗ is made into a Hilbert space by defining the inner-product

(T,S) = (yT ,yS),
and the corresponding norm over H ∗ is

�T� = �yT �
coincides with the previously-defined “norm" (we never showed it was indeed a
norm)4.

The following theorem (the Radon-Nikodym theorem restricted to finite measure
spaces) is an application of the Riesz representation theorem:

Theorem 1.35 — Radon-Nikodym. Let (W,B,µ) be a finite measure space. If
n is a finite measure on (W,B) that is absolutely continuous with respect to µ

(i.e., every zero set of µ is also a zero set of n), then there exists a non-negative
function f ∈ L1(W), such that

∀B ∈B n(B) =�
B

f dµ.

(The function f is called the density of n with respect to µ .)

Proof. Let l = µ + n . Every zero set of µ is also a zero set of l . Define the
functional F ∶ L2(l)→C:

F(g) =�
W

gdn .

F is a linear functional; it is bounded as

�F(g)� ≤�
W
�g�dn ≤ ��

W
�g�2 dn�1�2��

W
dn�1�2 ≤ �g�L2(l) (n(W))1�2 .

(This is where the finiteness of the measure is crucial; otherwise an L2 functions
is not necessarily in L1.) By the Riesz representation theorem there is a unique
function h ∈ L2(l), such that

�
W

gdn =�
W

hgdl . (1.2)

We now show that h satisfies the following properties:
4Our definition of a genuine norm over H ∗ is somewhat awkward. When we get to Banach spaces

it will be made clear that we do not need inner-products and representation theorems in order to show
that the operator norm is indeed a norm.
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1. h ≥ 0 l -a.e: Because the measures are finite, indicator functions are integrable.
Then, setting g = IB,

0 ≤ n(B) =�
B

hdl ,

which implies that h ≥ 0 l -a.e.
2. h < 1 l -a.e: Setting,

B = {x ∈W � h(x) ≥ 1},
we get

n(B) =�
B

hdl ≥ l(B) = n(B)+µ(B),
which implies that µ(B) = n(B) = l(B) = 0, i.e., h < 1 l -a.e.

Since 0 ≤ h < 1, we may represent h as

h = f
1+ f

,

where f is l -a.e. non-negative.

Back to Eq. (1.2),

�
W

gdn =�
W
� f

1+ f
�gdn +�

W
� f

1+ f
�gdµ,

hence

�
W
� 1

1+ f
�gdn =�

W
� f

1+ f
�gdµ.

Let now k ∶W→R be non-negative and bounded. Define

Bm = {x ∈W ∶ k(x)(1+ f (x)) ≤m} ,
and g = k(1+ f )IBm . Then,

�
Bm

kdn =�
Bm

k f dµ,

Since k is non-negative we can let m→∞ and get for all measurable and bounded
k:5

�
W

kdn =�
W

k f dµ.

Setting k ≡ 1 we get that f is in L1(µ). Setting k = IB we get

�
B

dn =�
B

f dµ,

which completes the proof. �
5Here we apply Lebesgue’s Monotone Convergence Theorem, whereby the sequence of integrands

is monotone and has a pointwise limit.
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1.3.4 Bilinear and quadratic forms

Definition 1.15 Let (X ,� ⋅�) be a normed space. A function B ∶X ×X →C
is called a bilinear form (�;*9!*1*- *" ;*1";) if it is linear in its first entry and
anti-linear in its second entry, namely,

B(x,ay+b z) = aB(x,y)+bB(x,z).
It is said to be bounded if there exists a constant C ≥ 0 such that

∀x,y ∈X �B(x,y)� ≤C�x��y�.
The smallest such constant C is called the norm of B, i.e.,

�B� = sup
x,y≠0

�B(x,y)�
�x��y� or �B� = sup�x�=�y�=1

�B(x,y)�.

Definition 1.16 Let (X ,� ⋅ �) be a normed space. A mapping Q ∶X → C is
called a quadratic form ( �;*3&"*9 ;*1";) if Q(x) = B(x,x), where B is a bilinear
form. It is said to be bounded if there exists a constant C such that

∀x ∈X �Q(x)� ≤C�x�2.
The smallest such C is called the norm of Q, i.e.,

�Q� = sup
x≠0

�Q(x)�
�x�2 , or �Q� = sup�x�=1

�Q(x)�.

Proposition 1.36 — Polarization identity. Let (X ,� ⋅�) be a normed space. For
every bilinear form B(x,y) with Q(x) = B(x,x),

B(x,y) = 1
4
{Q(x+y)−Q(x−y)+ ı[Q(x+ ıy)−Q(x− ıy)]} .

Proof. Just follow the same steps as for the relation between the inner-product and
the norm (which is a particular case). By the properties of B,

Q(x±y) = B(x±y,x±y) =Q(x)+Q(y)±B(x,y)±B(y,x).
Hence

Q(x+y)−Q(x−y) = 2(B(x,y)+B(y,x)) .
Letting y� ıy,

Q(x+ ıy)−Q(x− ıy) = 2ı(−B(x,y)+B(y,x)) .
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Multiplying the second equation by ı and adding to the first we recover the desired
result. �

Proposition 1.37 Let (X ,� ⋅�) be a complex normed space. Let Q(x) = B(x,x)
be a quadratic form over X . Then Q is bounded if and only if B is bounded, in
which case �Q� ≤ �B� ≤ 2�Q�.
If, moreover, �B(x,y)� = �B(y,x)� for all x,y ∈X , then �Q� = �B�.

Proof. First, suppose that B is bounded. Then,

�Q(x)� = �B(x,x)� ≤ �B��x�2,
i.e., Q is bounded and �Q� ≤ �B�.
Second, suppose that Q is bounded. Taking the polarization identity,

B(x,y) = 1
4
{Q(x+y)−Q(x−y)+ ı[Q(x+ ıy)−Q(x− ıy)]} ,

and using the definition of �Q�:
�B(x,y)� ≤ 1

4
�Q���x+y�2+�x−y�2+�x+ ıy�2+�x− ıy�2� .

Using (twice) the parallelogram law:

�B(x,y)� ≤ �Q���x�2+�y�2� ,
hence �B� = sup�x�=�y�=1

�B(x,y)� ≤ 2�Q�.
Remains the last part of the theorem. Using again the polarization identity, and
noting that

Q(y+ ıx) =Q(ı(x− ıy)) =Q(x− ıy)
Q(y− ıx) =Q(−ı(x+ ıy)) =Q(x+ ıy)

we get

B(x,y)+B(y,x) = 1
4
{Q(x+y)−Q(x−y)+ ı[Q(x+ ıy)−Q(x− ıy)]}
+ 1

4
{Q(x+y)−Q(y−x)+ ı[Q(y+ ıx)−Q(y− ıx)]}

= 1
2
{Q(x+y)−Q(x−y)} .
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Thus, using once again the parallelogram law,

�B(x,y)+B(y,x)� ≤ 1
2
�Q���x+y�2+�x−y�2� = �Q���x�2+�y�2� , (1.3)

If �B(x,y)� = �B(y,x)�, then there exists a phase a = a(x,y) such that

B(y,x) = eıa(x,y)B(x,y).
Note that

B(y,eıb x) = eıa(x,y)−ıb B(x,y) = eıa(x,y)−2ıb B(eıb x,y)
B(eıb y,x) = eıa(x,y)+ıb B(x,y) = eıa(x,y)+2ıb B(x,eıb y),

that is
a(eıb x,y) = a(x,y)−2b

a(x,eıb y) = a(x,y)+2b .

For all �x� = �y� = 1, �1+eıa(x,y)��B(x,y)� ≤ 2�Q�.
And letting x� eıb x, we get for all b :

�1+eı(a(x,y)−2b)��B(x,y)� ≤ 2�Q�.
In particular, for b = 1

2 a(x,y):
�B(x,y)� ≤ �Q�,

i.e., �B� ≤ �Q�. �
� Example 1.1 Consider the real normed space X = R2 endowed with the Eu-
clidean inner-product. Let

B(x,y) = x1y2−x2y1.

Clearly �B� > 0, however
Q(x) = B(x,x) = 0,

hence �Q� = 0, in contradiction to �B� ≤ 2�Q�. What going on? The above proof was
based on the assumption that F =C. The proposition does not hold when F =R. �
� Example 1.2 Let (H,(⋅, ⋅)) be an inner-product space, and let T be a bounded
linear operator on H. Set

B(x,y) = (T x,y).
B is a bilinear form. By the Cauchy-Schwarz inequality,

�T� = sup�x�=1
�T x� = sup�x�=1

B(x,T x)
�T x� ≤ sup�x�=1

sup�y�=1
�B(x,y)� ≤ sup�x�=1

sup�y�=1
�(T x,y)� ≤ �T�.

It follows that �B� = sup�x�=1
sup�y�=1
�B(x,y)� = �T�.

�
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The following theorem states that, in fact, every bounded bilinear form on a Hilbert
space can be represented by a bounded linear operator (this theorem is very similar to
the Riesz representation theorem). Please note that like for the Riesz representation
theorem, completeness is essential.

Theorem 1.38 To every bounded bilinear form B over a Hilbert space (H ,(⋅, ⋅))
corresponds a unique bounded linear operator on H , such that

∀x,y ∈H B(x,y) = (T x,y).
Furthermore, �B� = �T�.

Comment 1.10 The Riesz representation theorem asserts that

H ≅H ∗.
This theorem asserts that

H ∗⊗H ∗ ≅H ∗⊗H .

Proof. We start by constructing T . Fix x ∈H and define the functional:

Fx = B(x, ⋅).
Fx is linear and bounded, as

�Fx(y)� ≤ �B��x��y�,
i.e., �Fx� ≤ �B��x�. It follows from the Riesz representation theorem that there exists
a unique zx ∈H , such that

Fx = (⋅ ,zx) = B(x, ⋅).
Denote the mapping x� zx by T , thus for every x ∈H :

(⋅ ,T x) = B(x, ⋅)
i.e., for every x,y ∈H :

B(x,y) = (T x,y).
Next, we show that T is linear. By definition of T and by the bilinearity of both B
and the inner-product:

(T(a1x1+a2x2),y) = B(a1x1+a2x2,y)= a1B(x1,y)+a2B(x2,y)= a1(T x1,y)+a2(T x2,y)= (a1T x1+a2T x2,y).
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Since this holds for all y ∈H it follows that

T(a1x1+a2x2) = a1T x1+a2T x2.

T is bounded, as we have already proved that �T� = �B�.
It remains to prove that T is unique. Suppose T and S are both bounded linear
operators satisfying

(∀x,y ∈H ) B(x,y) = (T x,y) = (Sx,y).
Then, (∀x,y ∈H ) ((T −S)x,y) = 0,

hence (∀x ∈H ) �(T −S)x�2 = 0,

and hence T = S. �
1.3.5 The Lax-Milgram theorem

Definition 1.17 Let (X ,� ⋅�) be a normed space. A bilinear form B on X is
called coercive ( �39-/ %/&2() if there exists a constant d > 0 such that

∀x ∈H �B(x,x)� ≥ d�x�2.
The following theorem is a central pillar in the theory of partial differential equations:

Theorem 1.39 — Lax-Milgram, 1954. Let B be a bounded and coercive bilinear
form on a Hilbert space H . Then, there exists a unique bounded linear operator
S on H such that ∀x,y ∈H (x,y) = B(Sx,y).
Furthermore, S−1 exists, it is bounded, and

�S� ≤ 1
d

and �S−1� = �B�,
where d is the coercivity parameter.

Comment 1.11 This theorem is named after Peter Lax (1926–) and Arthur Milgram
(1912–1961).

Proof. By Theorem 1.38 there is a unique bounded linear operator T such that

∀x,y ∈H B(x,y) = (T x,y),
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and �T� = �B�. If we succeed to show that T is invertible with bounded inverse
S = T−1 and �S� ≤ 1�d then we are done, as

(x,y) = (T Sx,y) = B(Sx,y),
and we know that �T� = �B�.
Setting x = y and using the coercivity of B and the Cauchy-Schwarz inequality, we
get

d�x�2 ≤ �B(x,x)� = �(T x,x)� ≤ �T x��x�,
i.e., ∀x ∈H �T x� ≥ d�x�. (1.4)

It follows that kerT = {0}, hence T is injective.

We next show that Image(T) is a closed linear subspace. If Image(T) ∋ xn = Tun→
x ∈H , then

�un−um� ≤ 1
d

�Tun−Tum� = 1
d

�xn−xm�,
which implies that (un) is a Cauchy sequence with limit which we denote by u. By
the continuity of T , we have x = Tu.

Next, we show that T is surjective. Let z ∈ (ImageT)⊥, then

d �z�2 ≤ B(z,z) = (T z,z) = 0,

which implies that z = 0, i.e., (Image(T))⊥ = {0}, and since Image(T) is closed it
is equal to H . We conclude that T is a bijection. Hence, T−1 exists. It is linear
because the inverse of a linear operator is always linear. It is bounded because by
Eq. (1.4)

�T−1x� ≤ 1
d

�T(T−1x)� ≤ 1
d

�x�,
from which we conclude that

�T−1� ≤ 1
d

.

This completes the proof. �
� Example 1.3 We will study a typical (relatively simple) application of the Lax-
Milgram theorem. Let k ∈C[0,1] satisfy

∀x ∈ [0,1] 0 < c1 ≤ k(x) ≤ c2,

and consider the boundary value problem

d
dx
�k du

dx
� = f u(0) = u(1) = 0, (1.5)
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for some f ∈C[0,1]. Does a solution exist?6

We will slightly modify the problem. Let v ∈C1[0,1] satisfy v(0) = v(1) = 0 (we
denote this space by C1

0[0,1]). Multiplying the equation by v, integrating over [0,1]
and integrating by parts, we get

∀v ∈C1
0[0,1] −� 1

0
ku′v′dx =� 1

0
f vdx. (1.6)

Equation (1.6) is called the weak formulation of (1.5). Does a solution exist to the
weak formulation?

First, endow the space C1
0[0,1] with the inner-product

(u,v) =� 1

0
uvdx+� 1

0
u′v′dx.

In fact, this space is not complete. Its completion is known as the Sobolev space
W 1,2

0 [0,1] =H1
0 [0,1]. So. Eq. 1.6 really takes the following form: find u ∈H1

0 [0,1]
such that

∀v ∈H1
0 [0,1] −� 1

0
kDuDvdx =� 1

0
f vdx,

where D is the weak derivative.

Define the bilinear form
B(u,v) =� 1

0
ku′v′dx.

B is bounded, for by the Cauchy-Schwarz inequality:

�B(u,v)� ≤ c2� 1

0
�u′� �v′� dx

≤ c2�� 1

0
�u′�2 dx�1�2�� 1

0
�v′�2 dx�1�2

≤ c2�u��v�.
Coercivity is more tricky. First,

�B(u,u)� =� 1

0
k�u′�2 dx ≥ c1� 1

0
�u′�2 dx.

This is not good enough because the norm also has a part that depends on the integral
of u2.

To solve this difficulty we will derive a very important inequality–the Poincaré
inequality. Since u(0) = 0,

u(x) =� x

0
u′(t)dt,

6Recall the existence and uniqueness theorem applies to initial value problems but not to bound-
ary value problems.
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hence

u2(x) = �� x

0
u′(t)dt�2 ≤ �� x

0
(u′(t))2 dt��� x

0
dt� ≤� 1

0
(u′)2 dt.

Integrating over [0,1],
� 1

0
u2 dx ≤� 1

0
(u′)2 dx.

Thus,

� 1

0
(u′)2 dx ≥ 1

2 �
1

0
u2 dx+ 1

2 �
1

0
(u′)2 dx = 1

2
�u�2,

which implies that B is coercive with

�B(u,u)� ≥ c1

2
�u�2.

Next, we consider the mapping

v� −� 1

0
f vdx,

which is a bounded linear functional. By the Riesz representation theorem, there
exists a vector g ∈H1

0 [0,1] such that

(g,v) = −� 1

0
f vdx.

By the Lax-Milgram theorem, there exists a bounded linear operator S on H1
0 [0,1],

such that ∀v ∈H1
0 [0,1] B(Sg,v) = (g,v),

i.e.,

∀v ∈H1
0 [0,1] � 1

0
k(Sg)′v′dx = −� 1

0
f vdx,

i.e., Sg satisfies the weak equation.7 �

Theorem 1.40 — Töplitz-Haussdorff. Let Q be a quadratic form on an inner-
product space. Then the numerical range ( �*9/&1% (&&)%),

W(Q) = {Q(x) � �x� = 1} = �Q(x)
�x�2 � �x� ≠ 0� ,

is a convex subset of the complex plane.

7Note that this is an existence proof; we haven’t solved the equation.
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Comment 1.12 In the finite-dimensional case, a bilinear form is represented by a
matrix Q, and the corresponding numerical range is

W(Q) = �x†Qx
x†x

� �x� ≠ 0� .
It can be shown, for example, that all the eigenvalues of Q are within its numerical
range.

Proof. We need to show that if a and b belong to the numerical range of Q, then so
does any ta +(1− t)b for even 0 ≤ t ≤ 1. In other words, we need to show that:

(∃x,y ≠ 0) ∶ Q(x) = a�x�2 and Q(y) = b�y�2
implies (∀0 ≤ t ≤ 1)(∃z ≠ 0) ∶ Q(z) = (ta +(1− t)b)�z�2.
We can formulate it differently: we need to show that

(∃x,y ≠ 0) ∶
Q(x)−a�x�2

b−a�x�2 = 0 and
Q(y)−a�y�2

b−a�y�2 = 1,

implies

(∀0 ≤ t ≤ 1)(∃z ≠ 0) ∶
Q(z)−a�z�2

b−a�z�2 = 1− t.

Thus it suffices to show that if 0 and 1 are in the numerical range of a quadratic form
Q, so is any number on the unit segment.

Suppose then that

Q(x) = 0 and Q(y) = 1, �x� = �y� = 1.

Let B be the bilinear form that defines Q, and consider

B(x,y)+B(y,x).
We may assume that it is real-valued for we can always replace y by eısy.

Now,

Q((1− t)x+ ty) = (1− t)2 Q(x)�
0

+t2 Q(y)�
1

+t(1− t)(B(x,y)+B(y,x)) ∈R,
and

F(t) = Q((1− t)x+ ty)
�(1− t)x+ ty�2 =

t2+ t(1− t)(B(x,y)+B(y,x))
�(1− t)x+ ty�2 .

This is a continuous function equal to zero at zero and to one at one, hence it assumes
all intermediate values. �
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1.4 Orthonormal systems

Definition 1.18 Let A be some index set (not necessarily countable), and let

{u
a

� a ∈ A}
be a set of vectors in a inner-product space (H,(⋅, ⋅)). The set {u

a

} is called an
orthonormal system ( �;*-/9&1&;9&! ;,93/) if

∀a,b ∈ A (u
a

,u
b

) = d

ab

.

Definition 1.19 Let {u
a

� a ∈ A} be an orthonormal system and let x ∈H. The
set of scalars {x̂(a) = (x,u

a

) � a ∈ A)
are called the Fourier components (�%**9&5 *"*,9) of x with respect to the
orthonormal system.

Theorem 1.41 — Gram-Schmidt orthonormalization. Let (xn) be either a
finite or a countable sequence of linearly independent vectors in an inner-product
space H. Then it is possible to construct an orthonormal sequence (yn) that has
the same cardinality as the sequence (xn), such that

∀n ∈N Span{yk � 1 ≤ k ≤ n} = Span{xk � 1 ≤ k ≤ n}.

Proof. You learned it in linear algebra for spaces of finite dimension. The same
recursive construction holds for a countable sequence. �

Proposition 1.42 Let (u1, . . . ,un) be vectors in an inner-product space (H,(⋅, ⋅)).
Then,

∀x ∈H n�
i=1
�(x,ui)�2 ≤M�x�2,

where
M =max

i

n�
j=1
�(ui,u j)�.

Proof. For every set of scalars (c1, . . . ,cn):
0 ≤ �x− n�

i=1
ciui�

2 = �x�2−2
n�

i=1
Re[ci(x,ui)]+ n�

i, j=1
cic j(ui,u j).
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Using the inequality 2�a��b� ≤ �a�2+ �b�2:

0 ≤ �x�2−2
n�

i=1
Reci(x,ui)+ 1

2

n�
i, j=1
��ci�2+ �c j�2��(ui,u j)�

= �x�2−2
n�

i=1
Reci(x,ui)+ n�

i=1
�ci�2 n�

j=1
�(ui,u j)�

≤ �x�2−2
n�

i=1
Reci(x,ui)+M

n�
i=1
�ci�2.

Choose ci = (x,ui)�M, then

0 ≤ �x�2− 2
M

n�
i=1
�(x,ui)�2+ 1

M

n�
i=1
�(x,ui)�2,

which yields the desired result. �

Corollary 1.43 — Bessel inequality. Let {u
a

} be an orthonormal system in an
inner-product space (H,(⋅, ⋅)). For every countable subset {u

ak}∞k=1,

∀x ∈H ∞�
k=1
�x̂(ak)�2 = ∞�

k=1
�(x,u

ak)�2 ≤ �x�2.

Proof. Immediate from the previous proposition. �

Corollary 1.44 Let {u
a

� a ∈ A} be an orthonormal system in an inner-product
space (H,(⋅, ⋅)). For every x ∈H there is at most a countable set of non-vanishing
Fourier components.

Proof. Fix x ∈H, and consider the sets

Bk = {a ∈ A � �x̂(a)�2 ≥ 1�k}.
From Bessel’s inequality,

1
k
�Bk� ≤ �

a∈Bk

�x̂(a)�2 ≤ �x�2,
which implies that each set Bk is finite. Hence

{a ∈ A � �(x̂(a)� > 0} = ∞�
k=1

Bk

is at most countable. �
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Proposition 1.45 — Riesz-Fischer. Let (un) be an orthonormal sequence in a
Hilbert space (H ,(⋅, ⋅)). Let (cn) be a sequence of scalars. Then,

sn = n�
k=1

ckuk

converges as n→∞ if and only if

∞�
k=1
�ck�2 <∞.

Proof. Look at the difference between sn and sm:

�sn− sm�2 = � n�
k=m+1

ckuk�2 = n�
k=m+1

�ck�2,
where we used the orthonormality of the (uk). Thus the series of �ck�2 is a Cauchy
sequence if and only if (sn) is a Cauchy sequence. Note that the completeness of
H is crucial. �
Fourier coefficients as optimizers

Let (H ,(⋅, ⋅)) be a Hilbert space. Let (u1, . . . ,un) be a finite sequence of orthonor-
mal vectors and let

M = Span{u1, . . . ,un},
which is a closed subspace of H . For every x ∈H :

PM x = n�
k=1
(x,uk)uk.

Why? Because x−PM x ∈M ⊥ as for every u j:

(x−PM x,u j) = (x,u j)−(x,u j) = 0.

By the definition of the projection as a distance minimizer, it follows that the Fourier
coefficients x̂(k) satisfy:

�x− n�
k=1

x̂(k)u j� ≤ �x− n�
k=1

lku j� ,
for any set of scalars (l1, . . . ,ln).
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Definition 1.20 An orthonormal system

{u
a

� a ∈ A}
is said to be complete if it is not contained (in the strict sense) in any other
orthonormal system. That is, it is complete if the only vector orthogonal to all{u

a

} is zero: (Span{u
a

� a ∈ A})⊥ = {0}.
A complete orthonormal system is also called an orthonormal basis.

Proposition 1.46 Every separable Hilbert space (H ,(⋅, ⋅)) contains a countable
complete orthonormal system.

Proof. Recall that H is separable if it contains a countable dense subset. Now, Let(zn) be a dense countable set. In particular:

Span{zn � n ∈N} =H .

We can construct inductively a subset (xn) of independent vectors such that

∀n ∃N <N such that Span{xk � 1 ≤ k ≤N} = Span{zk � 1 ≤ k ≤ n},
that is,

Span{xn � n ∈N} =H .

By applying Gram-Schmidt orthonormalization we obtain an orthonormal system(un) such that
Span{un � n ∈N} =H .

We will show that this orthonormal system is complete. Suppose that v were
orthogonal to all (un). Since every x ∈H is a limit

x = lim
n→∞

n�
k=1

cn,kuk,

it follows by the continuity of the inner-product that

(x,v) = lim
n→∞

n�
k=1

cn,k(uk,v) = 0,

i.e., v is orthogonal to all vectors in H , hence it is zero, from which follows that the(un) form a complete orthonormal system.

�
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Theorem 1.47 Let (H ,(⋅, ⋅)) be a (non-trivial) Hilbert space. Then, it contains
a complete orthonormal system. Moreover, every orthonormal system in H is
contained in a complete orthonormal system.

Proof. The proof replies on the axiom of choice. Let P denotes the set of all
orthonormal systems in H . P is not empty because every normalized vector in H
constitutes an orthonormal system.

Let S ∈ P and consider
PS = {T ∈ P � T ⊇ S}

be the collection of all the orthonormal systems that contain S. PS is a partially
ordered set with respect to set inclusion. Let P′S ⊂PS be fully ordered (a chain). Then,

T0 = �
T∈P′S

T

is an element of PS which is an upper bound to all the elements in P′S. It follows
from Zorn’s lemma that PS contains at least one maximal element8, which we denote
by S0. S0 is an orthonormal system that contains S. Since it is maximal, it is by
definition complete. �
The importance of complete orthonormal systems

We have seen that if {u
a

� a ∈ A} is an orthonormal set, then for every x ∈H there
is at most a countable number of Fourier components {x̂(a) � a ∈ A} that are not
zero.

Let x ∈H be given, and let (an) be the indexes for which x̂ does not vanish. It
follows from Bessel’s inequality that

∞�
k=1
�x̂(ak)�2 ≤ �x�.

It follows then from the Riesz-Fischer Theorem that
∞�

k=1
x̂(ak)uak exists.

As for all indexes not in (an) the Fourier coefficients vanish, there is no harm in
writing for all x ∈H : �

a∈A �x̂(a)�
2 ≤ �x�.

and �
a∈Ax̂(a)u

a

exists.

8Zorn’s lemma: suppose a partially ordered set P has the property that every totally ordered subset
has an upper bound in P. Then the set P contains at least one maximal element.
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Theorem 1.48 — Characterization of completeness. Let {u
a

� a ∈ A} be an
orthonormal system in H . All the following conditions are equivalent:

¿ {u
a

� a ∈ A} is complete.
¡ For all x ∈H : ∑

a∈A x̂(a)u
a

= x.
¬ Generalized Parseval identity. For all x,y ∈H : (x,y) =∑

a∈A x̂(a)ŷ(a).
√ Parseval identity. For all x ∈H : �x�2 =∑

a∈A �x̂(a)�2.

Proof. Suppose that ¿ holds, i.e., the orthonormal system, is complete. Given x
let (an) be a sequence of indexes that contains all indexes for which the Fourier
coefficients of x do not vanish. For every index an,

�x− ∞�
k=1

x̂(ak)uak ,uan� = 0.

In fact, for all a ∈ A

�x− ∞�
k=1

x̂(ak)uak ,ua

� = 0.

If follows that x−∑∞k=1 x̂(ak)uak is orthogonal all vectors {u
a

} but since we assumed
that the orthonormal system is complete, it follows that it is zero, i.e.,

x = ∞�
k=1

x̂(ak)uak ,

and once again we may extend the sum over all a ∈ A.

Suppose that ¡ holds:

∀x ∈H �
a∈Ax̂(a)u

a

= x.

Given x,y ∈H let (an) be a sequence of indexes that contains all the indexes for
which at least one of the Fourier components of either x and y does not vanish. By
the continuity of the inner-product:

(x,y) = �∞�
k=1

x̂(ak)uak ,
∞�

k=1
ŷ(ak)uak� = ∞�

k=1
x̂(ak)ŷ(ak).

Suppose that ¬ holds. Setting x = y we obtain the Parseval identity.

Suppose that √ holds. Let x ∈H be orthogonal to all the {u
a

}, then

∀a ∈ A x̂(a) = (x,u
a

) = 0.

It follows from the Parseval identity that x = 0, i.e., the orthonormal system is
complete.

�
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� Example 1.4 Consider the Hilbert space `2 and the sequence of vectors

un = (0,0, . . . ,0,1,0, . . .).
Clearly, the (un) form an orthonormal set. Let x ∈ `2. x ⊥ un implies that the n-th
entry of x is zero, hence if x is orthogonal to all (un) then it is zero. This implies
that the orthonormal system (un) is complete. �

Theorem 1.49 All the complete orthonormal systems in a Hilbert space H have
the same cardinality. Thus we can unambiguously define the dimension of a
Hilbert space as the cardinality of any complete orthonormal system.

Proof. Let
{u

a

� a ∈ A} and {v
b

� b ∈ B}
be two complete orthonormal system.

Suppose first that A is a finite set, �A� = n. The vectors (u1, . . . ,unP are a basis in
H , i.e., dimH = n. Since the vectors {v

b

} are orthonormal, they are linearly
independent, and hence

�B� ≤ �A�.
By symmetry, �A� = �B�.
Suppose now that �A� is an infinite set. To every a ∈ A we attach a set

F
a

= {b ∈ B � (u
a

,v
b

) ≠ 0},
which we know to be either finite or countable. By the completeness of the system{u

a

}, if b ∈ B, then there exists an a ∈ A such that (u
a

,v
b

) ≠ 0, i.e., there exits an a

such that b ∈ F
a

, from which we conclude that

B ⊆ �
a∈AF

a

,

and hence,
�B� ≤ ℵ0�A� = �A�,

and by symmetry, �A� = �B�. �

Theorem 1.50 Two Hilbert space are isomorphic if and only if they have the
same dimension.



62 Hilbert spaces

Proof. Let (H ,(⋅, ⋅)H ) and (G ,(⋅, ⋅)G ) be two Hilbert spaces of equal dimension
and let {u

a

� a ∈ A} ⊂H and {v
b

� b ∈ B} ⊂ G

be complete orthonormal systems. Since they have the same cardinality, we can use
the same index set, and create a one-to-one correspondence,

T ∶ u
a

� v
a

.

We extend this correspondence on all H and G

T ∶ ∞�
n=1

cnu
an � ∞�

n=1
cnv

an .

(Note that both sides are well defined if and only if ∑n �cn�2 <∞.) It is easy to
see this this correspondence preserves the linear structure, and by the generalized
Parseval identity also the inner product, as for x =∑∞n=1 cnu

an and y =∑∞n=1 dnu
an

(x,y)H = ∞�
n=1

x(an)y(an) = ∞�
n=1

cndn = (T x,Ty)G .
Thus H and G are isomorphic.

Conversely, if H and G are isomorphic, then we can map any complete orthonormal
system in H into a complete orthonormal system in G , hence both have the same
dimension. �

Corollary 1.51 All separable Hilbert spaces are isomorphic and in particular
isomorphic to `2.

Proof. We saw that all separable Hilbert spaces have dimension ℵ0. �
� Example 1.5 The Haar functions are a sequence of functions in L2[0,1] defined
as follows:

f0(t) = 1
f1(t) = 1[0,1�2)−1[1�2,1]

f2(t) =√2(1[0,1�4)−1[1�4,1�2)) f3(t) =√2(1[1�2,3�4)−1[3�4,1]),
and in general,

f2n+k(t) = 2n�2 �1[2−nk,2−n(k+1�2)−1[2−n(k+1�2),2−n(k+1)� , n ∈N, k = 0,�2n−1.

The Haar functions form an orthonormal system: because take f j—on the interval
on which it is non-zero any fi with i < j is constant. Also, the span of all (fn) is the
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same as the span of all step functions with dyadic intervals. It is known that this
span is dense in L2[0,1], hence the Haar functions form an orthonormal basis in
L2[0,1].
If therefore follows that for every f ∈ L2[0,1]:

f = ∞�
n=0
( f ,fn)fn.

The limit is in L2[0,1]. The question is whether the sum also converges pointwise
(a.e.).

Such questions are usually quite hard. For the specific choice of the Haar basis it is
relatively easy, due to the “good" ordering of those functions.

The first observation is that

Span{fi � 0≤ i≤2n−1}={step functions over dyadic intervals of length 2−n}≡Pn,

i.e., functions of the form
2n−1�
k=0

ckyn,k,

where
yn,k = 2n�2 1[2−nk,2−n(k+1)).

Thus, the linear operator Sn

Sn f = 2n−1�
k=0
( f ,fk)fk,

returns the orthogonal projection of f over the space of step functions Pn, and by
the uniqueness of this projection,

Sn f = 2n−1�
k=0
( f ,yn,k)yn,k.

Note that,

Sn f = 2n−1�
k=0
�2n� 2−n(k+1)

2−nk
f (t)dt�1[2−nk,2−n(k+1)).

It follows that (Sn f )(x) is equal to the average of f in an interval of size 2−n around
x. It is known that as n→∞ this average converges to f (x) a.e.

�

1.5 Weak convergence
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Definition 1.21 Let (xn) be a sequence of vectors in an inner-product space(H,(⋅, ⋅)). We say that this sequence weakly converges ( �:-( ;21,;/) to a
vector x ∈H if ∀y ∈H lim

n→∞(xn,y) = (x,y).
x is called the weak limit ( �:-( -&"#) of (xn), and we write

xn⇀ x.

Definition 1.22 A sequence (xn) of vectors in an inner-product space (H,(⋅, ⋅))
is said to be weakly Cauchy if

∀y ∈H (xn,y) is a Cauchy sequence.

Comments 1.2

¿ Uniqueness of weak limit: If a sequence has a weak limit then the weak
limit is unique, for if x and z are both weak limits of (xn) then

∀y ∈H lim
n→∞(xn,y) = (x,y) = (z,y),

from which follows that x = z.
¡ Since there is a one-to-one correspondence between (⋅,y) and bounded linear

functionals we can reformulate the definition of weak convergence as follows:
a sequence (xn) of vectors in a Hilbert space is said to weakly converge to x if

∀ f ∈H ∗ lim
n→∞ f (xn) = f (x).

Proposition 1.52 — Strong convergence implies weak convergence. Let(H,(⋅, ⋅)) be an inner-product space. If xn→ x then xn⇀ x.

Proof. Let xn→ x. For all f ∈H∗,
lim

n→∞ � f (xn)− f (x)� ≤ lim
n→∞� f ��xn−x� = 0,

i.e., xn⇀ x. �

Proposition 1.53 In a finite-dimensional Hilbert space strong and weak conver-
gence coincide.
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Proof. It only remains to prove that weak convergence implies strong convergence.
Let {uk � 1 ≤ k ≤N} be an orthonormal basis for H . Let xn we a weakly converging
sequence with limit x. Expanding we get,

xn = N�
k=0
(xn,uk)uk and x = N�

k=0
(x,uk)uk.

Now,

�xn−x� = � N�
k=0
(xn−x,uk)uk� ≤ N�

k=0
�(xn−x,uk)uk� = N�

k=0
�(xn−x,uk)�.

Since the right hand side tends to zero as n→∞ it follows that xn→ x. �
What about the general case? Does weak convergence imply strong convergence.
The following proposition shows that the answer is no:

Proposition 1.54 Every infinite orthonormal sequence in an inner-product space(H,(⋅, ⋅)) weakly converges to zero.

Comment 1.13 Obviously, an infinite orthonormal sequence does not (strongly)
converge to zero as the corresponding sequence of norms is constant and equal to
one, and the norm is continuous with respect to (strong) convergence.

Proof. This is an immediate consequence of the Bessel inequality: if (un) is an
orthonormal sequence, then for every x ∈H

∞�
n=1
�(x,un)�2 ≤ �x�2,

from which follows that

∀x ∈H lim
n→∞ �(un,x)� = 0,

i.e., un⇀ 0. �
� Example 1.6 — Riemann-Lebesgue lemma. Let H = L2[0,2p], and consider
the vectors

un(x) = 1√
2p

eınx.

It is easy to check that they constitute an orthonormal system, hence

∀ f ∈H lim
n→∞

1√
2p

� 2p

0
f (x)eınx dx = 0.

�
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Proposition 1.55 — The norm is weakly lower-semicontinuous. Let(H,(⋅, ⋅)) be an inner-product space. If xn⇀ x then

�x� ≤ liminf
n→∞ �xn�.

Proof. By definition of weak convergence:

�x�2 = lim
n→∞(xn,x) = lim

n→∞ �(xn,x)� ≤ liminf
n→∞ �xn��x�.

�
The next proposition shows that for a weakly-converging sequence to strongly
converge, it is sufficient for the norm to converge as well:

Proposition 1.56 — Weak + convergence of norm = strong. Let xn⇀ x. Then
xn→ x if and only if

lim
n→∞�xn� = �x�.

Proof. Suppose xn⇀ x and �xn�→ �x�. Then,

�xn−x�2 = �xn�2�→�x�2
+�x�2−(x,xn)�����������→�x�2

−(xn,x)�����������→�x�2
→ 0.

The other direction has already been proved. �
So far we haven’t made any use of the weak Cauchy property. Here is comes:

Proposition 1.57 A weak Cauchy sequence in a Hilbert space is bounded.

Comment 1.14 This is a generalization of the statement that a strong Cauchy
sequence is bounded. Obviously, the current statement is stronger (and harder to
prove).

Comment 1.15 Baire’s category theorem: a set A is called nowhere dense
( �%-*-$ %7&"8) if its closure has an empty interior. Equivalently, if there is no
open set B such that A∩B is dense in B. (A line is nowhere dense in R2. The rational
are not nowhere dense in R). A set A that is a countable union of nowhere dense
sets is called of the first category; otherwise it is called of the second category.

Baire’s theorem states that in a complete metric space a set of first category has an
empty interior. Equivalently, a set that has a non-empty interior is not of the first
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category. It follows that if X is a complete metric space and

X =�
n

An,

then not all the An are nowhere dense. That is, there exists an m such that (Am)○ is
not empty. If the An happen to be closed, then one of them must contain an open
ball.

Proof. Recall that a sequence is weakly Cauchy if for every y ∈H , (xn,y) is a
Cauchy sequence, i.e., converges (but not necessarily to the same (x,y)). For every
n ∈N define the set

Vn = {y ∈H � ∀k ∈N, (xk,y)� ≤ n}.
These sets are increasing V1 ⊆V2 ⊆ . . . . They are closed (by the continuity of the
inner product). Since for every y ∈H the sequence �(xk,y)� is bounded,

∀y ∈H ∃n ∈N such that y ∈Vn,

i.e., ∞�
n=1

Vn =H .

By Baire’s Category theorem there exists an m ∈N for which Vm contains a ball, say,
B(y0,r). That is,

∀y ∈ B(y0,r) ∀k ∈N �(xk,y)� ≤m.

It follows that for every k ∈N,

�xk� = �xk,
xk�xk�� =

2
r

��xk,
r

2
xk�xk��� =

2
r

��xk,y0+ r

2
xk�xk��−(xk,y0)� ≤ 4m

r

.

�
Why are weak Cauchy sequences important? The following theorem provides the
answer.

Theorem 1.58 — Hilbert spaces are weakly complete. Every weak Cauchy
sequence in a Hilbert space weakly converges.

Proof. Let (xn) be a weak Cauchy sequence. For every y ∈H , the sequence of
scalars (xn,y) converges, Define the functional

F(y) = lim
n→∞(y,xn).
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It is a linear functional, and it is bounded, as

�F(y)� ≤ �limsup
n→∞ �xn���y�.

By the Riesz representation theorem there exists an x, such that F(y) = (y,x), i.e.,

∀y ∈H (y,x) = lim
n→∞(y,xn),

which completes the proof. �

Theorem 1.59 — The unit ball is weakly sequentially compact. Every
bounded sequence in a Hilbert space (H ,(⋅, ⋅)) has a weakly converging subse-
quence. (Equivalently, the unit ball in a Hilbert space is weakly compact.)

Comment 1.16 Note that it is not true for strong convergence! Take for example
H = `2 and xn = en (the n-th unit vector). This is a bounded sequence that does not
have any (strongly) converging subsequence. On the other hand, we saw that it has
a weak limit (zero).

Proof. We first prove the theorem for the case where H is separable. Let (xn) be a
bounded sequence. Let (yn) be a dense sequence. Consider the sequence (y1,xn).
Since it is bounded there exists a subsequence (x(1)n ) of (xn) such that (y1,x

(1)
n )

converges. Similarly, there exists a sub-subsequence (x(2)n ) such that (y2,x
(2)
n )

converges (and also (y1,x
(2)
n ) converges). We proceed inductively to construct the

subsequence (x(k)n ) for which all the (y`,x(k))n ) for ` ≤ k converges. Consider the
diagonal sequence (x(n)n ), which is a subsequence of (xn). For every k, (x(n)n ) has a
tail that is a subsequence of (x(k)n ), from which follows that for every k,

`k ≡ lim
n→∞(yk,x(n)n ) exists.

Next, we show that,

∀y ∈H lim
n→∞(y,x(n)n ) exists,

from which follows that x(n)n is a weak Cauchy sequence, and by the previous
theorem weakly converges.

Let y ∈H and let ym→ y be a sequence in the dense countable set. Set,

`m = lim
n→∞(ym,x(n)n ).

(`m) is a Cauchy sequence, as

�`m−`k� = � limn→∞(ym−yk,x(n)n )� ≤ �ym−yk� limsup
n→∞ �x(n)n �.
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Let ` be its limit, then

�(y,x(n)n )−`� ≤ �(y−ym,x(n)n )�+ �(ym,x(n)n )−`� ≤ �y−ym��x(n)n �+ �(ym,x(n)n )−`�,
and it remains to take sequentially limsupn and m→∞.

Next, consider the case where H is not separable. Denote

H0 = Span{xn � n ∈N}.
H0 is a closed separable subspace of H . Hence there exists a subsequence (xnk) of(xn) that weakly converges in H0, namely, there exists an x ∈H0, such that

∀y ∈H0 lim
n→∞(y,xn) = (y,x).

Take any y ∈H . From the projection theorem,

y = PH0y+PH ⊥
0

y,

hence

lim
n→∞(y,xn) = lim

n→∞(PH0y,xn) = (PH0y,x) = (PH0y+PH ⊥
0

y,x) = (y,x),
which completes the proof. �
Weak convergence does not imply strong convergence, and does not even implies
a strongly convergent subsequence. The following theorem establishes another
relation between weak and strong convergence.

Theorem 1.60 — Banach-Saks. Let (H ,(⋅, ⋅)) be a Hilbert space. If xn ⇀ x
then there exists a subsequence (xnk) such that the sequence of running averages

Sk = 1
k

k�
j=1

xn j

strongly converges to x.

Proof. Without loss of generality we may assume that x = 0, otherwise consider the
sequence (xn−x). As (xn) weakly converges it is bounded; denote M = limsupn �xn�.
We construct the subsequence (xnk) as follows. Because xn⇀ 0, we can choose xnk

such that

∀ j < k �(xnk ,xn j)� ≤ 1
k
.
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Then,

�����������
1
k

k�
j=1

xn j

�����������
2 = 1

k2

�
�

k�
j=1
�xn j�2+2Re �

1≤i≤ j≤k
(xni ,xn j)��

≤ 1
k2 �kM2+2�1

2
+ 2

3
+ 3

4
+ ⋅ ⋅ ⋅+ k−1

k
��

≤ M2+2
k

,

i.e., the running average strongly converges to zero. �

Corollary 1.61 — Strongly closed + convex implies weakly closed. Let(H ,(⋅, ⋅)) be a Hilbert space. Every closed and convex set C ⊂H is also closed
with respect to sequential weak convergence. That is, if (xn) is a subsequence in
C with weak limit x ∈H , then x ∈C .

Comment 1.17 “Closed" means closed with respect to strong convergence. A
closed set is not necessarily closed with respect to weak convergence, unless it is
convex.

Proof. Suppose that xn is a sequence in C with weak limit x ∈H . By the Banach-
Sack theorem there exists a subsequence whose running averages (strongly) converge
to x. Because C is convex, the running averages are also in C , and because C is
closed, x ∈C . �

Definition 1.23 A real-valued functional f ∶ H → R is called lower-
semicontinuous ( �39-/ %7(/- 4*79) at a point x if for every sequence xn→ x,

f (x) ≤ liminf
n→∞ f (xn).

Definition 1.24 A real-valued functional defined on a convex set C is called
convex if

∀0 ≤ t ≤ 1 f (tx+(1− t)y) ≤ t f (x)+(1− t) f (y).
� Example 1.7 For every p ≥ 1 the real-valued functional f (x) = �x�p is convex. �

Theorem 1.62 Let (H ,(⋅, ⋅)) be a Hilbert space. Let C ⊂H be a closed,
bounded, convex set. Let f ∶C →R be bounded from below, convex and lower-
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semicontinuous. Then f has a minimum in C .

Proof. Let
m = inf{ f (x) � x ∈C },

which is finite because f is bounded from below. Let (xn) be a sequence in C such
that

lim
n→∞ f (xn) =m.

Since C is bounded there exists a subsequence xnk that weakly converges to x. By
the previous corollary, since C is closed and convex, x ∈C .

From the Banach-Saks theorem follows that there exists a sub-subsequence (heck!
no relabeling) whose running average,

sk = 1
k

k�
j=1

xn j

strongly converges to x. Since f is convex, it follows inductively that

f (sk) ≤ 1
k

k�
j=1

f (xn j).
Since f is moreover lower-semicontinuous,

m ≤ f (x) ≤ liminf
k→∞ f (sk) ≤ liminf

k→∞
1
k

k�
j=1

f (xn j) =m,

i.e., x is a minimizer of f . �
1.5.1 The weak topology

We have seen that bounded linear functional are continuous with respect to the
strong topology. Weak convergence is defined such that bounded linear functionals
are continuous with respect to weak convergence, namely, if xn⇀ x then

∀T ∈H ∗ T xn→ T x

(this is the definition of weak convergence).

What is the topology underlying the concept of weak convergence? It is the coarsest
topology for which bounded linear functionals are continuous. Consider all the
topologies on H with respect to which all bounded linear functionals are continuous;
this set is not empty as it includes the norm topology. The intersection of all these
topologies is a topology—it is the weak topology.
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The open sets in the weak topology are generated by the subbase:

{T−1(U) � T ∈H ∗, U open in C},
or equivalently, {x � (x,y) ∈U, y ∈H , U open in C},
That is, a set is open with respect to the weak topology if and only if it can be written
as a union of sets that are finite intersections of sets of the form T−1(U).

1.6 Approximation by polynomials

This section deals with the approximation of functions by polynomials. There
are main two reasons to consider this: (i) a tool for proving theorems, (ii) a com-
putational tool for approximating solutions to equations that cannot be solved by
analytical means.

In the following we denote by Pn[a,b] the set of polynomials over [a,b] of degree
n or less, and

P[a,b] = ∞�
n=1

Pn[a,b].
The following well-known theorem is usually taught in the first year of undergraduate
studies:

Theorem 1.63 — Weierstraß approximation theorem. Every continuous func-
tion on an interval [a,b] can be uniformly approximated by polynomials. That
is, for every f ∈C[a,b] and every e > 0 there exists a polynomial p ∈P[a,b] for
which

sup
a≤x≤b

� f (x)− p(x)� < e.

Proof. Not in this course. �
Let K be a compact hausdorff space (i.e., every two distinct points have disjoint
neighborhoods). We denote by C(K) the space of continuous scalar-valued functions
on K, and define the norm,

� f �∞ =max
x∈K � f (x)�.

The maximum exists because K is compact.
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Definition 1.25 A linear subspace of C(K) that is closed also under multiplica-
tion is called an algebra (of continuous functions).

� Example 1.8 P(K) ⊂C(K) is an algebra of continuous functions. �

Definition 1.26 A collection A of functions on K is called point-separating
( �;&$&81 0*" %$*95/) if for every x,y ∈K there exists a function f ∈ A, such that

f (x) ≠ f (y).

Theorem 1.64 — Stone-Weierstraß. Let A be a point-separating algebra of
continuous real-valued functions on a compact Hausdorff space K. Suppose
furthermore that includes the function 1. Then A is dense in C(K) with respect to
the maximum norm.

Comment 1.18 The Weierstraß approximation theorem is a particular case.

Comment 1.19 This theorem has nothing to do with Hilbert spaces but we will
use it in the context of Hilbert spaces.

Proof. The uniform limit of continuous functions is continuous, hence the closure
of A (with respect to the infinity norm) is also an algebra of continuous functions9.
Thus, we can assume that A is closed and prove that A =C(K).
We first show that if f ∈ A then � f � ∈ A. Let f ∈ A be given. By the Weierstraß
approximation theorem,

(∀e > 0)(∃p ∈P[−� f �∞,� f �∞]) ∶ max−� f �∞≤t≤� f �∞ ��t �− p(t)� < e.

Every polynomial of f is also in A (because A is an algebra), and

max
x∈K �� f (x)�− p( f (x))� < e,

i.e., � f � is in the closure of A, and since A is closed, then � f � ∈ A.

Next, we show that if f ,g ∈ A then so are f ∧g and f ∨g, as

f ∧g = 1
2
( f +g)− 1

2
� f −g� and f ∨g = 1

2
( f +g)+ 1

2
� f −g�.

Next, we show that

(∀F ∈C(K), x ∈K, e > 0)(∃ f ∈ A) ∶ ( f (x) = F(x))∧( f ≤ F +e).
9If f ,g ∈ Ā then there exist sequences fn,gn ∈ A such that fn → f and gn → g. Then fngn → f g,

hence f g ∈ Ā.
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Because A separates between points and 1 ∈ A, there exists for every x,y ∈ A and
every a,b ∈R an element g ∈ A such that g(x) =a and g(y) = b (very easy to show).
Thus, given F , x, and e , then

(∀y ∈K)(∃gy ∈ A) ∶ (gy(x) = F(x))∧(gy(y) = F(y)).
Since both F and gy are continuous, there exists an open neighborhood Uy of y such
that

gy�Uy ≤ F �Uy +e.

The collection {Uy} is an open covering of K, and since K is compact, there exists a
finite open sub-covering {Uyi}n

i=1. The function

f = gy1 ∧gy2 ∧ . . .gyn

satisfies the required properties.

Let F ∈C(K) and e > 0 be given. We have seen that

(∀x ∈K)(∃ fx ∈ A) ∶ ( fx(x) = F(x))∧( fx ≤ F +e).
Relying again on continuity, there exists an open neighborhood Vx of x, such that

fx�Vx ≥ F �Vx −e.

By the compactness of K, K can be covered by a finite number of {Vxi}n
i=1. The

function
f = fx1 ∨ fx2 ∨ . . . fxn

satisfies, � f −F�∞ ≤ e,

which completes the proof. �
This theorem, as is, does not apply to complex-valued functions. For this, we need
the following modification:

Theorem 1.65 — Stone-Weierstraß for complex functions. Let A be a point-
separating algebra of continuous complex-valued functions on a compact Haus-
dorff space K, that includes the function 1 and is self-conjugate (�%/73- %$&/7)
in the sense that f ∈ A implies f ∈ A. Then A is dense in C(K) with respect to the
maximum norm.

Proof. Let AR ⊂ A be the subset of real-valued functions. Noting that

Re f = f + f
2

and Im f = f − f
2ı

are both in AR, it follows that AR is point-separating. Thus, we can uniformly
approximate both Re f and Im f . �
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Corollary 1.66 Let K ⊂ Rn be compact, then every function f ∈C(K) can be
uniformly approximated by a polynomial in n variables.

We return now to Hilbert spaces. Consider the space L2[a,b]. Since the polyno-
mials P[a,b] are dense in L2[a,b] (any uniform e-approximation is an (b−a)e-L2

approximation), it follows that a Gram-Schmidt orthonormalization of the sequence
of vectors

1,x,x2, . . .

yields a complete orthonormal system.

� Example 1.9 Consider the following sequence of polynomials in [−1,1]:
p0(x) = 1 pn(x) = 1

2n n!
dn

dxn (x2−1)n,
which are called the Legendre polynomials. For example,

p1(x) = 1
2

d
dx
(x2−1) = x,

and

p2(x) = 1
8

d2

dx2 (x2−1)2 = 1
8

d
dx

2x(x2−1) = 1
4
(3x2−1),

and it is clear that pn ∈Pn.

We claim that the pn are orthogonal. For m < n,

� 1

−1
xm pn(x)dx = 1

2n n! �
1

−1
xm� dn

dxn (x2−1)n� dx.

Integrating by parts n times we get zero (do you see why the boundary terms vanish?).
Thus,

� 1

−1
pm(x)pn(x)dx = 0.

What about their norms?

� 1

−1
p2

n(x)dx = � 1
2n n!
�2� 1

−1
� dn

dxn (x2−1)n�� dn

dxn (x2−1)n� dx.

We integrate n times by parts (again the boundary term vanishes) and get

� 1

−1
p2

n(x)dx = � 1
2n n!
�2 (−1)n� 1

−1
� d2n

dx2n (x2−1)n�(x2−1)n dx

= � 1
2n n!
�2 (−1)n(2n!)� 1

−1
(x2−1)n dx = 2

n+1

(the last identity can be proved inductively). �
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1.7 Fourier series and transform

1.7.1 Definitions

Consider the Hilbert space H =L2[0,2p] and the (complex) trigonometric functions

fn(x) = 1√
2p

eınx n ∈Z.

Proposition 1.67 The trigonometric functions {fn} form a complete orthonormal
system.

Proof. It is easy to see that the {fn} are orthonormal as for m ≠ n,

(fm,fn) = 1
2p

� 2p

0
eımxe−ınx dx = 1

2p

eı(m−n)x
ı(m−n) �

2p

0
= 0.

Why is this system complete? Consider the linear space of trigonometric polyno-
mials:

A = Span{fn � n ∈N}.
It is a self-adjoint algebra of continuous functions that includes the function 1. There
is only one problem: it does not separate the points 0 and 2p . Thus, we view A as
an algebra of continuous functions on a circle, S (i.e., we identify the points 0 and
2p). A is point separating for functions on S, hence it is dense in C(S). On the other
hand, C(S) is dense in L2[0,2p], which proves the completeness of the system of
the trigonometric functions. �

Corollary 1.68 For every f ∈ L2[0,2p],
f (x) = 1√

2p

∞�
n=−∞ f̂ (k)eınx,

where the series converges in L2[0,2p], and

f̂ (k) = 1√
2p

� 2p

0
f (x)e−ınx dx.

Moreover,

� 2p

0
� f (x)�2 dx = ∞�

n=−∞ � f̂ (k)�2.



1.7 Fourier series and transform 77

Proof. This follows immediately from the properties of a complete orthonormal
system. �
Comment 1.20 It is customary to define the Fourier components f̂ (k) divided by
an additional factor of 1�√2p , in which case we get

f (x) = ∞�
n=−∞ f̂ (k)eınx,

where
f̂ (k) = 1

2p

� 2p

0
f (x)e−ınx dx,

and,
1

2p

� 2p

0
� f (x)�2 dx = ∞�

n=−∞ � f̂ (k)�2.
The trigonometric series equal to f is called its Fourier series (�%**9&5 9&)).

Real-valued Fourier series

A related complete orthonormal system is the system

� 1√
2p

,
1√
p

sinx,
1√
p

sin2x, . . . ,
1√
p

cosx,
1√
p

cos2x, . . .� .
(The proof of its completeness is again based on the Stone-Weierstraß theorem.)
Then, every L2[0,2p] function has the following expansion:

f (x) = a0+ ∞�
n=1

an cosnx+ ∞�
n=1

bn sinnx,

where
a0 = 1

2p

� 2p

0
f (x)dx an = 1

p

� 2p

0
f (x)cosnxdx,

and
bn = 1

p

� 2p

0
f (x)sinnxdx.

The Parseval identity is

1
2p

� 2p

0
� f (x)�2 dx = �a0�2+ 1

2

∞�
n=1
��an�2+ �bn�2� .

Clearly, if f is real-valued then so are the Fourier coefficients.

1.7.2 Two applications

The first application of the trigonometric functions uses only their completeness, but
not the Fourier series.
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Definition 1.27 A sequence of points (xn) in [0,2p] is said to be equi-
distributed (�%&&: %$*/" ;#-&5/) if for every a,b:

lim
n→∞
�{k ≤ n � a ≤ xk ≤ b}�

n
= b−a

2p

.

Note that �{k ≤ n � a ≤ xk ≤ b}�
n

= 1
n

n�
k=1

1[a,b](xk),
hence a sequence is equi-distributed if

lim
n→∞

1
n

n�
k=1

1[a,b](xk) = 1
2p

� 2p

0
1[a,b](x)dx.

(Empirical average converges to “ensemble average".) If follows that the sequence
is equi-distributed if and only if for every step function f ,

lim
n→∞

1
n

n�
k=1

f (xk) = 1
2p

� 2p

0
f (x)dx.

Proposition 1.69 — Hermann Weyl’s criterion for equi-distribution. A se-
quence (xn) in [0,2p] is equi-distributed if and only if

lim
n→∞

1
n

n�
k=1

eımxk = 1
2p

� 2p

0
eımx dx = dm,0.

Proof. Suppose that the points are equi-distributed. For every m and e > 0 there
exist step functions f1, f2, such that

∀x ∈ [0,2p] f1(x) ≤ cos(mx) ≤ f2(x),
and � f1− f2�∞ < e . Now,

lim
n→∞

1
n

n�
k=1

cos(mxk) ≤ lim
n→∞

1
n

n�
k=1

f2(xk) = 1
2p

� 2p

0
f2(x)dx,

whereas
1

2p

� 2p

0
cos(mx)dx ≤ 1

2p

� 2p

0
f2(x)dx.

Similarly,

lim
n→∞

1
n

n�
k=1

cos(mxk) ≥ lim
n→∞

1
n

n�
k=1

f1(xk) = 1
2p

� 2p

0
f1(x)dx,
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and
1

2p

� 2p

0
cos(mx)dx ≥ 1

2p

� 2p

0
f1(x)dx.

It follows that

� lim
n→∞

1
n

n�
k=1

cos(mxk)− 1
2p

� 2p

0
cos(mx)dx� ≤ 1

2p

� 2p

0
( f2(x)− f1(x))dx ≤ e.

We proceed similarly for the imaginary part of eımx.

Conversely, suppose that

lim
n→∞

1
n

n�
k=1

eımxk = 1
2p

� 2p

0
eımx dx.

Then

lim
n→∞

1
n

n�
k=1

f (xk) = 1
2p

� 2p

0
f (x)dx

for every trigonometric polynomial f . Let F be a continuous function. Then for
every e > 0 there exists a trigonometric polynomial f such that �F − f �∞ < e (relying
again on the Stone-Weierstraß theorem). Then,

� lim
n→∞

1
n

n�
k=1

F(xk)− lim
n→∞

1
n

n�
k=1

f (xk)
����������������������������������������������������������������������������

1
2p

∫ 2p

0 f (x)dx

� ≤ e,

and

� 1
2p

� 2p

0
F(x)dx− 1

2p

� 2p

0
f (x)dx� ≤ e,

which proves that limn→∞ 1
n∑n

k=1 F(xk) = 1
2p

∫ 2p

0 F(x)dx for every continuous F . It
follows that this is true also for step functions since we can uniformly approximate
step functions by continuous functions.

�

Corollary 1.70 — Piers Bohl-Wacław Sierpinsky theorem, 1910. If a�2p is
irrational then the sequence

(na mod 2p)
is equi-distributed in [0,2p].



80 Hilbert spaces

Proof. This proof is due to Weyl (the standard theorem is for the interval [0,1]).
For every m ≠ 0:

1
n

n�
k=1

eımxk = 1
n

n�
k=1

eımka = 1
n

eıma

eınma −1
eıma −1

Because a�2p is irrational the denominator is never zero, and it follows as once that

lim
n→∞

1
n

n�
k=1

eımxk = 0.

�
Comment 1.21 We showed in fact that if a sequence (xn) is equi-distributed in[0,2p], then

lim
n→∞

1
n

n�
k=1

f (xn) = 1
2p

� 2p

0
f (x)dx

for every continuous function f . Does it apply also for all f ∈ L1[0,2p]? No. Take
for example an equi-distributed sequence whose elements are rational and take f to
be the Dirichlet function.

Comment 1.22 In 1931 George Birkhoff proved the celebrated ergodic theorem:
Let (W,B,µ) be a measure space, and let T ∶ W→ W be a measure preserving
transformation, namely,

(∀A ∈B) µ(A) = µ(T−1(A)),
where T−1 is to be understood as a set function. For f ∈ L1(W) and x ∈W, consider
the long-time average,

F(x) = lim
n→∞

1
n

∞�
k=1

f (T kx).
The (strong) ergodic theorem states that F(x) exists for almost every x, and it T
invariant, namely

F ○T = F.

T is said to be ergodic if for every E ∈B for which T−1(E) = E (i.e., for every
T -invariant set), either µ(E) = 0 or µ(E) = 1 (only trivial sets are T -invariant). If T
is ergodic (and the measure is finite) then F is constant and equal to

F(x) = ∫W f dµ

µ(W) .

Back to our example: for W = [0,2p] the transformation

T x = x+a mod 2p
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with a�2p irrational can be shown to be ergodic, hence

lim
n→∞

1
n

n�
k=1

f (xn) = 1
2p

� 2p

0
f (x)dx

for every L1[0,2p] function.

The second application uses Fourier series:

Theorem 1.71 — Isoperimetric inequality. Let g be a closed simple planar
curve of length L and enclosed area S. Then

S ≤ L2

4p

.

(For those with an inclination to geometry: we get an equality for the circle.)

Proof. The proof here will be for the special case where the curve is piecewise
continuously differentiable. WLOG we may assume that the curve is parametrized
on [0,2p], and that the parametrization is proportional to arclength. That is, if
g ∶ [0,2p] is of the form

g(t) = (x(t),y(t)),
then g differentiable everywhere except at most at a finite number of points, and

[x′(t)]2+ [y′(t)]2 = � L
2p

�2
.

We expand the curve in Fourier series:

x(t) = ∞�
n=0
(an cosnt +bn sinnt) and y(t) = ∞�

n=0
(cn cosnt +dn sinnt),

where

an = 1
p

� 2p

0
x(t)cosnt dt bn = 1

p

� 2p

0
x(t)sinnt dt

cn = 1
p

� 2p

0
y(t)cosnt dt dn = 1

p

� 2p

0
y(t)sinnt dt.

Since we assume that x(t) and y(t) are continuously differentiable, their derivative
(which is in particular in L2[0,2p]) can also be expanded as a Fourier series. Setting:

x′(t) = ∞�
n=1
(an cosnt +bn sinnt) and y′(t) = ∞�

n=1
(gn cosnt +dn sinnt),
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we have

an = 1
p

� 2p

0
x′(t)cosnt dt bn = 1

p

� 2p

0
x′(t)sinnt dt

gn = 1
p

� 2p

0
y′(t)cosnt dt dn = 1

p

� 2p

0
y′(t)sinnt dt.

Integrating by parts and using the periodicity of x(t), y(t), we find right away that

an = nbn bn = −nan gn = ndn and dn = −ncn,

namely

x′(t) = ∞�
n=0

n(−an sinnt+bn cosnt) and y′(t) = ∞�
n=0

n(−cn sinnt+dn cosnt).
By the Parseval identity:

1
2p

� 2p

0
�x′(t)�2 dt = 1

2

∞�
n=1

n2 �a2
n+b2

n�
1

2p

� 2p

0
�y′(t)�2 dt = 1

2

∞�
n=1

n2 �c2
n+d2

n� ,
and therefore

L2

4p

2 = 1
2

∞�
n=1

n2 �a2
n+b2

n+c2
n+d2

n� .
The enclosed area, on the other hand, is given by

S =� 2p

0
x(t)y′(t)dt = 2p (x,y′),

and by the generalized Parseval identity:

S
2p

= 1
2

∞�
n=1

n(andn−bncn) .
Using the inequalities

nandn ≤ n
2
�a2

n+d2
n� ≤ n2

2
�a2

n+d2
n� and −nbncn ≤ n

2
�b2

n+c2
n� ≤ n2

2
�b2

n+c2
n� ,

we get
S

2p

≤ 1
4

∞�
n=1

n2 �a2
n+b2

n+c2
n+d2

n� = L2

8p

2 ,

which completes the proof.

Under what conditions do we get an equality? The inequality n ≤ n2 is an equality
only for n = 1, which means that n = 1 is the only non-zero Fourier component. The
inequalities 2andn ≤ a2

n+d2
n and 2bncn ≤ b2

n+c2
n are equalities only for an = dn and

bn = cn, which is a circle. �



1.7 Fourier series and transform 83

1.7.3 Pointwise convergence of Fourier series

Set H = L2[0,2p]. We define a sequence of operators Sn ∶H →H by

(Sn f )(x) = n�
k=−n

f̂ (k)eıkx.

The functions Sn f are trigonometric functions. We know that Sn f → f in H . The
question in under what conditions they is converge pointwise.

Recall the Weierstraß M-test. Since � f̂ (k)eıkx� = � f̂ (k)� is follows that if

∞�
k=−∞

� f̂ (k)� <∞
then the sequence Sn f converges uniformly, and in particular converges pointwise
to f (since uniform convergence implies convergence in L2 and the limit is unique).
In this case we say that f has an absolutely convergent Fourier series.

Recall the following:

Definition 1.28 A function f is said to be absolutely continuous (�)-(%" %5*79)
if for every e > 0 there exists a d > 0, such that whenever a finite sequence of
disjoint intervals (xk,yk) satisfies

s�
k=1
�xk −yk� < d ,

then
s�

k=1
� f (xk)− f (yk)� < e.

Moreover,

Theorem 1.72 For a function f defined on an interval [a,b], absolute continuity
is equivalent to being differentiable a.e., with a Lebesgue integrable derivative f ′
satisfying

f (x) = f (a)+� x

a
f ′(t)dt.

This leads us to the following:
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Theorem 1.73 Let f be absolutely continuous on [0,2p] such that f (0) = f (2p)
and f ′ ∈L2[0,2p], then the Fourier series of f converges absolutely, and moreover,

lim
n→∞�Sn f − f �∞ = 0.

Proof. Since f ′ ∈ L2[0,2p], then using the properties of f :

f̂ ′(n) = 1
2p

� 2p

0
f ′(x)e−ınx dx = −ın

2p

� 2p

0
f (x)e−ınx dx = −ın f̂ (n),

hence using the Parseval identity,

∞�
n=−∞ � f̂ (n)� = � f̂ (0)�+�n≠0

1
n
� f̂ ′(n)�

≤ � f̂ (0)�+��
n≠0

1
n2�

1�2��
n≠0
� f̂ ′(n)�2�1�2

= � f̂ (0)�+C� f ′�,
which proves that the series converges uniformly. �

Thus, we found a class of functions (which in particular includes C1 functions) for
which the convergence of the Fourier series is pointwise (and even uniform).

Fourier series of L1[0,2p] functions

Note that in the definition of f̂ (n) we do not even need f to be square integrable;
it only needs to be in L1[0,2p]. Thus, we consider as of now Fourier series of L1

functions (which however do not necessarily exist, since the series of � f̂ (n)�2 is not
necessarily summable).

Note that

Sn f (x) = n�
k=−n
� 1

2p

� 2p

0
f (t)e−ıkt dt�eıkx

= 1
2p

� 2p

0
f (t)� n�

k=−n
e−ık(t−x)� dt

= 1
2p

� 2p

0
f (t)Dn(x− t)dt,
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where

Dn(x) ≡ n�
k=−n

e−ıkx = eınx e−ı(2n+1)x−1
e−ıx−1

= e−ı(n+1)x−eınx

e−ıx−1

= e− 1
2 ıx

e− 1
2 ıx

e−ı(n+ 1
2 )x−eı(n+ 1

2 )x
e− 1

2 ıx−e
1
2 ıx

= sin(n+ 1
2)x

sin 1
2 x

.

The functions Dn(x) are called the Dirichlet kernels (�%-,*9*$ *1*39#); Dn is sym-
metric in x, is defined on the entire line, and is 2p periodic. Also, setting f ≡ 1 we
get

1
2p

� 2p

0
Dn(x)dx = 1.

Changing variables, x− t = y, and extending f on the entire like periodically, we can
get as well:

Sn f (x) = 1
2p

� 2p

0
f (x−y)Dn(y)dy.

Consider the graph of Dn(x) for n = 32:
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This graph is “centered" at x = 0, and oscillates farther away, insinuating that for
large n, Sn f (x) is some “local average" of f in the vicinity of the point x.

Proposition 1.74 — Localization principle. Let f ,g be L1[0,2p] functions,
such that f = g in some neighborhood of a point x. Then,

lim
n→∞(Sn f (x)−Sng(x)) = 0.
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Comment 1.23 It is not implied that the limits of Sn f (x) and Sng(x) exist.

Proof. We have

Sn f (x)−Sng(x) = 1
2p

� 2p

0

f (x−y)−g(x−y)
sin 1

2 y
sin��n+ 1

2�y� dy.

It is given that f (x−y)−g(x−y) vanishes in a neighborhood of y = 0. Hence, the
function

f (x−y)−g(x−y)
sin 1

2 y

is integrable. The n→ 0 limit follows from the Riemann-Lebesgue lemma.10 �

Theorem 1.75 — Dini criterion. Let f ∈ L1[0,2p] and x ∈ [0,2p]. Suppose there
exists a scalar ` such that

� p

0

1
t
� f (x+ t)+ f (x− t)

2
−`�dt <∞,

then limn→∞Sn f (x) = `.

Proof. We know that

Sn f (x) = 1
2p

� p

−p

f (x− t)Dn(t)dt.

Since Dn is symmetric, we also have

Sn f (x) = 1
2p

� p

−p

f (x+ t)Dn(t)dt,

and since Dn is normalized,

Sn f (x)−` = 1
2p

� p

−p

� f (x− t)+ f (x− t)
2

−`�Dn(t)dt.

10The Riemann-Lebesgue lemma states that for every f ∈ L1[0,2p]:
lim

n→∞�
2p

0
f (x)eınx dx = 0.

The proof is simple. A direct calculation shows that for every interval I,

lim
n→∞�I

eınx dx = 0,

hence this is true for every step function, and by dominated convergence for every positive integrable
functions, and finally for every integrable function.
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Now,

Sn f (x)−` = 1
2p

� p

−p

1
t
� f (x− t)+ f (x− t)

2
−`�

��������������������������������������������������������������������������������������������������������������������������������������������������������
in L1

t
sin 1

2 t�
bounded

sin��n+ 1
2
�t� dt,

and this expression tends to zero by the Riemann-Lebesgue lemma. �
Comment 1.24 This criterion holds, for example, if

f (x+ t)+ f (x− t)
2

−` =O(ta)
for some a > 1, i.e., the functions needs only to be “a little more than differentiable"
at x.

The general question

The basic question remains: under what conditions does the Fourier series of a
function (if it exists) converge pointwise to the function? The question was asked
already by Fourier himself in the beginning of the 19th century. Dirichlet proved that
the Fourier series of continuously differentiable functions converges everywhere.
It turns out, however, that continuity is not enough for pointwise convergence
everywhere (Paul du Bois-Reymond, showed in 1876 that there is a continuous
function whose Fourier series diverges at one point). In 1966, Lennart Carleson
proved that for every f ∈ L2[0,2p],

lim
n→∞Sn f (x) = f (x) almost everywhere.

(This was conjectured in 1915 by Nikolai Lusin; the proof is by no means easy.)
Two years later Richard Hunt extended the proof for every Lp[0,2p] function for
p > 1. On the other hand, Andrey Kolmogorov showed back in the 1920s that there
exist L1[0,2p] functions whose Fourier series nowhere converges.

Fejér sums

Rather than looking at the partial sums Sn f , we can consider their running average:

sn f = 1
n+1

n�
k=0

Sn f .

Such sums are called after Lipót Fejér. It turns out that Fejér sums are much better
behaved than the Fourier partial sums.

Note that it is trivial that if Sn f (x) converges as n→∞, then so does sn f (x), and to
the same limit.
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Consider the Fejér sums in explicit form:

sn f (x) = 1
n+1

n�
k=0

1
2p

� 2p

0
f (x−y)Dk(y)dy

= 1
2p

� 2p

0
f (x−y)� 1

n+1

n�
k=0

Dk(y)� dy

≡ 1
2p

� 2p

0
f (x−y)Kn(y)dy,

where,

1
n+1

n�
k=0

Dk(y) = 1
n+1

n�
k=0

sin�k+ 1
2�y

sin 1
2 y

= 1
n+1

1
sin 1

2 y
Im

n�
k=0

eı(k+ 1
2 )y

= 1
n+1

1
sin 1

2 y
Ime

1
2 ıy eıny−1

eıy−1

= 1
n+1

1
sin 1

2 y
Ime

1
2 ıy e

1
2 ıny

e
1
2 ıy

sin 1
2 ny

sin 1
2 y

= 1
n+1

sin2 1
2 ny

sin2 1
2 y

.

The function Kn(x) is known as the Fejér kernel.
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The Fejér kernel is also normalized, as found by setting f ≡ 1:

1 = sn f (x) = 1
2p

� 2p

0
Kn(y)dy.

It differs a lot from the Dirichlet kernel in that it is non-negative.
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Like the Dirichlet kernel it is “centered" at zero. That is, for every e > 0,

lim
n→∞�

2p−e

e

Kn(x)dx = lim
n→∞

1
n+1 �

2p−e

e

sin2 1
2 nx

sin2 1
2 x

dx

≤ lim
n→∞

1
n+1 �

2p

0

dx
sin2 1

2 d

= 0.

Theorem 1.76 — Fejér. For every f ∈C[0,2p] such that f (0) = f (2p):
lim

n→∞�sn f − f �∞ = 0.

Moreover, if f ∈ L1[0,2p] is continuous at x then limn→∞sn f (x) = f (x).

Proof. Let f ∈C[0,2p]. Since continuous functions on compact intervals are uni-
formly continuous,

(∀e > 0)(∃d > 0) ∶ (∀x,y ∶ �x−y� < d)(� f (x)− f (y)� < e).
Using the normalization of the Fejér kernel:

�sn f (x)− f (x)� = � 1
2p

� p

−p

( f (x−y)− f (x))Kn(y)dy�
= � 1

2p

��x�≥d

( f (x−y)− f (x))Kn(y)dy+ 1
2p

��x�<d

( f (x−y)− f (x))Kn(y)dy�
≤ 2� f �∞ 1

2p

��x�≥d

Kn(y)dy+ e

2p

� 2p

0
Kn(y)dy,

and we used the fact that the Fejér kernel is non-negative. For sufficiently large n
the right hand side can be made smaller than a constant (independent of x) times e ,
which proves the first part.

The proof of the second part is similar. Continuity at x means local boundedness.
By the localization principle we may therefore replace f by a bounded function that
coincides with f in some neighborhood of x. �

1.7.4 The Fourier transform

The Fourier series represents a function on [0,2p] (or equivalently a 2p-periodic
function on R) as a sum of trigonometric functions eınx. We now wish to extend the
treatment to the Hilbert space L2(R). We still want to expand the functions as a sum
of trigonometric functions eıx x, but this time we need to consider x ∈R (otherwise
we’ll only represent 2p-periodic functions).
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Can this be done? Note that these “basis" functions are not in L2(R). Moreover,
they form an uncountable set of functions, whereas we know that L2(R) is separable,
and hence every orthonormal basis is countable.

Definition 1.29 Let f ∈ L1(R). The function f̂ ∶R→C defined by

f̂ (x) = 1√
2p

�
R

f (x)e−ıx x dx

is called the Fourier transform ( �%**9&5 .9&5219)) of f .

Proposition 1.77 For f ∈ L1(R), f̂ is continuous.

Proof. This is an immediate consequence of dominated convergence. Let xn→ x .
Then,

f̂ (xn) = 1√
2p

�
R

f (x)e−ıxnx

��������������������������������������
gn(x)

dx.

The sequence gn(x) converges pointwise to f (x)e−ıx x, and

�gn(x)� = � f (x)�,
and f ∈ L1(R). It follows that f̂ (xn)→ f̂ (x). �

Proposition 1.78 The mapping f � f̂ is a bounded linear operator L1(R)→
L∞(R), and

� f̂ �L∞(R) ≤ 1√
2p

� f �L1(R).

Proof. Obvious. �

Lemma 1.79 — Riemann-Lebesgue. For every f ∈ L1(R):
lim�x �→∞ f̂ (x) = 0.

Proof. Let f = 1[a,b], then

� f̂ (x)� = 1√
2p

�� b

a
e−ıx x dx� = 1√

2p

� 1
−ıx
�e−ıx b−e−ıx a�� ≤ 2√

2p �x � ,
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which satisfies the desired property. Thus, the lemma holds for every step function.
Let f ∈ L1(R) and let e > 0. There exists a step function g such that

� f (x)−g(x)�L1(R) < e.

Then, by the previous proposition

� f̂ − ĝ�L∞(R) ≤ 1√
2p

� f −g�L1(R) ≤ e√
2p

.

Since g is a step function, there exists an L such that

(∀�x � > L) �ĝ(x)� ≤ e.

Then for every �x � > L,

� f̂ (x)� ≤ �ĝ(x)�+ e√
2p

≤ �1+ 1√
2p

�e.

�

Proposition 1.80 Let f ∈ L1(R).
¿ For R ∋ l ≠ 0 and t ∈R set g(x) = f (lx+ t). Then

ĝ(x) = 1
l

eıx t�l f̂ �x

l

� .
¡ If Id ⋅ f ∈ L1(R) then f̂ is differentiable and

f̂ ′(x) = −ı�Id f (x).

Proof. For the first part, just follow the definition. g is clearly in L1(R), and

ĝ(x) = 1√
2p

�
R

g(x)e−ıx x dx

= 1√
2p

�
R

f (lx+ t)e−ıx x dx

= 1
l

eıx t�l 1√
2p

�
R

f (lx+ t)e−ıx(lx+t)�l
ldx

= 1
l

eıx t�l f̂ (x �l).
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Next,

f̂ (x +h)− f̂ (x)
h

= 1√
2p

�
R

f (x)e−ıx x�e−ıhx−1
h
�

���������������������������������������������������������������������������������������������������������������������
`h(x)

dx

Observing that

�e−ıhx−1
h
� ≤ �x� and lim

h→0
`h(x) = f (x)e−ıx x(−ıx),

we apply Lebesgue’s dominated convergence theorem to conclude that

lim
h→0

f̂ (x +h)− f̂ (x)
h

= −ı�Id f .

�
Comment 1.25 If the opposite true? Does f ∈ L1(R) such that f̂ ∈ L1(R) is differ-
entiable almost everywhere imply that ıx f ∈ L1(R)?
The Fourier transform in L2(R)
So far, we defined the Fourier transform for functions in L1(R). Recall that unlike
for bounded intervals, L2(R) �⊂ L1(R), hence the Fourier transform is as of now not
defined for functions in L2(R).
Lemma 1.81 Let f ∈ L2(R) have compact support (i.e., it vanishes outside a
segment [a,b]), then f̂ (x) exists and

�
R
� f (x)�2 dx =�

R
� f̂ (x)�2 dx .

Proof. Since f �[a,b] ∈ L2[a,b] then it is integrable, and

f̂ (x) = 1√
2p

� b

a
f (x)e−ıx x dx.

Thus,

� f̂ (x)�2 = 1
2p

� b

a
� b

a
f (x) f (y)e−ıx(x−y)dxdy.

Integrating from −L to L:

� L

−L
� f̂ (x)�2 dx = 1

2p

� b

a
� b

a
f (x) f (y)�� L

−L
e−ıx(x−y)dx� dxdy

= 1
2p

� b

a
� b

a
f (x) f (y)2sinL(x−y)

x−y
dxdy.
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We are definitely stuck... although physicists would say that the ratio tends as L→∞
to the “delta-function" d(x−y).
Let’s be serious... first we’ll show that we may well assume that the support of f is[0,2p]. Define

g(x) = f � 2p

b−a
x− 2pa

b−a
� .

The function g has support in [0,2p]. By the previous proposition:

ĝ(x) = 1
l

eıstuff f̂ (x �l),
where l = 2p�(b−a), hence,

�ĝ(x)�2 = 1
l

2 � f̂ (x �l)�2.
Now,

�
R
�ĝ(x)�2 dx = 1

l

2 �R � f̂ (x �l)�2 dx = 1
l

�
R
� f̂ (x)�2 dx ,

and

�
R
�g(x)�2 dx =�

R
� f (lx+ stuff)�2 dx = 1

l

�
R
� f (x)�2 dx,

which means that we can assume WLOG that the support of the function is in[0,2p].
We are in the realm of functions in L2[0,2p]. Note first that for every t ∈R:

�e−ıtxg(n) = 1
2p

� 2p

0
e−ıtxg(x)e−ınx dx = 1√

2p

ĝ(n+ t).
Applying the Parseval identity we have for every t ∈R:

1
2p

� 2p

0
�g(x)�2 dx = 1

2p

� 2p

0
�e−ıxtg(x)�2 dx = 1

2p

∞�
n=−∞ �ĝ(n+ t)�2.

Integrating over t ∈ [0,1] we get

�
R
�g(x)�2 dx =�

R
�ĝ(x)�2 dx .

�
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Theorem 1.82 — Plancherel. There exists a unique bounded linear operator F
in L2(R), such that

(∀ f ∈ L2(R)∩L1(R)) F( f ) = f̂ .

The operator F is an isometry, namely,

�F( f )� = � f �.

Proof. Let f ∈ L2(R). By the previous lemma:

f̂n(x) ≡ �f ⋅1[−n,n](x) = 1√
2p

� n

−n
f (x)e−ıx x dx

exists, and

�
R
� f̂n(x)�2 dx =� n

−n
� f (x)�2 dx.

In fact, the same Lemma implies that for n >m:

�
R
� f̂n(x)− f̂m(x)�2 dx =�

R
� fn(x)− fm(x)�2 dx =� n

−n
� f (x)�2 dx−� m

−m
� f (x)�2 dx,

which means that f̂n is a Cauchy sequence in L2(R), and hence converges.

Define: F( f ) = lim
n→∞ f̂n,

where the limit is in L2(R). By the continuity of the norm �F( f )� = � f �. Also, for
f ∈ L2(R)∩L1(R), F( f ) = f̂ . Uniqueness is immediate because F( f ) is specified
on a dense subset and the operator F is bounded. �
Comment 1.26 We have thus shown that the Fourier transform can be “naturally"
extended to an operator on L2(R). From now on f̂ will denote the extension F( f ).
Hermite functions

Consider the sequence of elements in L2(R):
{xne−x2�2 � n ∈N}.

If we perform a Gram-Schmidt orthonormalization on this sequence, we get the
following orthonormal system:

hn(x) = 1�
2nn!
√

p

e−x2�2Hn(x),
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where hn(x) are known as the Hermite functions and

Hn(x) = (−1)nex2 dn

dxn e−x2

are known as the Hermite polynomials (Hn is of degree n). Also, the Hn are
alternately odd/even.

Comment 1.27 The details of the Hermite functions are not important for our
purposes. We only care that they are obtained from the functions {xn e−x2�2 by
Gram-Schmidt orthonormalization.

Proposition 1.83 The Hermite functions hn form a basis in L2(R).

Proof. The orthonormality can be checked by a direct calculation. Suppose that
f ∈ L2(R) was orthogonal to all Hermite functions, namely

(∀n ∈N) �
R

f (x)hn(x)dx = 0.

This amounts to having

(∀n ∈N) �
R

f (x)xne−x2�2 dx = 0.

Consider the function

j(z) = 1√
2p

�
R

eıtze−t2�2 f (t)dt.

This function is analytic on the whole complex plane. Note that

j

(n)(z) = 1√
2p

�
R
(ıt)neıtze−t2�2 f (t)dt = 0,

from which we conclude that j ≡ 0. In particular, for z = x ,

�e−t2�2 f (x) = 0.

Because the Fourier transform is an isometry, e−t2�2 f ≡ 0, which completes the
proof. �
Consider next the Fourier transform of the function e−x2�2:

F[e−x2�2](x) = 1√
2p

�
R

e−x2�2e−ıx x dx = 1√
2p

e−x

2�2�
R

e−(x+ıx)2�2 dx.
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Using Cauchy’s theorem for the function e−z2�2, for rectangles z = [−R,R] and
z = [−R+ ıx ,R+ ıx ] and letting R→∞,

F[e−x2�2](x) = 1√
2p

e−x

2�2�
R

e−x2�2 dx = e−x

2�2.

That is, the function e−x2�2 is invariant under the Fourier transform.

Next, recalling that F[ f ]′ =F[−ıx f ](if the latter exists), it follows that

dn

dx

n e−x

2�2 =F �(−ıx)ne−x2�2�(x),
and hence

F[hn](x) =F � n�
k=0

an,kxke−x2�2�(x)
= n�

k=0
an,kıkF �(−ıx)ne−x2�2�(x)

= n�
k=0

an,kık
dn

dx

n e−x

2�2.

The right hand side is a polynomial times e−x

2�2, hence it can be expanded in the
form:

F[hn](x) = n�
k=0

bn,khk(x).
Moreover, since F is an isometry, the functions F[hn] form an orthonormal system
(an isometry is also an isomorphism). It follows that both the hn and the F[hn] are
orthonormalizations of the same set, however, the Gram-Schmidt orthonormalization
is unique up to prefactors of modulus 1, namely,

F[hn] = ln hn,

where �ln� = 1. To find ln it is only needed to look at the prefactor of xn, and it is
easy to see that11

F[hn] = (−ı)n hn.

For any f ∈ L2(R),
f = ∞�

n=0
( f ,hn)hn,

11

F[xne−x2�2] = ın
dn

dx

n e−x

2�2 = ın(−x)ne−x

2�2+ . . . .
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hence
F[ f ] = ∞�

n=0
( f ,hn)F[hn] = ∞�

n=0
(−ı)n( f ,hn)hn,

and
F[F[ f ]] = ∞�

n=0
(−1)n( f ,hn)hn.

Since hn(−x) = (−1)nhn(x), it follows that

F[F[ f ]](x) = ∞�
n=0
( f ,hn)hn(−x) = f (−x).

That is, the Fourier transform is almost its own inverse. In particular, if f̂ ∈ L1(R),
then

f (−x) = 1√
2p

�
R

f̂ (x)e−ıx x dx .

To summarize:

Theorem 1.84 — Inverse Fourier transform. Let f ∈ L2(R) such that f̂ ∈ L1(R),
then

f (x) = 1√
2p

�
R

f̂ (x)eıx x dx .


