
Chapter 5

Derivatives

5.1 Definition

In this chapter we define and study the notion of di↵erentiability of func-
tions. Derivatives were historically introduced in order to answer the need
of measuring the “rate of change” of a function. We will actually adopt this
approach as a prelude to the formal definition of the derivative.

Before we start, one technical clarification. In the previous chapter, we in-
troduced the limit of a function f ∶ A→ B at an (interior) point a,

lim
a

f.

Consider the function g defined by

g(x) = f(a + x),
on the range, {x ∶ a + x ∈ A}.
In particular, zero is an interior point of this set. We claim that

lim
0

g = lim
a

f,

provided, of course, that the right hand side exists. It is a good exercise to
prove it formally. Suppose that the right hand side equals `. This means
that (∀" > 0)(∃� > 0)(∀x ∈ B○(a, �))(�f(x) − `� < ").
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Setting x − a = y,
(∀" > 0)(∃� > 0)(∀y ∈ B○(0, �))(�f(a + y) − `� < "),

or equivalently,

(∀" > 0)(∃� > 0)(∀y ∈ B○(0, �))(�g(y) − `� < "),
i.e., lim0 g = `.
Let now f be a function defined on some interval I, and let a and x be two
points inside this interval. The variation in the value of f between these two
points is f(x)−f(a). We define the mean rate of change ( �37&// *&1*: "78)
of f between the points a and x to be the ratio

f(x) − f(a)
x − a .

This quantity can be attributed with a number of interpretations. First, if
we consider the graph of f as a geometry entity, then the mean rate of change
is the slope of the secant line ( �9;*/) that intersects the graph at the points a
and x (see Figure 5.1). Second, it has a meaning in many physical situations.
For example, f can be the position along a line (say, in meters relative to
the origin) as function of time (say, in seconds relative to an origin of time).
Thus, f(a) is the distance from the origin in meters a seconds after the time
origin, and f(x) is the distance from the origin in meters x seconds after the
time origin. Then f(x) − f(a) is the displacement ( �8;3%) between time
a and time x, and (f(x) − f(a))�(x − a) is the mean displacement per unit
time, or the mean velocity.

This physical example is a good preliminary toward the definition of the
derivative. The mean velocity, or mean rate of displacement, is an average
quantity between two instants, but there is nothing to guarantee that within
this time interval, the body was in a “fixed state”. For example, we could
intersect this time interval into two equal sub-intervals, and measure the
mean velocity in each half. Nothing guarantees that these mean velocities
will equal the mean velocity over the whole interval. Physicists aimed to
define an “instantaneous velocity”, and the way to do it was to make the
length of the interval very small. Of course, having (x− a) small (what does
small mean?) does not change the average nature of the measured velocity.
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Figure 5.1: Relation between the mean rate of change of a function and the
slope of the corresponding secant.

An instantaneous rate of change can be defined by using limits. Fixing the
point a, we define a function,

�f,a ∶ A � {a}→ R,

by

�f,a(x)f(x) − f(a)
x − a .

Definition 5.1 f is di↵erentiable at a (�;*-*"!*7195*$ &! %9*'#) if �f,a has
a limit at a. We write

lim
a

�f,a = f ′(a).
We call the limit f ′(a) the derivative (�;9'#1) of f at a.

Comment: In the more traditional notation,

f ′(a) = lim
x→a

f(x) − f(a)
x − a .

At this stage, f ′(a) is nothing but a notation. It is not (yet!) a function
evaluated at the point a. Another standard notation, due to Leibniz, is

df

dx
(a),
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and another popular notation (especially when it comes to multivariate func-
tions) is

Df(a).
Having identified the mean rate of change as the slope of the secant line,
the derivative has a simple geometrical interpretation. As x tends to a, the
corresponding family of secants tends to a line which is tangent to f at the
point a. For us, these are only hand-waving arguments, as we have never
assigned any meaning to the limit of a family of lines.

Example: Consider the constant function, f ∶ R→ R, f ∶ x� c and let a ∈ R.
We construct the function

�f,a ∶ R � {a}→ R, �f,a(y) = f(y) − f(a)
y − a = c − c

y − a = 0.
The limit of this function at a is zero, hence f ′(a) = 0. ▲▲▲
In the above example, we could have computed the derivative at any point.
In other words, we can define a function that given a point x, returns the
derivative of f at that point, i.e., returns f ′(x). A function f ∶ A → B is
called di↵erentiable in a subset U ⊆ A of its domain if it has a derivative
at every point x ∈ U . We then define the derivative function, f ′ ∶ U → R, as
the function,

f ′(x) = lim
x

�f,x.

The more traditional notation is,

f ′(x) = lim
y→x

f(y) − f(x)
y − x .

Example: Consider the function f ∶ x � x2. We calculate its derivative at a
point x by first observing that

�f,x(y) = y2 − x2

y − x = x + y or �f,x = Id + x,
so that

f ′(x) = lim
x

�f,x = 2x.
▲▲▲
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Example: Consider now the function f ∶ x � �x�. Let’s first calculate its
derivative at a point x > 0. For x > 0,

�f,x(y) = �y� − x
y − x .

Since we are interested in the limit of �f,x at x > 0 we may well assume that
y > 0, in which case �f,x(y) = 1. Hence

f ′(x) = lim
x

�f,x = 1.
For negative x, �x� = −x and we may consider y < 0 as well, so that

�f,x(y) = (−y) − (−x)
y − a = −1,

so that
f ′(x) = lim

x
�f,x = −1.

Remains the point 0 itself,

�f,0(y) = �y� − �0�
y − 0 = sgn(y).

The limit at zero does not exist since every neighborhood of zero has points
where this function equals one and points where this function equals minus
one. Thus f is di↵erentiable everywhere except for the origin1. ▲▲▲
Comment: If f is di↵erentiable at a, then �f,a has a limit at a, hence it has
a removable discontinuity at that point. The function

x� �������
�f,a(x) x ≠ a
f ′(a) x = a

is continuous at a.

This last example shows a case where a limit does not exist, but one-sided
limits do exist. This motivates the following definitions:

1
We use here a general principle, whereby lima f does not exist if there exist `1 ≠ `2,

such that every neighborhood of a has points x, y, such that f(x) = `1 and f(y) = `2.
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Definition 5.2 A function f is said to be di↵erentiable on the right (%9*'#
�0*/*/) at a if the one-sided limit

lim
a+ �f,a

exists. We denote the right-hand derivative (�;*1/* ;9'#1) by f ′(a+). A
similar definition holds for left-hand derivatives.

Example: Here is one more example that practices the calculation of the
derivative directly from the definition. Consider first the function

f ∶ x� �������
x sin 1

x x ≠ 0
0 x = 0.

We have already seen that that this function is continuous at zero, but is it
di↵erentiable at zero? We construct the function

�f,0(y) = f(y) − f(0)
y − 0 = sin 1

y
.

The function �f,0 does not have a limit at 0, because every neighborhood of
zero has both points where �f,0 = 1 and points where �f,0 = −1. ▲▲▲
Example: In contrast, consider the function

f ∶ x� �������
x2 sin 1

x x ≠ 0
0 x = 0.

We construct

�f,0(y) = f(y) − f(0)
y − 0 = y sin

1

y
.

Since lim0�f,0 = 0, f is di↵erentiable at zero and f ′(0) = 0. ▲▲▲
5.1.1 Di↵erentiability and continuity

The following theorem shows that di↵erentiable functions are a subclass
(“better behaved”) of the continuous functions.
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Theorem 5.3 If f is di↵erentiable at a then it is continuous at a.

Proof : For y ≠ a,
f(y) = f(a) + (y − a) ⋅ f(y) − f(a)(y − a) .

Viewing f(a) as a constant, we have a functional identity,

f = f(a) + (Id − a)�f,a

valid in a punctured neighborhood of a. By limit arithmetic,

lim
a

f = f(a) + lim
a
(Id − a) lim

a
�f,a = f(a) + 0 ⋅ f ′(a) = f(a),

which proves that f is indeed continuous at a n

5.1.2 Higher order derivatives

If a function f is di↵erentiable on an interval A, we can construct a new
function—its derivative, f ′. The derivative f ′ can have various properties,
For example, it may be continuous, or not, and in particular, it may be
di↵erentiable on A, or on a subset of A. Then, we can define a new function—
the derivative of the derivative, or the second derivative ( �%*1: ;9'#1), which
we denote by f ′′. By definition

f ′′(x) = lim
x

�f ′,x.

(Note that this is a limit of limits.) Likewise, the second derivative may
be di↵erentiable, in which case we may define the third derivative f ′′′, and
so on. For derivatives higher than the third, it is customary to use, for
example, the notation f (4) rather than f ′′′′. The k-th derivative, f (k), is
defined recursively,

f (k)(x) = lim
x

�f(k−1),x.

For the recursion to hold from k = 1, we also set f (0) = f .
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5.2 Rules of di↵erentiation

Recall that when we studied limits, we first calculated limits by using the
definition of the limit, but very soon this became impractical, and we proved
a number of theorems (limit arithmetic), with which we were able to easily
calculate a large variety of limits. The exact same holds for derivatives. After
having calculated the derivatives of a small number of functions, we develop
tools enabling us to (easily) compute derivatives without having to go back
to the definitions.

Theorem 5.4 If fR→ R is a constant function, then f ′ ∶ R→ R is f ′(x) = 0.
Proof : We proved this is in the previous section. n

Theorem 5.5 If f = Id then f ′ = 1 (i.e., f ′ ∶ x� 1).

Proof : Immediate from the definition. n

Theorem 5.6 Let f, g be functions defined on the same domain (it su�ces that
the domains have a non-empty intersection). If both f and g are di↵erentiable
at a then f + g is di↵erentiable at a, and

(f + g)′(a) = f ′(a) + g′(a).

Proof : We consider the function

�f+g,a = (f + g) − (f + g)(a)
Id − a

= f + g − f(a) − g(a)
Id − a=�f,a +�g,a,

and by limits arithmetic,

(f + g)′(a) = f ′(a) + g′(a).
n—

48h(2017)—
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Theorem 5.7 [Leibniz rule] Let f, g be functions defined in a neighborhood of
a. If both f and g are di↵erentiable at a then f ⋅ g is di↵erentiable at a, and

(fg)′(a) = f ′(a) g(a) + f(a) g′(a).

Proof : We consider the function,

�fg,a(x) = f(x)g(x) − f(a)g(a)
x − a = f(x)g(x) − g(a)

x − a + f(x) − f(a)
x − a g(a),

i.e.,
�fg,a = f �g,a + g(a)�f,a,

and it remains to apply limits arithmetic. n

Corollary 5.8 The derivative is a linear operator,

(↵f + �g)′ = ↵f ′ + �g′.

Proof : We only need to verify that if f is di↵erentiable at a then so is ↵f
and (↵f)′ = ↵f ′. This follows from the derivative of the product. n

Example: Let n ∈ N and consider the functions fn ∶ x� xn. Then,

f ′n(x) = nxn−1 or equivalently f ′n = nfn−1.
We can show this inductively. We know already that this is true for n = 0,1.
Suppose this were true for n = k. Then, fk+1 = fk ⋅Id, and by the di↵erentiation
rule for products,

f ′k+1 = f ′k ⋅ Id + fk ⋅ Id′,
i.e.,

f ′k+1(x) = k xk−1 ⋅ x + xk ⋅ 1 = (k + 1)xk.

▲▲▲
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Theorem 5.9 If g is di↵erentiable at a and g(a) ≠ 0, then 1�g is di↵erentiable
at a and

(1�g)′(a) = − g′(a)
g2(a) .

Proof : Since g is continuous at a (it is continuous since it is di↵erentiable)
and it is non-zero, then there exists a neighborhood U of a in which g does
not vanish (by Theorem 4.27). In U � {a} we consider the function

�1�g,a(x) = 1�g(x) − 1�g(a)
x − a = −1

g(x) ⋅ g(a) ⋅ g(x) − g(a)x − a ,

i.e.,

�1�g,a = −�g,a

g ⋅ g(a) .
It remains to take the limit at a and apply the arithmetic laws of limits. n

Theorem 5.10 If f and g are di↵erentiable at a and g(a) ≠ 0, then the func-
tion f�g is di↵erentiable at a and

(f�g)′ = f ′g − g′f
g2

.

Proof : Apply the last two theorems. n

With these theorems in hand, we can di↵erentiate many other functions. In
particular there is no di�culty in di↵erentiating a product of more than two
functions. For example,

(fgh)′ = ((fg)h)′ = (fg)′h+(fg)h′ = (f ′g+fg′)h = (fg)h′ = f ′gh+fg′h+fgh′.
Suppose we take for granted that

sin′ = cos and cos′ = − sin .
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Then we have no problem calculating the derivative of, say, x � sin3 x, as
a product of three functions. But what about the derivative of x � sinx3?
Here we need a rule for how to di↵erentiate compositions.

Consider the composite function g ○ f , i.e.,
(g ○ f)(x) = g(f(x)).

Let’s try to calculate its derivative at a point a, assuming for the moment
that both f and g are di↵erentiable everywhere. We then need to look at the
function

�g○f,a(y) = (g ○ f)(y) − (g ○ f)(a)
y − a = g(f(y)) − g(f(a))

y − a ,

and calculate its limit at a. When y is close to a, we expect the arguments
f(y) and f(a) of g to be very close. This suggest the following treatment,

�g○f,a(y) = g(f(y)) − g(f(a))
f(y) − f(a) ⋅ f(y) − f(a)

y − a = g(f(y)) − g(f(a))
f(y) − f(a) �f,a(y).

It looks that as y → a, since f(y)−f(a)→ 0, this product tends to g′(f(a)) ⋅
f ′(a). The problem is that while the limit y → a means that the case y = a is
not to be considered, there is nothing to prevent the denominator f(y)−f(a)
from vanishing, rendering this expression meaningless. Yet, the result is
correct, and it only takes a little more subtlety to prove it.

Theorem 5.11 Let f ∶ A → B and g ∶ B → R. If f is di↵erentiable at a ∈ A,
and g is di↵erentiable at f(a), then

(g ○ f)′(a) = g′(f(a)) ⋅ f ′(a).

Proof : We introduce the following function, defined in a neighborhood of
f(a),

 ∶ z � �������
�g,f(a)(z) z ≠ f(a)
g′(f(a)) z = f(a).

The fact that g is di↵erentiable at f(a) implies that  is continuous at f(a).



150 Chapter 5

We next claim that for y ≠ a
�g○f,a = ( ○ f) ⋅�f,a.

Why that? If f(y) ≠ f(a), then this equation reads

g(f(y)) − g(f(a))
y − a = g(f(y)) − g(f(a))

f(y) − f(a) ⋅ f(y) − f(a)
y − a ,

which holds indeed, whereas if f(y) = f(a) it reads,
g(f(y)) − g(f(a))

y − a = g′(f(a)) ⋅ f(y) − f(a)
y − a ,

and both sides are zero. Consider now the limit of the right hand side at a.
By limits arithmetic,

lim
a
[( ○ f) ⋅�f,a] =  (f(a)) ⋅ lim

a
�f,a = g′(f(a)) ⋅ f ′(a).

n

5.3 Another look at derivatives

In this short section we provide another (equivalent) characterization of dif-
ferentiability and the derivative (due to Constantin Carathéodory, 1873–
1950). Its purpose is to o↵er a slightly di↵erent angle of view on the subject,
and show how clever definitions can sometimes greatly simplify proofs.

Our definition of derivatives states that a function f is di↵erentiable at an
interior point a, if the function �f,a has a limit at a, and we denote this limit
by f ′(a). The function �f,a is not defined at a, hence not continuous at a,
but this is a removable discontinuity. We could say that f is di↵erentiable
at a if there exists a real number, `, such that the function

Sf,x(y) =
�������
�f,a(y) y ≠ a
` y = a

is continuous at a, and Sf,a(a) = ` is called the derivative of f at a. For y ≠ a,
Sf,a(y) =�f,a(y) = f(x) − f(a)

x − a ,
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or equivalently,
f(y) = f(a) + Sf,a(y)(y − a).

This equation holds also for y = a. This suggests the following alternative
definition of the derivative:

Definition 5.12 A function f defined in on open neighborhood of a point a is
said to be di↵erentiable at a if there exists a function Sf,a continuous at a,
such that

f(y) = f(a) + Sf,a(y)(y − a).
Sf,a(a) is called the derivative of f at a and is denoted by f ′(a).
Of course, Sf,a coincides with �f,a in some punctured neighborhood of a.

Example: Take the function f ∶ x→ x2. Then

f(y) − f(a) = (y + a)(y − a),
or

f = f(a) + (Id + a)�����������������������Sf,a
(Id − a).

Since the function Id+ a is continuous at a, it follows that f is di↵erentiable
at a and

f ′(a) = Sf,a(a) = 2a.
▲▲▲

Example: Take the function f ∶ x→ 1�x and a ≠ 0. Then
f(x) − f(a) = 1

x
− 1

a
= − 1

xa
a − x,

or

f = f(a) − 1

a Id�Sf,a
(Id − a).

Since the function −1�a Id is continuous at a, it follows that f is di↵erentiable
at a and

f ′(a) = Sf,a(a) = − 1

a2
.

▲▲▲ —

50h(2017)—
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5.3.1 Leibniz’ rule

Let’s now see how this alternative definition simplifies certain proofs. Sup-
pose for example that both f and g are di↵erentiable at a. This implies the
existence of two functions, Sf,a and Sg,a, both continuous at a, such that

f(y) = f(a) + Sf,a(y)(y − a)
g(y) = g(a) + Sg,a(y)(y − a)

in some neighborhood of a and f ′(a) = Sf,a(a) and g′(a) = Sg,a(a). Then,
f(y)g(y) = (f(a) + Sf,a(y)(y − a)) (g(a) + Sg,a(y)(y − a))= f(a)g(a) + (f(a)Sg,a(y) + g(a)Sf,a(y) + Sf,a(y)Sg,a(y)(y − a)) (y − a).
By limit arithmetic, the function in the brackets,

F = f(a)Sg,a + g(a)Sf,a + Sf,aSg,a(Id − a)
is continuous at a, hence fg is di↵erentiable at a and

(fg)′(a) = F (a) = f(a)g′(a) + g(a)f ′(a).
5.3.2 Derivative of a composition

Suppose now that f is di↵erentiable at a and g is di↵erentiable at f(a).
Then, there exist functions, Sf,a and Sg,f(a), continuous at a and f(a), such
that

f(y) = f(a) + Sf,a(y)(y − a)
g(z) = g(f(a)) + Sg,f(a)(z)(z − f(a)).

Now,

g(f(y)) = g(f(a)) + Sg,f(a)(f(y))(f(y) − f(a))= g(f(a)) + Sg,f(a)(f(y))Sf,a(y)(y − a),
or, (g ○ f)(y) = (g ○ f)(a) + Sg,f(a)(f(y))Sf,a(y)����������������������������������������������������������������������������������������������������������������������

F

(y − a).
By the properties of continuous functions, the function in the square brackets
is continuous at a, and

(g ○ f)′(a) = F (a) = g′(f(a))f ′(a).
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5.4 The derivative and extrema

In high-school calculus, one of the main uses of di↵erential calculus is to find
extrema of functions. We are going to put this practice on solid grounds.
First, recall the definition,

Definition 5.13 Let f ∶ A → B. A point a ∈ A (not necessarily an internal
point) is said to be a maximum point of f in A, if

f(x) ≤ f(a) ∀x ∈ A.
We define similarly a minimum point.

Comment: By no means a maximum point has to be unique, nor to exist.
For example, in a constant function all points are minima and maxima. On
the other hand, the function f ∶ (0,1) → R, f ∶ x � x2 does not have a
maximum in (0,1). Also, we proved that a continuous function defined on a
closed interval always has a maximum (and a minumum, both, not necessarily
unique).

Here is a first connection between maximum (and minimum) points and
derivatives:

Theorem 5.14 Let f ∶ (a, b) → R. If x ∈ (a, b) is a maximum point of f and
f is di↵erentiable at x, then f ′(x) = 0.

Proof : Since x is, by assumption, a maximum point, then for every y ∈ (a, b),
f(y) − f(x) ≤ 0.

In particular, for y ≠ x,
�f,x(y) = f(y) − f(x)

y − x ,

satisfies �������
�f,x(y) ≤ 0 y > x
�f,x(y) ≥ 0 y < x.
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It is given that �f,x has a limit at x (it is f ′(x)). We will show that this
limit is necessarily zero.

Indeed, by the relation between limits and order,

lim
x+ �f,x ≤ 0 and lim

x− �f,x ≥ 0,
and since both one-sided limits are equal, we conclude that f ′(x) = 0.

n

Comment: This is a uni-directional theorem. It does not imply that if f ′(x) =
0 then x is a maximum point (nor a minimum point).

Comment: The open interval cannot be replaced by the closed interval [a, b],
because at the end points we can only consider one-sided limits.

Definition 5.15 Let f ∶ A → B. An interior point a ∈ A is called a local
maximum of f (�*/&8/ .&/*28/), if there exists a � > 0 such that a is a
maximum of f in (a− �, a+ �) (“local” always means “in a su�ciently small
neighborhood”).

Theorem 5.16 [Pierre de Fermat] If a is a local maximum (or minimum) of
f in some open interval and f is di↵erentiable at a then f ′(a) = 0.

Proof : There is actually nothing to prove, as the previous theorem applies
verbatim for f restricted to the interval (a − �, a + �). n

Comment: The converse is not true. Take for example the function f ∶ x→ x3.
If is di↵erentiable in R and f ′(0) = 0, but zero is not a local minimum, nor
a local maximum of f .

Definition 5.17 Let f ∶ A → B be di↵erentiable. A point a ∈ A is called a
critical point of f if f ′(a) = 0. The value f(a) is called a critical value.
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5.4.1 Locating extremal points

Let f ∶ [a, b] → R and suppose we want to find a maximum point of f . If f
is continuous, then a maximum is guaranteed to exist. There are three types
of candidates: (1) critical points of f in (a, b), (ii) the end points a and b,
and (iii) points where f is not di↵erentiable. If f is di↵erentiable, then the
task reduces to finding all the critical points and comparing all the critical
values, {f(x) ∶ f ′(x) = 0}.
Finally, the largest critical value has to be compared to f(a) and f(b).
Example: Consider the function f ∶ [−1,2]→ R, f(x) = x3 −x. This function
is di↵erentiable everywhere, and its critical points satisfy

f ′(x) = 3x2 − 1 = 0,
i.e., x = ±1�√3, which are both in the domain. It is easily checked that

f(1�√3) = − 2

3
√
3

and f(−1�√3) = 2

3
√
3
.

Finally, f(−1) = 0 and f(2) = 6, hence 2 is the (unique) maximum point.▲▲▲

5.5 The mean-value theorem

So far, we have derived properties of the derivative given the function. What
about the reverse direction? Take the following example: we know that the
derivative of a constant function is zero. Is it also true that if the derivative
is zero then the function is a constant? A priori, it is not clear how to show
it. How can we go from the knowledge that

lim
y→x

f(y) − f(x)
y − x = 0,

to showing that f is a constant function. The following two theorems will
provide us with the necessary tools:
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Theorem 5.18 [Michel Rolle, 1691] If f is continuous on [a, b], di↵erentiable
in (a, b), and f(a) = f(b), then there exists a point c ∈ (a, b) where f ′(c) = 0.

Proof : It follows from the continuity of f that it has a maximum and a
minimum point in [a, b]. If the maximum occurs at some c ∈ (a, b) then
f ′(c) = 0 and we are done. If the minimum occurs at some c ∈ (a, b) then
f ′(c) = 0 and we are done. The only remaining alternative is that a and b are
both minima and maxima, in which case f is a constant and its derivative
vanishes at some interior point (well, at all of them). n

Comment: The requirement that f be di↵erentiable everywhere in (a, b) is
imperative, for consider the function

f(x) = �������
x 0 ≤ x ≤ 1

2

1 − x 1
2 < x ≤ 1.

Even though f is continuous in [0,1] and f(0) = f(1) = 0, there is no interior
point where f ′(x) = 0.
Theorem 5.19 [Mean-value theorem (�37&//% +93% )5:/)] If f is continuous
on [a, b] and di↵erentiable in (a, b), then there exists a point c ∈ (a, b) where

f ′(c) = f(b) − f(a)
b − a ,

that is, a point at which the derivative equals to the mean rate of change of
f between a and b.

Comment: Rolle’s theorem is a particular case.

Proof : This is almost a direct consequence of Rolle’s theorem. Define the
function g ∶ [a, b]→ R,

g(x) = f(x) − f(b) − f(a)
b − a (x − a).
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g is continuous on [a, b] and di↵erentiable in (a, b). Moreover, g(a) = g(b) =
f(a). Hence by Rolle’s theorem there exists a point c ∈ (a, b), such that

0 = g′(c) = f ′(c) − f(b) − f(a)
b − a .

n

Corollary 5.20 Let f ∶ [a, b] → R. If f ′(x) = 0 for all x ∈ (a, b) then f is a
constant.

Proof : Let c, d ∈ (a, b), c < d. By the mean-value theorem there exists some
e ∈ (c, d), such that

f ′(e) = f(d) − f(c)
d − c ,

however f ′(e) = 0, hence f(d) = f(c). Since this holds for all pair of points,
then f is a constant. n

Comment: This is only true if f is defined on an interval. Take a domain of
definition which is the union of two disjoint sets, and this is no longer true
(f is only constant in every “connected component” (�;&9*:8 "*,9)).

Corollary 5.21 If f and g are di↵erentiable on an interval with f ′(x) = g′(x),
then there exists a real number c such that f = g + c on that interval.

Proof : Apply the previous corollary for f − g. n

Example: Suppose we are given that a function f ∶ R → R satisfies the
di↵erential equation

f ′(x) = af(x), ∀x ∈ R,
and the initial condition

f(0) = c.
We will show that this function is f(x) = c eax.



158 Chapter 5

Indeed, we are given that

f ′(x) − af(x) = 0,
or,

e−axf ′(x) − ae−axf(x) = 0,
which we can rewrite as

F ′(x) = 0,
where F (x) = e−axf(x). Thus F (x) is a constant, however F (0) = f(0) = c,
which implies, that

F (x) = e−axf(x) = c,
which concludes the proof. ▲▲▲

Corollary 5.22 If f is continuous on a closed interval [a, b] and f ′(x) > 0 in(a, b), then f is increasing on that interval.

Proof : Let x < y belong to that interval. By the mean-value theorem there
exists a c ∈ (x, y) such that

f ′(c) = f(y) − f(x)
y − x ,

however f ′(c) > 0, hence f(y) > f(x). n

Comment: The converse is not true. If f is increasing and di↵erentiable then
f ′(x) ≥ 0, but equality may hold, as in f(x) = x3 at zero.—

52h(2017)—

Comment: Suppose now that f ′(a) > 0. Does it imply that f is increasing
in a neighborhood of a. If f ′ is continuous at a, then f ′(x) > 0 is some
neighborhood of a, and f is increasing in that neighborhood. By f ′ may fail
to be continuous at a. What then? The answer is negative, for consider the
function

f(x) = �������
x + 2x2 sin(1�x) x ≠ 0
0 x = 0.
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Then,

f ′(x) = �������
1 + 4x sin(1�x) − 2 sin(1�x) x ≠ 0
1 x = 0.

Thus, any any neighborhood of 0, f ′ assumes values close to −1 and close to
3. Even though f ′(0) = 1, f is not increasing in a neighborhood of 0.

We have seen that at a local minimum (or maximum) the derivative (if it ex-
ists) vanishes, but that the opposite is not true. The following theorem gives
a su�cient condition for a point to be a local minimum (with a corresponding
theorem for a local maximum).

Theorem 5.23 If f ′(a) = 0 and f ′′(a) > 0 then a is a local minimum of f .

Comment: The fact that f ′′ exists at a implies:

1. f ′ exists in some neighborhood of a.

2. f ′ is continuous at a.
3. f is continuous in some neighborhood of a.

Proof : By definition,

f ′′(a) = lim
a

�f ′,a > 0 where �f ′,a(y) = f ′(y) − f ′(a)
y − a = f ′(y)

y − a .
Thus there exists a � > 0 such that

f ′(y)
y − a > 0 whenever 0 < �y − a� < �,

or,
f ′(y) > 0 whenever a < y < a + �
f ′(y) < 0 whenever a − � < y < a.

It follows that f is increasing in a right-neighborhood of a and decreasing in
a left-neighborhood of a, i.e., a is a local minimum.
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Another way of completing the argument is as follows: for every y ∈ (a, a+�):
f(y) − f(a)

y − a = f ′(cy) > 0 i.e., f(y) > f(a),
where cy ∈ (a, y). Similarly, for every y ∈ (a − �, a):

f(y) − f(a)
y − a = f ′(cy) < 0 i.e., f(y) > f(a),

where here cy ∈ (y, a). n

Example: Consider the function f(x) = x3−x. There are three critical points
0,±1�√3: one local maximum, one local minimum, and one which is neither.▲▲▲
Example: Consider the function f(x) = x4. Zero is a minimum point, even
though f ′′(0) = 0. ▲▲▲

Theorem 5.24 If f has a local minimum at a and f ′′(a) exists, then f ′′(a) ≥
0.

Proof : Suppose, by contradiction, that f ′′(a) < 0. By the previous theorem
this would imply that a is both a local minimum and a local maximum. This
in turn implies that there exists a neighborhood of a in which f is constant,
i.e., f ′(a) = f ′′(a) = 0, a contradiction. n

The following theorem states that the derivative of a continuous function
cannot have a removable discontinuity.

Theorem 5.25 Suppose that f is continuous at a and

lim
a

f ′ exists,

then f ′(a) exists and f ′ is continuous at a.
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Proof : The assumption that f ′ has a limit at a implies that f ′ exists in some
punctured neighborhood U of a. Thus, for y ∈ U � {a} the function f is
continuous on the closed segment that connects y and a and di↵erentiable on
the corresponding open segment. By the mean-value theorem, there exists a
point cy between y and a, such that

f ′(cy) = f(y) − f(a)
y − a =�f,a(y).

Since f ′ has a limit at a,

(∀" > 0)(∃� > 0) ∶ (∀y ∈ B○(a, �))��f ′(y) − lim
a

f ′� < "� .
Since y ∈ B○(a, �) implies that cy ∈ B○(a, �),

(∀" > 0)(∃� > 0) ∶ (∀y ∈ B○(a, �))(�f ′(cy)�����������
�f,a(y)

− lim
a

f ′� < "),
which precisely means that

f ′(a) = lim
a

f ′.
n

Example: The function

f(x) = �������
x2 x < 0
x2 + 5 x ≥ 0,

is di↵erentiable in a neighborhood of 0 and

lim
0

f ′ exists,
but it is not continuous, and therefore not di↵erentiable at zero. ▲▲▲
Example: The function

f(x) = �������
x2 sin 1�x x ≠ 0
0 x = 0,

is continuous and di↵erentiable in a neighborhood of zero. However, the
derivative does not have a limit at zero, so that the theorem does not apply.
Note, however, that f is di↵erentiable at zero. ▲▲▲
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Theorem 5.26 [Augustin Louis Cauchy; intermediate value theorem] Suppose
that f, g are continuous on [a, b] and di↵erentiable in (a, b). Then, there
exists a c ∈ (a, b), such that

[f(b) − f(a)]g′(c) = [g(b) − g(a)]f ′(c).

Comment: If g(b) ≠ g(a) then this theorem states that

f(b) − f(a)
g(b) − g(a) = f ′(c)

g′(c)
(provided also that g′(c) ≠ 0). This may seem like a corollary of the mean-
value theorem. We know that there exist c,d, such that

f ′(c) = f(b) − f(a)
b − a and g′(d) = g(b) − g(a)

b − a .

The problem is that there is no reason for the points c and d to coincide.

Proof : Define

h(x) = f(x)[g(b) − g(a)] − g(x)[f(b) − f(a)],
and apply Rolle’s theorem. Namely, we verify that h is continuous on [a, b]
and di↵erentiable in (a, b), and that h(a) = h(b), hence there exists a point
c ∈ (a, b), such that

h′(c) = f ′(c)[g(b) − g(a)] − g′(c)[f(b) − f(a)] = 0.
n

Theorem 5.27 [L’Hôpital’s rule] Suppose that

lim
a

f = lim
a

g = 0,
and that

lim
a

f ′
g′ exists.
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Then the limit lima(f�g) exists and
lim
a

f

g
= lim

a

f ′
g′ .

Comment: This is a very convenient tool for obtaining a limit of a fraction,
when both numerator and denominator vanish in the limit2. —

54h(2017)—

Proof : It is implicitly assumed that f and g are di↵erentiable in a neighbor-
hood of a (except perhaps at a) and that g′ is non-zero in a neighborhood
of a (except perhaps at a); otherwise, the limit lima(f ′�g′) would not have
existed. Note that f and g are not necessarily defined at a; since they have
a limit there, there will be no harm assuming that they are continuous at a,
i.e., f(a) = g(a) = 03.
First, we claim that g does not vanish in some neighborhood U of a, for by
Rolle’s theorem, it would imply that g′ vanishes somewhere in this neighbor-
hood. More formally, if

g′(x) ≠ 0 whenever 0 < �x − a� < �,
then

g(x) ≠ 0 whenever 0 < �x − a� < �,
for if g(x) = 0, with, say, 0 < x < �, then there exists a 0 < cx < x < �, where
g′(cx) = 0.
Both f and g are continuous and di↵erentiable in some neighborhood U that
contains a, hence by Cauchy’s mean-value theorem, there exists for every

2
L’Hôpital’s rule was in fact derived by Johann Bernoulli who was giving to the French

nobleman, le Marquis de l’Hôpital, lessons in calculus. L’Hôpital was the one to publish

this theorem, acknowledging the help of Bernoulli.
3
What we really do is to define continuous functions

f̃(x) = �������
f(x) x ≠ a
0 x = a and g̃(x) = �������

g(x) x ≠ a
0 x = a ,

and prove the theorem for the “corrected” functions f̃ and g̃. At the end, we observe that
the result must apply for f and g as well.
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x ∈ U , a point cx between x and a, such that

f(x) − 0
g(x) − 0 = f(x)

g(x) = f ′(cx)
g′(cx) . (5.1)

Since the limit of f ′�g′ at a exists,

(∀" > 0)(∃� > 0)x ∈ B○(a, �) implies ��f ′(x)
g′(x) − lima f ′

g′ � < "� ,
and since x ∈ B○(a, �) implies cx ∈ B○(a, �),

(∀" > 0)(∃� > 0)x ∈ B○(a, �) implies �� f ′(cx)
g′(cx)���������������
f(x)�g(x)

− lim
a

f ′
g′ � < "�,

which means that

lim
a

f

g
= lim

a

f ′
g′ .

n

Example:

1. The limit

lim
x→0

sinx

x
= 1.

2. The limit

lim
x→0

sin2 x

x2
= 1,

with two consecutive applications of l’Hôpital’s rule.

▲▲▲
Comment: Purposely, we only prove one variant among many other of l’Hôpital’s
rule. Another variants is: Suppose that

lim∞ f = lim∞ g = 0,
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and that

lim∞
f ′
g′ exists.

Then

lim∞
f

g
= lim∞ f ′

g′ .

Yet another one is: Suppose that

lim
a

f = lim
a

g =∞,

and that

lim
a

f ′
g′ exists.

Then

lim
a

f

g
= lim

a

f ′
g′ .

The following theorem is very reminiscent of l’Hôpital’s rule, but note how
di↵erent it is:

Theorem 5.28 Suppose that f and g are di↵erentiable at a, with

f(a) = g(a) = 0 and g′(a) ≠ 0.
Then,

lim
a

f

g
= f ′(a)
g′(a) .

Proof : Without loss of generality, assume g′(a) > 0. That is,
lim
y→a

g(y) − g(a)
y − a = lim

y→a

g(y)
y − a = g′(a) > 0,

hence there exists a punctured neighborhood of a where g(x)�(x−a) > 0, and
in particular, in which the numerator g(x) is non-zero. Thus, we can divide
by g(x) in a punctured neighborhood of a, and

f(x)
g(x) = f(x) − f(a)

g(x) − g(a) =
f(x)−f(a)

x−a
g(x)−g(a)

x−a
= �f,a(x)
�g,a(x) .

Using the arithmetic of limits, we obtain the desired result. n
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5.6 The derivative of the exponential

Let f ∶ R→ R be the exponential function,

f(x) = ex.
We have seen that

f(x) = lim
n→∞�1 + x

n
�n .

We are going to prove that the exponential function has the very special
property

f ′(x) = f(x).
Lemma 5.29 For every −1�2 < x < 1�2,

1 + y − 2y2 ≤ f(x) ≤ 1 + y + 2y2.

Proof : For every −1�2 < x < 1�2 and every n ∈ N,
(1 + x�n)n = 1 + x + n(n − 1)

2n2
x2 + n(n − 1)

3!n3
x3 +� 1

nn
xn,

i.e.,

��1 + x

n
�n − (1 + x)� ≤ x2 �1 + 1

2
+ 1

4
+ 1

2n−2� < 2x2.

It follows that for all n,

1 + x − 2x2 < �1 + x

n
�n < 1 + x + 2x2,

and the statement follows from the properties of limits and order. n

Proposition 5.30 f is di↵erentiable at zero and

f ′(0) = 1.
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Proof : We have

�f,0(x) = ex − 1
x

,

hence, for −1�2 < x < 1�2,
1 − 2x ≤�f,0(x) ≤ 1 + 2x.

By the sandwich theorem,

lim
0

�f,0 = 1.
n

Proposition 5.31 f is everywhere di↵erentiable and

f ′(a) = f(a).

Proof : Note that

�f,a(x) = ex − ea
x − a = ea e

x−a − 1
x − a = ea�f,0(x − a).

Now,

lim
x→a

�f,0(x − a) = lim
x→0

�f,0(x) = f ′(0) = 1,
hence by limit arithmetic,

lim
a

�f,a = ea = f(a).
n

Comment: The only functions satisfying f ′ = f are of the form f(x) = c ex.
We’ve seen how to prove it. —

56h(2017)—
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Figure 5.2: The derivative of the inverse function

5.7 Derivatives of inverse functions

We have already shown that if f ∶ A→ B is one-to-one and onto, then it has
an inverse f−1 ∶ B → A. We then say that f is invertible ( �%,*5%). We have
seen that an invertible function defined on an interval must be monotonic,
and that the inverse of a continuous function is continuous. In this section,
we study under what conditions is the inverse of a di↵erentiable function
di↵erentiable.

Recall also that

f−1 ○ f = Id,
with Id ∶ A → A. If both f and f−1 were di↵erentiable at a and f(a),
respectively, then by the composition rule,

(f−1)′(f(a))f ′(a) = 1.
Setting f(a) = b, or equivalently, a = f−1(b), we get

(f−1)′(b) = 1

f ′(f−1(b)) .
There is one little flaw with this argument. We have assumed (f−1)′ to exist.
If this were indeed the case, then we have just derived an expression for the
derivative of the inverse.
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Corollary 5.32 If f ′(f−1(b)) = 0 then f−1 is not di↵erentiable at b.

Example: The function f(x) = x3 + 2 is continuous and invertible, with

f−1(x) = 3
√
x − 2. Since, f ′(f−1(2)) = 0, then f−1 is not di↵erentiable at 2.▲▲▲

Theorem 5.33 Let f ∶ I → R be continuous and invertible. If f is di↵eren-
tiable at f−1(a) and f ′(f−1(a)) ≠ 0, then f−1 is di↵erentiable at b.

Proof : We have

�f−1,a(x) = f−1(x) − f−1(a)
x − a = f−1(x) − f−1(a)

f(f−1(x)) − f(f−1(a)) = 1

�f,f−1(a)(f−1(x)) ,
i.e.,

�f−1,a = 1

�f,f−1(a) ○ f−1 .
Since f is di↵erentiable at f−1(a), it is in particular continuous at that point,
hence f−1 is continuous at a. Since �f,f−1(a) is continuous at f−1(a) (the limit
is f ′(f−1(a)), the theorem follows by limit arithmetic,

lim
a

�f−1,a = 1

lima�f,f−1(a) ○ f−1
= 1

limf−1(a)�f,f−1(a)
= 1

f ′(f−1(a)) .
n

Example: Consider the function f(x) = tanx defined on (−⇡�2,⇡�2). We
denote its inverse by arctanx. Then4,

(f−1)′(x) = 1

f ′(f−1(x)) = cos2(arctanx) = 1

1 + tan2(arctanx) = 1

1 + x2
.

▲▲▲
4
We used the identity cos

2 = 1�(1 + tan2).
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Example: Consider the function f(x) = xn, with n integer. This proves that
the derivative of f−1(x) = x1�n is

(f−1)′(x) = 1

n
x1�n−1,

and together with the composition rule gives the derivative for all rational
powers. ▲▲▲
Example: The logarithm is the function inverse to the exponential,

log ∶ (0,∞)→ R,

where
log(ex) = x.

Then,

log′(x) = 1

exp′(log(x)) = 1

exp(log(x)) = 1

x
.

▲▲▲

5.8 Complements

Theorem 5.34 Suppose that f ∶ A → B is monotonic (say, increasing), then
it has one-sided limits at every point that has a one-sided neighborhood that
belongs to A. (In particular, if A is a connected set then f has one-sided
limits everywhere.)

Proof : Consider a segment (b, a] ∈ A. We need to show that f has a left-limit
at a. The set

K = {f(x) ∶ b < x < a}
is non-empty and upper bounded by f(a) (since f is increasing). Hence we
can define ` = supK. We are going to show that

` = lim
a− f.
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Let " > 0. By the definition of the supremum, there exists an m ∈ K such
that m > ` − ". Let y be such f(y) =m. By the monotonicity of f ,

` − " < f(x) ≤ ` whenever y < x < a.
This concludes the proof. We proceed similarly for right-limits. n

Theorem 5.35 Let f ∶ [a, b] → R be monotonic (say, increasing). Then the
image of f is a segment if and only if f is continuous.

Proof : (i) Suppose first that f is continuous. By monotonicity,

Image(f) ⊆ [f(a), f(b)].
That every point of [f(a), f(b)] is in the image of f follows from the intermediate-
value theorem.

(ii) Suppose then that Image(f) = [f(a), f(b)]. Suppose, by contradiction,
that f is not continuous. This implies the existence of a point c ∈ [a, b],
where

f(c) > lim
c− f and/or f(c) < lim

c+ f.

(We rely on the fact that one-sided derivatives exist.)

Say, for example, that f(c) < limc+ f . Then,

f(c) < f(c) + limc+ f
2

< lim
c+ f

is not in the image of f , which contradicts the fact that Image(f) = [f(a), f(b)].
n

Theorem 5.36 [Jean-Gaston Darboux] Let f ∶ A → B be di↵erentiable on(a, b), including a right-derivative at a and a left-derivative at b. Then, f ′
has the “intermediate-value property”, whereby for every t between f ′(a+)
and f ′(b−) there exists an x ∈ [a, b], such that f ′(x) = t.
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Comment: The statement is trivial when f is continuously di↵erentiable (by
the intermediate-value theorem). It is nevertheless correct even if f ′ has
discontinuities. This theorem thus limits the functions that are derivatives
of other functions—not every function can be a derivative.

Proof : Without loss of generality, let us assume that f ′(a+) > f ′(b−). Let
f ′(a+) > t > f ′(b−), and consider the function

g(x) = f(x) − tx.
(Here t is a fixed parameter; for every t we can construct such a function.)
We have

g′(a+) = f ′(a+) − t > 0 and g′(b−) = f ′(b−) − t < 0,
and we wish to show the existence of an x ∈ [a, b] such that g′(x) = 0.
Since g is continuous on [a, b] then it must attain a maximum. The point
a cannot be a maximum point because g is increasing at a. Similarly, b
cannot be a maximum point because g is decreasing at b. Thus, there exists
an interior point c which is a maximum, and by Fermat’s theorem, g′(c) =
f ′(c) − t = 0. n

Example: The function

f(x) = �������
x2 sin 1�x x ≠ 0
0 x = 0

is di↵erentiable everywhere, and its derivative is

f ′(x) = �������
2x sin 1�x − cos 1�x x ≠ 0
0 x = 0 .

The derivative is not continuous at zero, but nevertheless satisfes the Dar-
boux theorem. ▲▲▲
Example: How crazy can a continuous function be? It was Weierstrass who
shocked the world by constructing a continuous function that it nowhere
di↵erentiable! As instance of his class of examples is

f(x) = ∞�
k=0

cos(21k⇡x)
3k

.

▲▲▲—

58h(2017)—
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5.9 Taylor’s theorem

Recall the mean-value theorem. If f ∶ [a, b] → R is continuous on [a, b] and
di↵erentiable in (a, b), then for every point x ∈ (a, b) there exists a point cx,
such that

f(x) − f(a)
x − a = f ′(cx).

We can write it alternatively as

f(x) = f(a) + f ′(cx)(x − a).
Suppose, for example, that we knew that �f ′(y)� < M for all y. Then, we
would deduce that f(x) cannot di↵er from f(a) by more than M times the
separation �x − a�. In particular,

lim
a
[f − f(a)] = 0.

It turns out that if we have more information, about higher derivatives of f ,
then we can refine a lot the estimates we have on the variation of f as we
get away from the point a.

Definition 5.37 Let f be n-times di↵erentiable at a. We define the Taylor
polynomial of f of order n at a by

Pf,n,a = n�
k=0

f (k)(a)
k!

(Id − a)k,
or equivalently,

Pf,n,a(x) = n�
k=0

f (k)(a)
k!

(x − a)k.
Explicitly,

Pf,n,a(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2!
(x − a)2 + ⋅ ⋅ ⋅ + . . . f (n)(a)

n!
(x − a)n.

Lemma 5.38 Let f be n times di↵erentiable at a. Then,

P ′f,n,a = Pf ′,n−1,a.
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Proof : This is an immediate consequence of the definition of the Taylor
polynomial. n

Theorem 5.39 Let f be n times di↵erentiable at a. Then,

lim
a

f − Pf,n,a(Id − a)n = 0.

Comment: Loosely speaking, this theorem states that, as x approaches a,
Pf,n,a(x) is closer to f(x) than (x − a)n (or that f and Pf,n,a are “equal up
to order n”; see below). For n = 0 it states that

lim
a
[f − f(a)] = 0,

whereas for n = 1,
lim
a
�f − f(a)(Id − a) − f ′(a)� = lima �f,a − f ′(a) = 0,

which holds by definition.

Proof : We have seen above that the theorem holds for n = 1. Suppose that
it holds for k < n, i.e., for every function g that is k times di↵erentiable at a,

lim
a

g − Pg,k,a(Id − a)k = 0.
Since f ′ is k times di↵erentiable at a,

lim
a

f ′ − Pf ′,k,a(Id − a)k = 0,
which we may rewrite as follows,

lim
a

(f − Pf,k+1,a)′[(Id − a)k+1]′ = 0.
Since

lim
a
(f − Pf,k+1,a) = 0 and lim

a
(Id − a)k+1 = 0,
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it follows by L’hôpital’s rule that

lim
a

f − Pf,k+1,a(Id − a)k+1 = 0.
This completes the proof. n

If we denote by ⇧n the set of polynomials of degree at most n, then the
defining property of Pf,n,a is:

1. Pf,n,a ∈ ⇧n.

2. P (k)f,n,a(a) = f (k)(a) for k = 0,1, . . . , n.
Definition 5.40 Let f, g be defined in a neighborhood of a. We say that f and
g are equal up to order n at a if

lim
a

f − g(Id − a)n = 0.
It is easy to see that “equal up to order n” is an equivalence relation,
which defines an equivalence class.

Thus, the above theorem proves that f(x) and Pf,n,a (provided that the latter
exists) are equal up to order n at a. —

60h(2017)—The next task is to obtain an expression for the di↵erence between the func-
tion f and its Taylor polynomial. We define the remainder ( �;*9!:) of order
n, Rn(x), by

f(x) = Pf,n,a(x) +Rf,n,a(x).
Proposition 5.41 Let P,Q ∈ ⇧n be equal up to order n at a. Then P = Q.

Proof : We can always express these polynomials as

P (x) = a0 + a1(x − a) + ⋅ ⋅ ⋅ + an(x − a)n
Q(x) = b0 + b1(x − a) + ⋅ ⋅ ⋅ + bn(x − a)n.

We know that

lim
a

P −Q(Id − a)k = 0 for k = 0,1, . . . , n.
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For k = 0
0 = lim

a
(P −Q) = a0 − b0,

i.e., a0 = b0. We proceed similarly for each k to show that ak = bk for
k = 0,1, . . . , n. n

Corollary 5.42 If f is n times di↵erentiable at a and f is equal to Q ∈ ⇧n up
to order n at a, then

Pf,n,a = Q.

Example: We know from high-school math that for �x� < 1
f(x) = 1

1 − x =
n�

k=0
xk + xn+1

1 − x.
Thus,

f(x) −∑n
k=0 xk

xn
= x

1 − x.
Since the right hand side tends to zero as x→ 0 it follows that f and ∑n

k=0 xk

are equal up to order n at 0, which means that

Pf,n,0(x) = n�
k=0

xk.

▲▲▲
Example: Similarly for �x� < 1

f(x) = 1

1 + x2
= n�

k=0
(−1)kx2k + (−1)n+1 x2n+2

1 + x2
.

Thus,
f(x) −∑n

k=0(−1)kx2k

x2n
= x2

1 + x2
.

Since the right hand side tends to zero as x→ 0 it follows that

Pf,2n,0(x) = n�
k=0
(−1)kx2k.

▲▲▲
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Example: Let f = arctan. Then,
f(x) = � x

0

dt

1 + t2 = �
x

0
� n�
k=0
(−1)kt2k + (−1)n+1 t2n+2

1 + t2� dt
= n�

k=0
(−1)k x2k+1

2k + 1 +�
x

0
(−1)n+1 t2n+2

1 + t2 dt.
Since

�f(x) − n�
k=0
(−1)k x2k+1

2k + 1 � ≤ �x�2n+3,
it follows that

Pf,2n+2,0 = n�
k=0
(−1)k x2k+1

2k + 1 .
▲▲▲

Theorem 5.43 Let f, g be n times di↵erentiable at a. Then,

Pf+g,n,a = Pf,n,a + Pg,n,a,

and
Pfg,n,a = [Pf,n,aPg,n,a]n,

where []n stands for a truncation of the polynomial in (Id − a)at the n-th
power.

Proof : We use again the fact that if a polynomial “looks” like the Taylor
polynomial then it is. The sum Pf,n,a + Pg,n,a belongs to ⇧n and

lim
a

(f + g) − (Pf,n,a + Pg,n,a)(Id − a)n = lim
a

f − Pf,n,a(Id − a)n + lima
g − Pg,n,a(Id − a)n = 0,

which proves the first statement.

Second, we note that Pf,n,aPg,n,a ∈ ⇧2n, and that

fg − Pf,n,aPg,n,a(Id − a)n = fg − Pf,n,ag + Pf,n,ag − Pf,n,aPg,n,a(Id − a)n
= g f − Pf,n,a(Id − a)n + Pf,n,a

g − Pg,n,a(Id − a)n ,
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whose limit at a is zero. This proves that Pf,n,aPg,n,a and fg are equivalent
up to order n at a. All that remains it to truncate the product at the n-th
power of (Id − a). n

Theorem 5.44 [Taylor] Suppose that f is (n + 1)-times di↵erentiable on the
interval [a, x]. Then,

f(x) = Pf,n,a(x) +Rn,f,a(x),
where the remainder Rf,n,a(x) can be represented in the Lagrange form,

Rf,n,a(x) = f (n+1)(c)(n + 1)! (x − a)n+1,
for some c ∈ (a, x). It can also be represented in the Cauchy form,

Rf,n,a(x) = f (n+1)(⇠)
n!

(x − ⇠)n(x − a),
for some ⇠ ∈ (a, x).
Comment: For n = 0 this is simply the mean-value theorem.

Proof : Fix x, and consider the function � ∶ [a, x]→ R,

�(z) = f(x) − Pf,n,z(x)
= f(x) − f(z) − f ′(z)(x − z) − f ′′(z)

2!
(x − z)2 − ⋅ ⋅ ⋅ − f (n)(z)

n!
(x − z)n.

We note that
�(a) = Rf,n,a(x) and �(x) = 0.

Moreover, � is di↵erentiable, with

�′(z) = −f ′(z) − [f ′′(z)(x − z) − f ′(z)] − �f ′′′(z)
2!
(x − z)2 − f ′′(z)(x − z)�

− ⋅ ⋅ ⋅ − �f (n+1)(z)
n!

(x − z)n − f (n)(z)(n − 1)!(x − z)n−1�
= −f (n+1)(z)

n!
(x − z)n.
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Let now  be any function defined on [a, x], di↵erentiable on (a, x) with
non-vanishing derivative. By Cauchy’s mean-value theorem, there exists a
point a < ⇠ < x, such that

�(x) − �(a)
 (x) − (a) = �

′(⇠)
 ′(⇠) .

That is,

Rf,n,a(x) =  (x) − (a)
 ′(⇠) f (n+1)(⇠)

n!
(x − ⇠)n

Set for example  (z) = (x − z)p for some p. Then,

Rf,n,a(x) = (x − a)pf (n+1)(⇠)
pn!

(x − ⇠)n−p+1
For p = 1 we retrieve the Cauchy form. For p = n+1 we retrieve the Lagrange
form. n

Comment: Later in this course we will study series and ask questions like
“does the Taylor polynomial Pf,n,a(x) tend to f(x) as n→∞?”. This is the
notion of converging series. Here we deal with a di↵erent beast: the degree
of the polynomial n is fixed and we consider how does Pf,n,a(x) approach f(x)
as x → a. The fact that Pf,n,a approaches f faster than (x − a)n as x → a
means that Pf,n,a is an asymptotic series of f . —

62h(2017)—

Proof :[Alternative proof of the remainder formula] Note that

Rf,n,a = f − Pf,n,a

satisfies,

R(k)f,n,a(a) = 0 for all 0 ≤ k ≤ n and R(n+1)f,n,a = f (n+1).
The Lagrange representation is that for every x there exists a mid-point c,
such that

Rf,n,a(x) = R(n+1)f,n,a (c)(n + 1)! (x − a)n+1.
Consider the following function defined in a punctured neighborhood of a,

Rf,n,a(x)(x − a)n+1 =
Rf,n,a(x) −Rf,n,a(a)(x − a)n+1 − (a − a)n+1 .
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By the Cauchy mean value theorem, there exists a mid-point c1, such that

Rf,n,a(x)(x − a)n+1 =
R′f,n,a(c1)(n + 1)(c1 − a)n .

We rewrite the right hand side as

R′f,n,a(c1)(n + 1)(c1 − a)n =
1

n + 1
R′f,n,a(c1) −R′f,n,a(a)(c1 − a)n − (a − a)n .

Applying the Cauchy mean value theorem once again, there exists a mid-
point c2, such that

Rf,n,a(x)(x − a)n+1 = 1

n + 1
R′′f,n,a(c2)
n(c1 − a)n−1 .

We proceed n times, until we obtain

Rf,n,a(x)(x − a)n+1 = 1(n + 1)!R(n+1)f,n,a (cn+1).
n

5.10 Convex functions

Definition 5.45 Let I be an interval. A function f ∶ I → R is called convex
(�%9&/8), if for every a, b ∈ I (assume a < b) and every x ∈ (a, b),

f(x) ≤ b − x
b − a f(a) + x − a

b − a f(b).
it is called strictly convex (�:// %9&/8) if the inequality is strong.

Let’s first understand the meaning of this definition. For fixed a, b, define
the function ` ∶ (a, b)→ R,

`(x) = b − x
b − a f(a) + x − a

b − a f(b).
Its graph is a straight line connecting the points (a, f(a)) and (b, f(b)).
Convexity of f means that for every two points in that interval, the graph of
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f is under the graph of the secant (�9;*/) connecting the graph at those two
points.

Note that any x ∈ (a, b) can be written in the form

x = ta + (1 − t)b,
for some t ∈ (0,1). The inverse relation is

t = b − x
b − a ,

Note also that

1 − t = 1 − b − x
b − a = x − a

b − a .
Thus, f is convex if for every a, b ∈ I and every t ∈ (0,1),

f(ta + (1 − t)b) ≤ tf(a) + (1 − t)f(b). (5.2)

Comment: For t = 1�2 we get that convexity implies

f �a + b
2
� ≤ f(a) + f(b)

2
,

i.e., “the function of the mean is less than the mean of the function.”

Example: Every a�ne function,

f(x) =mx + n,
is convex. Indeed, for every a, b ∈ R and t ∈ (0,1),

f(ta + (1 − t)b) =m(ta + (1 − t)b) + n
= t(ma + n) + (1 − t)(mb + n)
= t f(a) + (1 − t)f(b).

Note that an a�ne function is not strictly convex. ▲▲▲
Example: The function f(x) = �x� is convex. Indeed, by the triangle inequal-
ity,

�ta + (1 − t)b� ≤ �ta� + �(1 − t)b�
= t �a� + (1 − t) �b�
= t f(a) + (1 − t)f(b).

▲▲▲
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Lemma 5.46 For every function f defined on an interval, and every x < y < z
�f,x(y) ≤�f,y(z)

if and only if
�f,x(y) ≤�f,x(z)

if and only if
�f,x(z) ≤�f,y(z).

Proof : It is easy to convince ourselves graphically that this is the case. For
a formal proof, note that

�f,x(z) = f(z) − f(x)
z − x

= f(z) − f(y) + f(y) − f(x)
z − x

= y − x
y − x f(z) − f(y)

z − x + z − y
z − y f(y) − f(x)z − x

= y − x
z − x�≡t

�f,y(z) + z − y
z − x�≡1−t

�f,x(y).

Thus, �f,x(z) is a weighted average of �f,y(z) and �f,x(y). It is therefore
greater than the smallest of the two and greater than the largest of the two.
n

Proposition 5.47 f is convex on I if and only if for every x < y < z,
�f,x(y) ≤�f,x(z) ≤�f,y(z).

Proof : By the previous lemma,

�f,x(y) ≤�f,x(z)
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and
�f,x(z) ≤�f,y(z)

are equivalent statements, hence it su�ces to show that �f,x(y) ≤ �f,x(z).
Di↵erently stated, we need to show that for every x, z ∈ I and every t ∈ (0,1),

�f,x(tx + (1 − t)z) ≤�f,x(z).
Let’s write this condition explicitly,

f(tx + (1 − t)z) − f(x)(tx + (1 − t)z) − x ≤ f(z) − f(x)
z − x ,

which amounts to

f(tx + (1 − t)z) − f(x)(1 − t)z − (1 − t)x ≤ f(z) − f(x)
z − x ,

i.e.,
f(tx + (1 − t)z) − f(x) ≤ (1 − t)(f(z) − f(x)),

which further reduces to

f(tx + (1 − t)z) ≤ t f(x) + (1 − t)f(z),
which is precisely the definition of convexity. n

Corollary 5.48 If f is convex on an interval I, then it has one-sided deriva-
tives at every point, and for all a ∈ I,

f ′(a−) ≤ f ′(a+).
Furthermore, if a < b, then

f ′(a+) ≤ f ′(b−).

Proof : Proposition 5.47 asserts that �f,a is monotonically increasing, hence
it has one-sided derivatives. Moreover,

lim
a− �f,a ≤ lim

a+ �f,a.
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As for the second claim, note that for a < b and every a < x < b,
f ′(a+) ≤�f,a(x) ≤�f,x(b) =�f,b(x) ≤ f ′(b−).

n

Proposition 5.49 If f has a right-derivative at a then it is right-continuous.

Proof : This is a one-sided version of the di↵erentiable implies continuity
property. Indeed, for every x ≠ a,

f(x) = f(a) +�f,a(x) (x − a).
Hence

lim
a+ f = f(a),

i.e., f is right-continuous. n

Corollary 5.50 If f is convex on an interval I then it is continuous on that
interval.

Proof : Since f has two one-sided derivatives, it is continuous on both sides,
hence continuous. n—

64h(2017)—

Proposition 5.51 Let I be an open segment. If f ∶ I → R is di↵erentiable,
then it is convex if and only if f ′ is increasing. If, in addition, f is convex
and twice di↵erentiable, then f ′′ ≥ 0.

Proof : Suppose that f is di↵erentiable and convex. We know that for a < b,
f ′(a) = f ′(a+) ≤ f ′(b−) = f ′(b),

i.e., f ′ is monotonically increasing. Conversely, if f is di↵erentiable and f ′ is
increasing, then for every x < y < z there exist c ∈ (x, y) and d ∈ (y, z), such
that

�f,x(y) = f ′(c) and �f,y(z) = f ′(d).
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It follows that
�f,x(y) ≤�f,y(z),

which by Proposition 5.47 implies that f is convex.

Finally, if f is twice di↵erentiable and convex, then the monotonicity of f ′
implies that f ′′ ≥ 0. n

Convexity is a property relating the value of f at a weighted average of
x and y to the weighted average of f(x) and f(y). This property can be
generalized:

Definition 5.52 Let x1, . . . , xn be a set of numbers. A weighted average
(�--8&:/ 37&//) of those numbers is a convex combination,

n�
i=1
�ixi,

where �i ≤ 0 and ∑n
i=1 �i = 1. The �i are called convex weights.

Proposition 5.53 (Jensen’s inequality) If f is convex on an interval I, then
for every x1, . . . , xn ∈ I and every set of convex weights �1, . . . ,�n,

f � n�
i=1
�ixi� ≤ n�

i=1
�if(xi).

Proof : This is proved by induction on n. For n = 1 this is obvious as the
only convex weight is �1 = 1. Suppose this holds for n − 1, then

f � n�
i=1
�ixi� = f �n−1�

i=1
�ixi + �nxn�

= f �(1 − �n)∑n−1
i=1 �ixi

1 − �n + �nxn�
≤ (1 − �n)f �n−1�

i=1
�i

1 − �nxi� + �nf(xn)
≤ (1 − �n) n−1�

i=1
�i

1 − �nf(xi) + �nf(xn)
= n�

i=1
�if(xi),
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where we used the fact that ∑n−1
i=1 �i = 1 − �n. n

Example: In particular, for �i = 1�n,
f �x1 + ⋅ ⋅ ⋅ + xn

n
� ≤ f(x1) + ⋅ ⋅ ⋅ + f(xn)

n
.

▲▲▲
Example: Consider the function

− log ∶ (0,∞)→ R.

It it di↵erentiable. Since

(− log)′(x) = −1
x

is increasing, it follows that (− log) is convex. It follows that
− log �x1 + ⋅ ⋅ ⋅ + xn

n
� ≤ − log(x1) + ⋅ ⋅ ⋅ + log(xn)

n
.

We can rewrite this as

log �x1 + ⋅ ⋅ ⋅ + xn

n
� ≥ log(x1 . . . xn)1�n.

Since the logarithm is monotonically increasing, we recover the inequality
of arithmetic and geometric means,

�x1 + ⋅ ⋅ ⋅ + xn

n
� ≥ (x1 . . . xn)1�n.

▲▲▲


