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A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon
heating. In this Letter, we describe the intrinsic geometry of such a sheet and derive an expression for the
metric induced by general nematic director fields. Furthermore, we investigate the reverse problem of
constructing a director field that induces a specified 2D geometry. We provide an explicit recipe for how to
construct any surface of revolution using this method. Finally, we show that by inscribing a director field
gradient across the sheet’s thickness, one can obtain a nontrivial hyperbolic reference curvature tensor,
which together with the prescription of a reference metric allows dictation of actual configurations for a thin
sheet of nematic elastomer.
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The design of two-dimensional curved surfaces via the
inscription of their intrinsic geometry has been a subject of
extensive research in the last decade. Methods for inscrib-
ing surface geometries include the use of responsive
hydrogels [1,2], the manipulation of biological tissues
[3,4], and even crocheting [5]. A new approach, subject
to much research in the last years, includes the incorpo-
ration of liquid crystals into elastic polymers [6,7]. Such
materials exhibit many unusual properties including large
deformations depending on the nematic order, unusual
softness of certain deformation modes, and certain opto-
mechanical peculiarities. We focus on thin sheets of
nematic elastomers or glasses that were cross-linked while
in the nematic phase. These sheets undergo large defor-
mations when switching to the isotropic phase upon heating
[8–10] or illumination [11–13]. Together with material
properties, the nematic director field determines this
deformation, thus setting the 2D intrinsic geometry of
the sheet. The director field can be prescribed by pretreat-
ing the glass substrate in which the material is cast, either
mechanically [14,15] or optically [16,17], or by applying
an external electromagnetic field during cross-linking [10].
Theoretical work established the relation between the

spatial distribution of the director field and the resultant
intrinsic geometry in some specific cases. The local behav-
ior, as well as the global behavior for a bulk of constant
director field were studied [6,18]. Other works studied thin
sheets with constant director field using a reduced two-
dimensional model. Sheets with a gradient of either the
nematic director field or the external stimuli across their
thickness were found to have spontaneous curvature
[19–22]. Other works study director fields resulting from
a single defect in the nematic order [23,24] or from a
collection of defects [25]. Such director fields, which were

generated experimentally [16], lead to various 3D configu-
rations of the sheets. However, the variety of possible
director fields, and therefore 3D configurations that can
be obtained, is in principle much larger. To our knowledge,
no treatment has been given for the case of a general
(smooth) director field. The inscription of such a field
should be possible with existing experimental techniques
such as the ones mentioned above, in which the thickness of
the sheet is smaller than the surface extrapolation length.
In this Letter, we provide a general description for such

systems. In order to describe the resulting geometry while
avoiding unnecessary linearizations, we use the formalism of
incompatible elasticity, previously presented in [26]. From
this formalism, it is evident that the thin sheets may have no
rest configuration, but will rather exhibit a competition
between the stretching term (penalizing deviations of the
2D metric from its reference value) and the bending term
(penalizing deviations of the surface curvature from its
referencevalue).As the referencemetric and curvature tensors
may be incompatible, such competition results in a thickness-
dependent equilibrium state of nonzero energy. In the case of
liquid crystal elastomers, both the elastic shell stretching term
and the elastic shell bending term contain contributions from
both polymer elasticity and Frank energy associated with
gradients in the nematic director field.Therefore, the reference
metric and reference curvature result themselves from some
competition between these contributions and may therefore
depend upon external controls, e.g., the temperature. The
(anisotropic) elastic moduli also depend upon these controls.
However, in this Letter, we focus on the purely geometric
problem of equilibrium configurations at the vanishing thick-
ness limit, which is not affected by the elastic moduli.
Following [6] and others, our model assumes a

liquid crystalline solid to expand (contract), upon some
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environmental stimulus, by a factor of α1=2 along the
director field and by a factor of α−νt=2 along the
perpendicular direction (where νt is the thermal Poisson
ratio, see [25]). This description applies both for elasto-
meric materials (sparsely cross-linked) or glassy materials
(densely cross-linked); however, the two classes differ in
their typical values of α and νt. This deformation is the
most general local deformation in 2D, our assumptions are
that α and νt are constant throughout the sheet and that the
principal expansion direction is aligned with the dictated
director field. The process is illustrated in Fig. 1. A nematic
sheet originally prepared on a Euclidean plane will there-
fore have, after stimulation, a reference metric of the form

āðu; vÞ ¼ R½θðu; vÞ�
�
α 0

0 α−νt

�
R½θðu; vÞ�T; ð1Þ

where R½θ� is the 2D rotation matrix and θðu; vÞ is the
nematic director field. Equation (1) assumes that (u; v) is a
Cartesian coordinate system; hence, the metric prior to the
deformation was represented by the identity matrix. The
director field θ is assumed to be smooth, but might contain
isolated defects, in which the field is smooth everywhere
except for a small region around the defect. We shall also
assume constant ambient conditions so that α is constant
throughout the sheet. Prior to stimulation, α ¼ 1 and the
metric is Euclidean. We can rewrite Eq. (1) in terms of the
scalar field ϕðu; vÞ ¼ tan θðu; vÞ:

āðu; vÞ ¼ 1

ϕ2 þ 1

�
αþ α−νtϕ2 ðα − α−νtÞϕ
ðα − α−νtÞϕ αϕ2 þ α−νt

�
:

ð2Þ

Equation (2) expresses the metric of the 2D nematic
elastomer sheet in terms of its director field. The reference
Gaussian curvature of the sheet (determined by ā through
Gauss’ Theorema Egregium) is

K̄āðu; vÞ ¼ ðα − α−νtÞ
�ðϕ2 − 1Þϕuv − ϕðϕuu − ϕvvÞ

ðϕ2 þ 1Þ2

þ ð3ϕ2 − 1Þðϕ2
u − ϕ2

vÞ − 2ϕðϕ2 − 3Þϕuϕv

ðϕ2 þ 1Þ3
�
:

ð3Þ
We now exemplify our formalism by examining two

classes of director fields. The first will be the director field of

a point disclination, that was previously studied in [25]. The
director field for a point disclination of charge m is of the
form θðu; vÞ ¼ m arctanðv=uÞ. Using Eq. (3), we obtain
the Gaussian curvature field resulting from this point defect:

K̄def
ā ðr;φÞ ¼ ðανt − α−1Þmðm − 1Þ cos½2ðm − 1Þφ�

r2
; ð4Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and φ ¼ arctanðv=uÞ are the polar

coordinates. Equation (4) is exactly as was obtained in [25],
showing indeed that nontrivial Gaussian curvature is
induced not only at the point defect, but also everywhere
around it for m ≠ 1.
Our second example involves a continuously varying

director field, i.e., without any defects. Assume a director
field that only depends on one of the coordinates, say u.
Equation (3) for the Gaussian curvature simplifies into

K̄sym
ā ðuÞ ¼ ðα − α−νtÞ

�
3ϕ2 − 1

ðϕ2 þ 1Þ3 ϕ
2
u −

ϕ

ðϕ2 þ 1Þ2 ϕuu

�

¼ α − α−νt

2

�
1

ϕ2 þ 1

�
uu
: ð5Þ

Equation (5) is analytically solvable for ϕ for any given
K̄āðuÞ. This implies that any such symmetric geometry can
be “reverse engineered” to find a director field that will
induce that geometry. Indeed, reverse engineering in such a
symmetric case is feasible, and we discuss it below.
Rather than looking at the metric emerging from some

given director field, in the following, we construct a
director field given a desired metric (as was done for
hydrogel systems in [27]). This problem is important when
attempting to implement nematic elastomers for methods of
design. We start by inducing a metric which is symmetric
along one of the coordinates, i.e., embeddable as a surface
of revolution. Suppose we are given a metric of the form:

āðξ; ηÞ ¼ Ω2ðξÞ
�
1 0

0 1

�
: ð6Þ

This form of the metric is known as isothermal. Every two-
dimensional metric can be locally brought to this form
[generally, with Ωðξ; ηÞ] by a proper choice of coordinates
[28]. For a surface of revolution given by the radius R as a
function of the height z, defining ξ≡ R ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R02p

=RÞdz
and setting η to be the azimuthal angle, we obtain a metric
in the form Eq. (6).

FIG. 1 (color online). Inscription of geometry of a nematic elastomer sheet (left-to-right). The director field can be imposed by substrate
pretreatment or by applying an electromagnetic field. After cross-linking, we are left with an elastic plate, within which is a nematic liquid
crystal with a prescribed director field. Upon heating, thematerial switches to the disordered state and the resulting sheet locally expands or
contracts by a factor

ffiffiffi
α

p
in the direction parallel to the director field and by a factor

ffiffiffiffiffiffiffiffi
α−νt

p
in the perpendicular direction. This (in general)

results in a non-Euclidean two-dimensional metric, which causes out-of-plane deformations if the sheet is thin enough.
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We construct a new set of coordinates (u; v) defined by

uðξ; ηÞ≡ α−ð1−νtÞ=2
Z

Ω2ðξÞdξ;

vðξ; ηÞ≡ η − α−ð1−νtÞ=2
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(α −Ω2ðξÞ)(Ω2ðξÞ − α−νt)
q

dξ:

ð7Þ
It is easy to verify that in these new coordinates the metric
takes the form Eq. (2) with

ϕ2ðu; vÞ ¼ Ω2(ξðuÞ) − α−νt

α −Ω2(ξðuÞ) ; ð8Þ

where ξðuÞ is the inverse function of uðξÞ given by Eq. (7).
Equation (8) gives us an explicit recipe for the manufacture
of any metric of the type Eq. (6), i.e., any surface of
revolution. A few examples are given in Fig. 2. It also gives
us a clue as for the limitations of this construction. In order
for this scheme to work, we need the conformal factorΩ2 to
be within the range [α−νt , α], as ϕ2 needs be positive. This
can be guaranteed in a small enough neighborhood of every
point, but may pose a global problem. The larger the
expansion factor α is, the easier it is to satisfy this constraint.
As an example, we construct a (pseudo)spherical surface

with constant Gaussian curvature K0. This suggests
ΩðξÞ ¼ A= coshðA ffiffiffiffiffiffi

K0

p
ξÞ, where A is a constant andffiffiffiffiffiffi

K0

p
is either real or imaginary (depending on the sign

of K0). From Eq. (8), we obtain the director field:

θðuÞ ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1−νtK0u2 − A2ðA2 − α−νtÞ
A2ðA2 − αÞ − α1−νtK0u2

s
; ð9Þ

which can now be imprinted onto a flat surface in order to
get a thin sheet that becomes (pseudo)spherical upon
heating (Fig. 2). The constant A may be chosen to best
suit our needs, and specifically, to maximize the size of the
domain in which Ω2 ∈ ½α−νt ; α�.
We now relieve the symmetry along one of the coordi-

nates and examine the more general case. As demonstrated
in the symmetric case, the main task in designing a director
field resulting in a desired metric is to find a coordinate

system in which the metric tensor is of the form Eq. (1). We
can find this coordinate transformation, without solving for
the director field ϕðu; vÞ, by satisfying the two equations

detðJTāJÞ ¼ α1þνt ; ð10aÞ
trðJTāJÞ ¼ αþ α−νt ; ð10bÞ

where J is the Jacobian of the coordinate transformation. As
before, we shall assume that the metric is given in its
isothermal form:

āðξ; ηÞ ¼ Ω2ðξ; ηÞ
�
1 0

0 1

�
ð11Þ

(otherwise, a coordinate transformation that will bring it
to that form can be found by solving a Beltrami equa-
tion [28]). Equations (10) now take the form

uξvη − uηvξ ¼ αðνt−1Þ=2Ω2; ð12aÞ

u2ξ þ u2η þ v2ξ þ v2η ¼ ðανt þ α−1ÞΩ2: ð12bÞ

We can rewrite Eqs. (12) in terms of the complex
function wðzÞ, where w ¼ uþ iv and z ¼ ξþ iη:���� ∂w∂z

���� ¼ PðzÞ; ð13aÞ
���� ∂w∂z̄

���� ¼ t

���� ∂w∂z
����; ð13bÞ

where t≡ jðανt=2 − α−1=2Þ=ðανt=2 þ α−1=2Þj and P∶C →
Rþ is defined by Pðξþ iηÞ ¼ 1

2
jανt=2 þ α−ð1=2ÞjΩðξ; ηÞ.

Note that 0 ≤ t < 1, with t ¼ 0 only in the trivial case,
α ¼ 0 or νt ¼ −1.
We see from Eqs. (13) that wðzÞ is some (extremal)

quasiconformal mapping; however, it is difficult to find in
the general case. One possible tactic for dealing with
Eqs. (13) is to consider the Beltrami equation

∂w
∂z̄ ¼ teiφðzÞ

∂w
∂z ; ð14Þ

FIG. 2 (color online). Director field (top) and resulting surface of revolution (bottom) for α ¼ 2 and νt ¼ 1, for spherical
(ΩðξÞ ¼ ffiffiffi

2
p

= cosh ξ), pseudospherical (ΩðξÞ ¼ ffiffiffiffiffiffiffiffi
1=2

p
= cos ξ), and toroidal (ΩðξÞ ¼ ffiffiffi

2
p

=1þ ð1þ ffiffiffi
5

p
=2Þsin2ξ) surfaces. The

ffiffiffi
2

p

factors were introduced in order to maximize the size of the domain, given that ΩðξÞ must, by Eq. (8), lie between
ffiffiffiffiffiffiffiffi
1=2

p
and

ffiffiffi
2

p
. The

curved boundaries of the planar domains at the top panel become longitudes of the resulting surfaces upon heating.
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where φðzÞ is some real-valued function. The absolute
value of this equation is Eq. (13b). Like all smooth Beltrami
equations, Eq. (14) has a unique solution (modulo compo-
sition with analytic functions). This defines an operator B,
which takes a real-valued phase function φðzÞ and returns
PðzÞ, which is the absolute value of the partial derivative of
the solution of the corresponding Beltrami Eq. (14). The
operator B needs then to be inverted, in order to find the
phase φðzÞ which gives the desired PðzÞ, so that both
Eq. (13a) and Eq. (13b) are satisfied.
For example, for any harmonic φðzÞ, we define

f ¼
Z

e−ði=2Þ½φðzÞþi ~φðzÞ�dz; ð15Þ

where ~φ is the harmonic conjugate of φ. f is obviously
analytic. We observe that wðz; z̄Þ ¼ fðzÞ þ tfðzÞ is a sol-
ution to Eq. (14). Therefore, for any harmonic functionφðzÞ:

BφðzÞ ¼ jwzj ¼ jf0ðzÞj ¼ eð1=2Þ ~φðzÞ: ð16Þ
This relation can be easily inverted, which means we have a
solution for any PðzÞ [hence, ΩðzÞ] whose logarithm is an
harmonic function. However, this is somewhat unhelpful
since such Ω’s represent Euclidean metrics. Solutions for
other phase functions φðzÞ can be found, analytically or
numerically. These will give us a collection of metric
functions [represented by their conformal factor ΩðzÞ] that
can be brought via coordinate transformation to the form
Eq. (1), and can therefore be induced using liquid crystal
elastomers. However, since we were unable to establish an
existence theorem for solutions of Eq. (13), the mathemati-
cal question of whether such a coordinate system locally
exists for any smooth metric remains open.
Finally, we briefly discuss the direct inscription of

curvature on the sheet by prescribing different director
fields on its top and bottom layers, as was done with
uniform fields in [14,21,22]. Assuming director fields
θ�ðu; vÞ at the top and bottom layers, we will obtain
expressions ā�ðu; vÞ of the form Eq. (1) for the lateral
components of the metric on the top and bottom layers. To
linear order in z (the perpendicular coordinate), the full 3D
metric is of the form

ḡðu; vÞ ¼

0
B@

1
2
ðāþ þ ā−Þ þ z

h ðāþ − ā−Þ

0 0

0

0

1

1
CA; ð17Þ

hence, obtaining 2D metric and curvature tensors

ā ¼ 1

2
ðā− þ āþÞ; ð18aÞ

b̄ ¼ 1

2h
ðā− − āþÞ: ð18bÞ

In terms of the average director field hθi ¼ 1
2
ðθ− þ θþÞ

and the director field difference Δθ ¼ ðθþ − θ−Þ, Eq. (18)
reads

ā ¼ R½hθi�
��

α 0

0 α−νt

�
cos2

�
Δθ
2

�

þ
�
α−νt 0

0 α

�
sin2

�
Δθ
2

��
R½hθi�T

¼ R½hθi�
�
α 0

0 α−νt

�
R½hθi�T þOðΔθ2Þ; ð19aÞ

b̄ ¼ α − α−νt

2h
R½hθi�(

0 sinðΔθÞ
sinðΔθÞ 0 )R½hθi�T

¼ α − α−νt

2h
R½hθi�

�
0 1

1 0

�
R½hθi�TΔθ þOðΔθ3Þ: ð19bÞ

Thus, inscribing director fields θ�ðu; vÞ on the top and
bottom surfaces results in a sheet with spontaneous metric
ā and spontaneous curvature b̄ given by Eq. (19). These
results hold even if we relax the assumption of director field
linearity in the z direction [made in Eq. (17)]; however, the
effective thickness h may slightly differ from the actual
thickness. Dictating an average director field [θ] with
difference Δθ allows us to design not only the metric
but also the curvature tensor, hence, allowing us to differ-
entiate between different isometries of the same metric,
even for very thin sheets (Fig. 3).
From Eq. (19b), it is evident that only curvature tensors

which are everywhere saddlelike can be induced. The
principal curvature directions are at �45° from hθi and

FIG. 3 (color online). Top—director field on the top (red) and bottom (green) surfaces, in all of which hθi is the same (hence,
inscribing the same metric); however, Δθ differs (hence, inscribing different curvature tensors). Center—the resulting curvature field
dictated (red and green mark the two principal curvatures). By applying different Δθ fields, we can “activate” the curvature tensor
wherever its directions match the surface we wish to design. Bottom—the resulting surfaces. All surfaces are exact isometries of the
inscribed metric (and of each other); however, their curvature tensors best fit the inscribed ones, and are therefore energetically
preferable among isometries due to their lower bending energy.
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the curvature magnitude is proportional to Δθ, and there-
fore, these can be chosen independently (since we can
independently control θþ and θ−). The Gaussian curvature
induced by the curvature tensor, which is implied by
Eq. (19b), is everywhere nonpositive and reads:

K̄b̄ðu; vÞ ¼ −
sin2ðΔθÞ

h2(ðαþα−νt
α−α−νt Þ2 − cos2ðΔθÞ)

¼ −
���� ðαð1þνtÞ=2 − α−ð1þνtÞ=2ÞΔθ

2h

����2 þOðΔθ4Þ ð20Þ

(note the interesting contrast to sheets constructed by
isotropic expansion, in which only non-negative
Gaussian curvature can be dictated to the reference curva-
ture tensor). It is also important to observe that sheets
produced using that method are (generally) elastically
incompatible and will be residually stressed for any α ≠ 1.
In conclusion, the prescription of local director fields in

thin liquid crystalline solid sheets is oneof themost promising
techniques for programming inducible 3D configurations of
thin sheets. Until now, there has been no complete theoretical
work that links between the director field and the resultant
sheet geometry. In this Letter, we developed a general
framework for describing the intrinsic geometry of a thin
nematic elastomer or glass sheet. We provided explicit
relations between the nematic director field at preparation
and the reference metric and curvature fields of the resultant
elastic sheet. We investigated the inverse problem, trying to
construct the director field needed to obtain a desired 2D
metric. We obtained a Beltrami-like set of equations whose
solution gives us the coordinate system in which such a
director field exists.Wedemonstrated how to construct the2D
geometry of any surface of revolution using this method.
Finally, we showed that by inscribing a director field gradient
across the sheet’s thickness, we can obtain a nontrivial
reference curvature tensor. We proved that this reference
curvaturemust be of negative Gaussian curvature everywhere
and suggested a way to add it to the reference metric field in
order to differentiate between isometries of the same 2D
geometry. Such combinations of reference metric and curva-
ture fields allow us to accurately dictate equilibrium con-
figurations for the nematic elastomer thin sheets.
It is our hope that results described in this Letter will be

used by experimental groups in the design of responsive
elastic surfaces. More theoretical work is needed as well.
Specifically, the mathematical question of which 2D
metrics are (locally or globally) accessible via this method
remains open. The mathematical formulation of this ques-
tion in the form of Eq. (13) seems like a good starting point
for any further investigation of this problem. Other exten-
sions to this work may include homeotropic boundary
conditions in addition to the planar ones, and the use of
cholesteric or smectic liquid crystal elastomers.
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