Chapter 5

LP spaces

5.1 Basic theory

Throughout this chapter, we assume a fixed measure space (X, X, u).

Definition 5.1 Let f : X - R be measurable. For p € (0, 00) we define

ity =( 1)

(This expression can be infinite.)
Definition 5.2 Let p € (0, 00).

LP(u) ={f:X—>R : fismeasurable and |f|, < 0.}

LP(u)-spaces are generalizations of L' (u)-spaces; the elements of L”(u) are equiv-
alence classes of functions, which may differ on sets of zero measure.

Lemma 5.3 LP(u) is a vector space.

Proof: Closure under scalar multiplication is obvious. Closure under addition
follows from the inequality

|f+gl” < (2max(|f

gD <27(If1 + lgl),

)
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hence
If+glb <27 (715 + lgls)
[ |

We next show that as the notation indicates, | - |, is a norm on L?(u) (for p > 1).
Definition 5.4 Let p > 1. We denote its conjugate exponent (77703 11pin) by

p =p/(p-1).

Note that

Lemma 5.5 (Younyg's inequality) Let p > 1 and set q = p*. Then, for every a,b €
R:

jal” . [b]

—_— + —_—

lab| <
p q

Proof: Since (—log) is a convex function and since 1/p and 1/g sum up to one,
then, for every a,8 > 0:

1 1
—log(c—y +’§) < —— loga — — logB = —log(a'/PB"/4).
P q p q

It follows that:
@, B > allPplia.
JZ)

Setting @ = |a|P and B = |b|? we recover the desired result. u

Proposition 5.6 (Holder inequality) Let p > 1 and set q = p*. For every measur-
able f,g: X - R,

I &l < 171l elq-
In particular, if f € LP(u) and q € L1(w), then fg e L' (u).



L? spaces 151

Proof: If either |f|, = 0 or |g|, = 0, then the result is trivial. Otherwise, using
Young’s inequality,

1 P 1 q 1 1
Hf—g =f f idys—f |f|pd,u+— |g|qd,u=—+—=1.
I£1o0glgll,  J= 11 lplele ™~ p =Sl aJxlels ™ P g
Multiplying both sides by | f|,||g|, we obtain the desired result. u

Proposition 5.7 (MinkowsKi inequality) Let p > 1. For every f,g € LP(u),

If+ el <[flp+ el

Proof: The inequality is trivial for p = 1. For p > 1 set g = p*; it follows from the
triangle inequality that

\f+glP =|f+gllf +gl” " <|fIIf +gl”" +1gl|f +gl”".

Integrating, and using Holder’s inequality:

1f +8l5 < 1117 +glp™ + gl f + 815"

where we used the defining property of g. This completes the proof. [

Corollary 5.8 For every p > 1, | - |, is a norm on LP(u).

Proof': Positivity and homogeneity are immediate; the triangle inequality is noth-
ing but Minkowski’s inequality. |

N Exercise 5.1 Show that | - |, is not a norm for 0 < p < 1.

Proposition 5.9 LP(u) is a complete normed space, i.e., a Banach space (2r7n
792).

ESY ‘Exercise 5.2 Prove the completeness of L” (1) in two steps:
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(a) Prove that it suffices to prove that for every sequence f;, € L?(u),

if Y |falp<co  then > fu  converges in L? (u).
n=1

n=1

(b) Prove the statement by showing that Y2, | /|, < oo implies that F &f Yoo, [ exists a.e.;

then show that F € L?(u) and that convergence is in L” (u).

Proposition 5.10 For every p > 1, the space of simple functions f = ¥ ;a;xg, for
which u(E;) < oo for all j is dense in LP ().

Proof: Let f € LP(u). Then, there exist simple functions ¢, € SF"(X) converging
monotonically to f*, and simple functions ¢, € SF" (X) converging monotonically
to f~. Set f,, = ¢, — ¥,,. Then, f, — f pointwise, and

fal S bu+i < fH+ =1l
It follows that f, € L”(u), hence the E; in the representation of f, satisfy u(E;) <
Q.
Furthermore,

o = 1P < (Al = 1FDP < 271117,

fo— fIP € L' (u). Tt follows from dominated convergence that

i.e.,
lim f o= FIP du = 0.
n—oo X

The spaces L? are generalizations of the space L'(u). In general, there is no
inclusion relations between those space:

Proposition 5.11 In general, for every p # q there is no inclusion relation be-
tween LP(u) and Li(u).
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Proof: Consider the space ([1,00), %Z([1,00)),m) and set f(x) = 1/x. Then,
fel*(m)  but  f¢L'(m).
Consider the space ([-1,1),2([-1,1)),m) and set g(x) = 1//x. Then,

geL'(m) but g ¢ L*(m).

However, we have the following results:

Proposition 5.12 Let 1 < p < q<r. Then,

Li(u) c LP () + L' ().

That is, every f € Li(u) can be represented as g + h, where g € LP(u) and h €
L ().
Proof: Let f € L1(u) be given and let
E={x:[f(x)]>1}.
Define g = f yg and h = f yg.. Then, f = g + h, and

s =1 xe<Ifltee and A= LA < LA

which proves that

lel, <l and il <[ fl,

Proposition 5.13 Let 1 < p<q<r. Then,

LP(p) 0 L"(p) © L9 (p).
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Proof:: Let f € LP(u) n L"(u). Since g/p > 1 and g/r < 1, there exists a A € (0, 1)
satisfying
Aq , (1-A)q _
p r

1.
Using Holder’s inequality
£l = [ Vflodu= [ 17 £10-D9 dy = g p0-a],
- 1-1
<A ppag A gr-apg = LELLAIES,

e [fllg < IFIBIFIF < oo =

If the measure space is finite, then the L”(u) space satisfy the following inclusion
relation:

Proposition 5.14 If u(X) < oo then 1 < p < q implies that L(u) ¢ LP ().

Proof: Let f € L1(u) and let

E={x:|f(x)|<1}.

Then,

Jurau= [1frdus [ 1frdusuE)+ [ 170de<oo.

TA material 5.1 Define and treat the case of p = co.

N ‘Exercise 5.3 Let (X,2,u) be a finite measure space, let f € L?(u) and let g = p*. Show
that

171 < @)Y f -

N ‘Exercise 5.4 Consider the measure space ([0, 1], 2([0,1]),m) and let f € L”(m) for some
p> 1. Letg = p*. Prove that
1

lim -7 f[o,,] |fldm = 0.
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N Exercise 5.5 Let (X,Z, ) be a finite measure space. Let f,, f € L*(u), such that
Ifuilo<M  and lim f, = f ae.

(a) Prove that f € L2. (b) Use Egorov’s theorem to show that f, — f in L' (u).

RSN ‘Exercise 5.6 Let ube the counting measure on N and let 1 < p < g, co. Show that
1£1p < 17q-

5.2 Duality

Definition 5.15 Let p > 1. A bounded linear functional (2101 W5 H13pnD)
on LP(u) is a linear mapping ¢ : LP(u) — R, satisfying
def

|6l = sup{l¢(F)] = |flp =1} < co.
This space is called the space dual (*2R%77) to LP(u) and is denoted (LP(u))*.

The mapping ¢ ~ ||@|| is the operator norm (N*MR2IDW 1271); you must have
seen in the past that it is indeed a norm on (L7 (u))*.
Also,

Proposition 5.16 Bounded linear functionals on LP(u) are continuous.
Proof: Let f, - fin L?(u) and let ¢ € (LP(u))*. Then,

fn_f
¢(|fn—f||p)

Proposition 5.17 Let p > 1 and q = p* be its conjugate. Then, for every g €
Li(u), the map

| o= Flp < I@11f = flp = O
|

p(fa) = ()| = l6(fa = )] =

¢g=fﬁ>fxfgdu

is a bounded linear functional. Moreover,

[6c]l = llgls-
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Proof: Clearly, ¢, is a linear functional. Let | f|, = 1. By Holder’s inequality,

8Pl < [ Ifsldu < 1£1,lel = gl
from which follows that |¢|, < |g||,- Equality is obtained by taking,

lgle!
q-1

f=sgn(g)
”qu

in which case

|g|Pta—D MK
7l = [ Sy du= [ Edu=1,
9 PYTACR x | g|l4

and

001 = [ sen(e) B eau= [ g gy,
SPT sl

In other words, the mapping

Li(u) - (LP ()",

which maps g € LI(u) into ¢, € (L”(u))* is an isometric embedding (12
mR). The following seminal theorem shows that this map is in fact an isome-

try.

Theorem 5.18 (Riesz representation forLP-spaces) Let p > 1 and let g = p*.

Then
Li(p) ~ (L ()"

in the category of Banach spaces. That is, to every ¢ € (LP(u))* corresponds a

unique g € L4(u) such that ¢ = ¢, and |¢|| = |g|,-

Proof: We will only prove the theorem for the case of a finite measure space. It

remains to prove that to every ¢ corresponds a unique g such that ¢ = ¢,.

Step 1: uniqueness: If ¢, = ¢, then for every f e L7(u),

[ fedu= [ rhag
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hence for every f € LP(u),
0= [ flg-h)du

Suppose that g # 4. Then, one of the sets

{x:g()>f(0))  or {x:g(x)<f(X)}

has positive measure. Without loss of generality, we may assume that this is the
first. Then, for some n,

E, = {x :g(x) —h(x) > %}

has positive measure. Setting f = yz, we obtain a contradiction.

Step 2: construct a signed-measure v: Let ¢ € (LP(u))* be given. Since y is
finite, y¢ € L”(u) for every measurable set E € X; define

V(E) = ¢(xE).

We will show that v is a signed measure:

(a) Since y4 = 0 as an element of LP(u), and ¢ is linear,

V(@) = ¢(xe) = 4(0) = 0.

(b) Let
E=]]E,
n=1
then .
lim Y xg, =Xk pointwise,
n—oo =1
and
n 1/p 0o 1/p
XE_ZXEk ZXEk =(f d,u) =(/1(HEk)) .
k=1 k=n+1 U1 B k=n+1

p

Letting n — oo, using the upper-semicontinuity of u and the fact that N2, [12,.1 Ex =

g,
0o 1/p 0o 1/p
a1 5)) - (e(0 1,5)) -
y T k=n+l n 1

1 k=n+

38

lim

n—-oo

XE_ZXEk
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1.e.,
n
lim > g =xe  inL(p).
k=1
—35heoi7—
Since ¢ is linear and continuous,

V(E) = ¢(xe) = ), ¢xe,) = 2 v(E).
n=1 n=1
proving that v is countably-additive, i.e., it is a signed measure.

Step 3: Show that v << u and apply Radon-Nikodym to obtain a function g:
Suppose that u(E) = 0. Then, yg = 0 (as an element of L?(u)), hence

v(E) = ¢(xe) = 0.

It follows from the Radon-Nikodym theorem that there exists an integrable func-
tion g € L'(u), such that

WE) = [ g

which amounts to

d(xe) = fXgXE du.

By linearity,
R f gydu for all simple functions ¢ : X — R.
X
By definition of the norm |||,

lo(y)| = ‘fgwd,u <|ollwl, for all simple functions ¢ : X — R.
X

Step 4: Prove that g € L9(u): (Recall that L4(u) c L'(u), but not the other way
around.) Let g, be a sequence of simple functions converging to g pointwise, such
that |g,| < |g|- By Fatou’s lemma for |g,| - |g

’

lgll, < liminf |g, ..

Set 1
gt

leals™

Jo=sgn(g)
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which is a sequence of simple functions satisfying | f,||, = 1. Then,

1
8n :—_[ gnqd/vl
lgnlq P X! \
=f\fngn!du
X
Sflfngldu
X

= fX Jng du

=¢(fu) < 9]

In the passage to the second line we used the definition of f,; in the passage to the
third line we used the fact that |g,| < |g|; in the passage to the fourth line we used
the fact that f,g > 0; in the passage to the fifth line we used the characterization
of ¢ for simple functions; in the passage to the sixth line we used the definition of
the operator norm and the fact that | f, |, = 1.

It follows that
lgllq < liminf g, [, < 4]

Step 5: Prove that ¢ € ¢,: Finally, let f € L(u). Since the space of simple
functions is dense in L”(u) and ¢ is continuous, for y,, — f in L”(u),

| [erdu-o(n|=Jim | [ afau-o0s)

= lim fngdﬂ—fxgwndﬂ‘
~lim | [ o(r - v du

n—-oo

< lim Ll = vl =

This completes the proof for the case where  is a finite measure. |

—36heo1n—



