Chapter 5

L^p spaces

5.1 Basic theory

Throughout this chapter, we assume a fixed measure space $(\mathbb{X}, \Sigma, \mu)$.

Definition 5.1 Let $f: \mathbb{X} \to \mathbb{R}$ be measurable. For $p \in (0, \infty)$ we define

$$||f||_p = \left(\int_{\mathbb{X}} |f|^p d\mu\right)^{1/p}.$$

(This expression can be infinite.)

Definition 5.2 Let $p \in (0, \infty)$.

$$L^p(\mu) = \{ f : \mathbb{X} \to \mathbb{R} : f \text{ is measurable and } ||f||_p < \infty. \}$$

 $L^p(\mu)$ -spaces are generalizations of $L^1(\mu)$ -spaces; the elements of $L^p(\mu)$ are equivalence classes of functions, which may differ on sets of zero measure.

Lemma 5.3 $L^p(\mu)$ is a vector space.

Proof: Closure under scalar multiplication is obvious. Closure under addition follows from the inequality

$$|f+g|^p \le (2\max(|f|,|g|))^p \le 2^p(|f|^p + |g|^p),$$

hence

$$||f + g||_p^p \le 2^p (||f||_p^p + ||g||_p^p)$$

-29h₍₂₀₁₈₎---

We next show that as the notation indicates, $\|\cdot\|_p$ is a norm on $L^p(\mu)$ (for $p \ge 1$).

Definition 5.4 Let p > 1. We denote its conjugate exponent (חזקה צמורה) by

$$p^* = p/(p-1).$$

Note that

$$\frac{1}{p} + \frac{1}{p^*} = 1.$$

Lemma 5.5 (Young's inequality) Let p > 1 and set $q = p^*$. Then, for every $a, b \in \mathbb{R}$:

$$|ab| \le \frac{|a|^p}{p} + \frac{|b|^q}{q}$$

Proof: Since $(-\log)$ is a convex function and since 1/p and 1/q sum up to one, then, for every $\alpha, \beta > 0$:

$$-\log\left(\frac{\alpha}{p} + \frac{\beta}{q}\right) \le -\frac{1}{p}\log\alpha - \frac{1}{q}\log\beta = -\log(\alpha^{1/p}\beta^{1/q}).$$

It follows that:

$$\frac{\alpha}{p} + \frac{\beta}{q} \ge \alpha^{1/p} \beta^{1/q}.$$

Setting $\alpha = |a|^p$ and $\beta = |b|^q$ we recover the desired result.

Proposition 5.6 (Hölder inequality) Let p > 1 and set $q = p^*$. For every measurable $f, g : \mathbb{X} \to \mathbb{R}$,

$$||fg||_1 \le ||f||_p ||g||_q.$$

In particular, if $f \in L^p(\mu)$ and $q \in L^q(\mu)$, then $fg \in L^1(\mu)$.

Proof: If either $||f||_p = 0$ or $||g||_q = 0$, then the result is trivial. Otherwise, using Young's inequality,

$$\left\| \frac{fg}{\|f\|_p \|g\|_q} \right\|_1 = \int_{\mathbb{X}} \frac{f}{\|f\|_p} \frac{g}{\|g\|_q} d\mu \le \frac{1}{p} \int_{\mathbb{X}} \frac{|f|^p}{\|f\|_p^p} d\mu + \frac{1}{q} \int_{\mathbb{X}} \frac{|g|^q}{\|g\|_q^q} d\mu = \frac{1}{p} + \frac{1}{q} = 1.$$

Multiplying both sides by $||f||_p ||g||_q$ we obtain the desired result.

Proposition 5.7 (Minkowski inequality) Let $p \ge 1$. *For every* $f, g \in L^p(\mu)$,

$$||f+g||_p \le ||f||_p + ||g||_p.$$

Proof: The inequality is trivial for p = 1. For p > 1 set $q = p^*$; it follows from the triangle inequality that

$$|f+g|^p = |f+g||f+g|^{p-1} \le |f||f+g|^{p-1} + |g||f+g|^{p-1}.$$

Integrating, and using Hölder's inequality:

$$||f + g||_p^p \le ||f||_p ||f + g||_p^{p-1} + ||g||_p ||f + g||_p^{p-1},$$

where we used the defining property of q. This completes the proof.

Corollary 5.8 For every $p \ge 1$, $\|\cdot\|_p$ is a norm on $L^p(\mu)$.

Proof: Positivity and homogeneity are immediate; the triangle inequality is nothing but Minkowski's inequality.

 \triangle *Exercise 5.1* Show that $\|\cdot\|_p$ is not a norm for 0 .

Proposition 5.9 $L^p(\mu)$ is a complete normed space, i.e., a **Banach space** (בוך בוך).

Exercise 5.2 Prove the completeness of $L^p(\mu)$ in two steps:

(a) Prove that it suffices to prove that for every sequence $f_n \in L^p(\mu)$,

if
$$\sum_{n=1}^{\infty} \|f_n\|_p < \infty$$
 then $\sum_{n=1}^{\infty} f_n$ converges in $L^p(\mu)$.

(b) Prove the statement by showing that $\sum_{n=1}^{\infty} \|f_n\|_p < \infty$ implies that $F \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} f_n$ exists a.e.; then show that $F \in L^p(\mu)$ and that convergence is in $L^p(\mu)$.

Proposition 5.10 For every $p \ge 1$, the space of simple functions $f = \sum_j a_j \chi_{E_j}$ for which $\mu(E_j) < \infty$ for all j is dense in $L^p(\mu)$.

Proof: Let $f \in L^p(\mu)$. Then, there exist simple functions $\phi_n \in SF^+(\mathbb{X})$ converging monotonically to f^+ , and simple functions $\psi_n \in SF^+(\mathbb{X})$ converging monotonically to f^- . Set $f_n = \phi_n - \psi_n$. Then, $f_n \to f$ pointwise, and

$$|f_n| \le \phi_n + \psi_n \le f^+ + f^- = |f|.$$

It follows that $f_n \in L^p(\mu)$, hence the E_j in the representation of f_n satisfy $\mu(E_j) < \infty$.

Furthermore,

$$|f_n - f|^p \le (|f_n| + |f|)^p \le 2^p |f|^p,$$

i.e., $|f_n - f|^p \in L^1(\mu)$. It follows from dominated convergence that

$$\lim_{n\to\infty}\int_{\mathbb{X}}|f_n-f|^p\,d\mu=0.$$

The spaces L^p are generalizations of the space $L^1(\mu)$. In general, there is no inclusion relations between those space:

Proposition 5.11 In general, for every $p \neq q$ there is no inclusion relation between $L^p(\mu)$ and $L^q(\mu)$.

Proof: Consider the space $([1, \infty), \mathcal{B}([1, \infty)), m)$ and set f(x) = 1/x. Then,

$$f \in L^2(m)$$
 but $f \notin L^1(m)$.

Consider the space $([-1,1), \mathcal{B}([-1,1)), m)$ and set $g(x) = 1/\sqrt{x}$. Then,

$$g \in L^1(m)$$
 but $g \notin L^2(m)$.

However, we have the following results:

Proposition 5.12 Let 1 . Then,

$$L^q(\mu) \subset L^p(\mu) + L^r(\mu).$$

That is, every $f \in L^q(\mu)$ can be represented as g + h, where $g \in L^p(\mu)$ and $h \in L^r(\mu)$.

Proof: Let $f \in L^q(\mu)$ be given and let

$$E = \{x : |f(x)| > 1\}.$$

Define $g = f \chi_E$ and $h = f \chi_{E^c}$. Then, f = g + h, and

$$|g|^p = |f|^p \chi_E \le |f|^q \chi_E$$
 and $|h|^r = |f|^r \chi_{E^c} \le |f|^q \chi_{E^c}$,

which proves that

$$||g||_p \le ||f||_q$$
 and $||h||_r \le ||f||_q$.

Proposition 5.13 Let 1 . Then,

$$L^p(\mu) \cap L^r(\mu) \subset L^q(\mu)$$
.

Proof: Let $f \in L^p(\mu) \cap L^r(\mu)$. Since q/p > 1 and q/r < 1, there exists a $\lambda \in (0,1)$ satisfying

$$\frac{\lambda q}{p} + \frac{(1-\lambda)q}{r} = 1.$$

Using Hölder's inequality

$$||f||_q^q = \int_{\mathbb{X}} |f|^q d\mu = \int_{\mathbb{X}} |f|^{\lambda q} |f|^{(1-\lambda)q} d\mu = ||f|^{\lambda q} |f|^{(1-\lambda)q} ||_1$$

$$\leq ||f|^{\lambda q} ||_{p/\lambda q} ||f|^{(1-\lambda)q} ||_{r/(1-\lambda)q} = ||f||_p^{\lambda q} ||f||_r^{(1-\lambda)q},$$

i.e.,
$$||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda} < \infty$$
.

If the measure space is finite, then the $L^p(\mu)$ space satisfy the following inclusion relation:

Proposition 5.14 If $\mu(\mathbb{X}) < \infty$ then $1 \le p < q$ implies that $L^q(\mu) \subset L^p(\mu)$.

Proof: Let $f \in L^q(\mu)$ and let

$$E = \{x : |f(x)| \le 1\}.$$

Then,

$$\int_{\mathbb{X}} |f|^p \, d\mu = \int_{E} |f|^p \, d\mu + \int_{E^c} |f|^p \, d\mu \le \mu(E) + \int_{E^c} |f|^q \, d\mu < \infty.$$

TA material 5.1 Define and treat the case of $p = \infty$.

 $\textcircled{\mathbb{Z}}$ \mathcal{E} \mathcal{E}

$$||f||_1 \le (\mu(\mathbb{X}))^{1/q} ||f||_p.$$

S *Exercise 5.4* Consider the measure space $([0,1], \mathcal{B}([0,1]), m)$ and let $f \in L^p(m)$ for some p > 1. Let $q = p^*$. Prove that

$$\lim_{t \to 0} \frac{1}{t^{1/q}} \int_{[0,t]} |f| \, dm = 0.$$

Exercise 5.5 Let $(\mathbb{X}, \Sigma, \mu)$ be a finite measure space. Let $f_n, f \in L^2(\mu)$, such that $||f_n||_2 \leq M$ and $\lim_{n \to \infty} f_n = f$ a.e.

- (a) Prove that $f \in L^2$. (b) Use Egorov's theorem to show that $f_n \to f$ in $L^1(\mu)$.
- Exercise 5.6 Let μ be the counting measure on \mathbb{N} and let $1 . Show that <math>||f||_p \le ||f||_q$.

5.2 Duality

Definition 5.15 Let $p \ge 1$. A bounded linear functional (פונקציונל ליניארי חסום) on $L^p(\mu)$ is a linear mapping $\phi: L^p(\mu) \to \mathbb{R}$, satisfying

$$\|\phi\| \stackrel{def}{=} \sup\{|\phi(f)| : \|f\|_p = 1\} < \infty.$$

This space is called the space **dual** (דואליי) to $L^p(\mu)$ and is denoted $(L^p(\mu))^*$.

The mapping $\phi \mapsto \|\phi\|$ is the **operator norm** (נורמה אופרטורית); you must have seen in the past that it is indeed a norm on $(L^p(\mu))^*$. Also,

Proposition 5.16 Bounded linear functionals on $L^p(\mu)$ are continuous.

Proof: Let $f_n \to f$ in $L^p(\mu)$ and let $\phi \in (L^p(\mu))^*$. Then,

$$|\phi(f_n) - \phi(f)| = |\phi(f_n - f)| = \left|\phi\left(\frac{f_n - f}{\|f_n - f\|_p}\right)\right| \|f_n - f\|_p \le \|\phi\| \|f_n - f\|_p \to 0.$$

Proposition 5.17 Let p > 1 and $q = p^*$ be its conjugate. Then, for every $g \in L^q(\mu)$, the map

$$\phi_g: f \mapsto \int_{\mathbb{X}} fg \, d\mu$$

is a bounded linear functional. Moreover,

$$\|\phi_g\|=\|g\|_q.$$

155

Proof: Clearly, ϕ_q is a linear functional. Let $||f||_p = 1$. By Hölder's inequality,

$$|\phi_g(f)| \le \int_{\mathbb{X}} |fg| d\mu \le ||f||_p ||g||_q = ||g||_q,$$

from which follows that $\|\phi\|_g \le \|g\|_q$. Equality is obtained by taking,

$$f = \operatorname{sgn}(g) \frac{|g|^{q-1}}{\|g\|_q^{q-1}},$$

in which case

$$||f||_p = \int_{\mathbb{X}} \frac{|g|^{p(q-1)}}{||g||_q^{p(q-1)}} d\mu = \int_{\mathbb{X}} \frac{|g|^q}{||g||_q^q} d\mu = 1,$$

and

$$|\phi_g(f)| = \int_{\mathbb{X}} \operatorname{sgn}(g) \frac{|g|^{q-1}}{\|g\|_q^{q-1}} g \, d\mu = \int_{\mathbb{X}} \frac{|g|^q}{\|g\|_q^{q-1}} \, d\mu = \|g\|_q.$$

In other words, the mapping

$$L^q(\mu) \to (L^p(\mu))^*$$

which maps $g \in L^q(\mu)$ into $\phi_g \in (L^p(\mu))^*$ is an **isometric embedding** (איזומטרי). The following seminal theorem shows that this map is in fact an isometry.

Theorem 5.18 (Riesz representation for L^p -spaces) Let p > 1 and let $q = p^*$. Then

$$L^q(\mu)\simeq (L^p(\mu))^*$$

in the category of Banach spaces. That is, to every $\phi \in (L^p(\mu))^*$ corresponds a unique $g \in L^q(\mu)$ such that $\phi = \phi_g$ and $\|\phi\| = \|g\|_q$.

Proof: We will only prove the theorem for the case of a finite measure space. It remains to prove that to every ϕ corresponds a unique g such that $\phi = \phi_g$.

Step 1: uniqueness: If $\phi_g = \phi_h$, then for every $f \in L^p(\mu)$,

$$\int_{\mathbb{X}} fg \, d\mu = \int_{\mathbb{X}} fh \, d\mu,$$

hence for every $f \in L^p(\mu)$,

$$0=\int_{\mathbb{X}}f(g-h)\,d\mu.$$

Suppose that $g \neq h$. Then, one of the sets

$$\{x : g(x) > f(x)\}\$$
 or $\{x : g(x) < f(x)\}.$

has positive measure. Without loss of generality, we may assume that this is the first. Then, for some n,

$$E_n = \left\{ x : g(x) - h(x) > \frac{1}{n} \right\}$$

has positive measure. Setting $f = \chi_{E_n}$ we obtain a contradiction.

Step 2: construct a signed-measure ν : Let $\phi \in (L^p(\mu))^*$ be given. Since μ is finite, $\chi_E \in L^p(\mu)$ for every measurable set $E \in \Sigma$; define

$$\nu(E) = \phi(\chi_E).$$

We will show that ν is a signed measure:

(a) Since $\chi_{\varnothing} = 0$ as an element of $L^p(\mu)$, and ϕ is linear,

$$\nu(\varnothing) = \phi(\chi_E) = \phi(0) = 0.$$

(b) Let

$$E=\coprod_{n=1}^{\infty}E_n,$$

then

$$\lim_{n\to\infty}\sum_{k=1}^n \chi_{E_k} = \chi_E \qquad \text{pointwise,}$$

and

$$\left\|\chi_E - \sum_{k=1}^n \chi_{E_k}\right\|_p = \left\|\sum_{k=n+1}^\infty \chi_{E_k}\right\|_p = \left(\int_{\coprod_{k=n+1}^\infty E_k} d\mu\right)^{1/p} = \left(\mu\left(\coprod_{k=n+1}^\infty E_k\right)\right)^{1/p}.$$

Letting $n \to \infty$, using the upper-semicontinuity of μ and the fact that $\bigcap_{n=1}^{\infty} \coprod_{k=n+1}^{\infty} E_k = \emptyset$,

$$\lim_{n\to\infty}\left\|\chi_E-\sum_{k=1}^n\chi_{E_k}\right\|_p=\lim_{n\to\infty}\left(\mu\left(\coprod_{k=n+1}^\infty E_k\right)\right)^{1/p}=\left(\mu\left(\bigcap_{n=1}^\infty\coprod_{k=n+1}^\infty E_k\right)\right)^{1/p}=0,$$

i.e.,

$$\lim_{n\to\infty}\sum_{k=1}^n\chi_{E_k}=\chi_E\qquad\text{in }L^p(\mu).$$

-55H(2017)---

Since ϕ is linear and continuous,

$$\nu(E) = \phi(\chi_E) = \sum_{n=1}^{\infty} \phi(\chi_{E_n}) = \sum_{n=1}^{\infty} \nu(E_n).$$

proving that ν is countably-additive, i.e., it is a signed measure.

Step 3: Show that $\nu \ll \mu$ and apply Radon-Nikodym to obtain a function g: Suppose that $\mu(E) = 0$. Then, $\chi_E = 0$ (as an element of $L^p(\mu)$), hence

$$\nu(E) = \phi(\chi_E) = 0.$$

It follows from the Radon-Nikodym theorem that there exists an integrable function $g \in L^1(\mu)$, such that

$$\nu(E) = \int_E g \, d\mu,$$

which amounts to

$$\phi(\chi_E) = \int_{\mathbb{X}} g \chi_E d\mu.$$

By linearity,

$$\phi(\psi) = \int_{\mathbb{X}} g \psi d\mu$$
 for all simple functions $\psi : \mathbb{X} \to \mathbb{R}$.

By definition of the norm $\|\phi\|$,

$$|\phi(\psi)| = \left| \int_{\mathbb{X}} g \, \psi \, d\mu \right| \le \|\phi\| \|\psi\|_p$$
 for all simple functions $\psi : \mathbb{X} \to \mathbb{R}$.

Step 4: Prove that $g \in L^q(\mu)$: (Recall that $L^q(\mu) \subset L^1(\mu)$, but not the other way around.) Let g_n be a sequence of simple functions converging to g pointwise, such that $|g_n| \leq |g|$. By Fatou's lemma for $|g_n| \to |g|$,

$$||g||_q \leq \liminf_{n\to\infty} ||g_n||_q.$$

Set

$$f_n = \operatorname{sgn}(g) \frac{|g_n|^{q-1}}{\|g_n\|_q^{q-1}},$$

-35h(2017)-

which is a sequence of simple functions satisfying $||f_n||_p = 1$. Then,

$$||g_n||_q = \frac{1}{||g_n||^{q-1}} \int_{\mathbb{X}} |g_n|^q d\mu$$

$$= \int_{\mathbb{X}} |f_n g_n| d\mu$$

$$\leq \int_{\mathbb{X}} |f_n g| d\mu$$

$$= \int_{\mathbb{X}} f_n g d\mu$$

$$= \phi(f_n) \leq ||\phi||.$$

In the passage to the second line we used the definition of f_n ; in the passage to the third line we used the fact that $|g_n| \le |g|$; in the passage to the fourth line we used the fact that $f_n g > 0$; in the passage to the fifth line we used the characterization of ϕ for simple functions; in the passage to the sixth line we used the definition of the operator norm and the fact that $||f_n||_p = 1$.

It follows that

$$||g||_q \le \liminf_{n\to\infty} ||g_n||_q \le ||\phi||.$$

Step 5: Prove that $\phi \in \phi_g$: Finally, let $f \in L^p(\mu)$. Since the space of simple functions is dense in $L^p(\mu)$ and ϕ is continuous, for $\psi_n \to f$ in $L^p(\mu)$,

$$\left| \int_{\mathbb{X}} gf \, d\mu - \phi(f) \right| = \lim_{n \to \infty} \left| \int_{\mathbb{X}} gf \, d\mu - \phi(\psi_n) \right|$$

$$= \lim_{n \to \infty} \left| \int_{\mathbb{X}} gf \, d\mu - \int_{\mathbb{X}} g\psi_n \, d\mu \right|$$

$$= \lim_{n \to \infty} \left| \int_{\mathbb{X}} g(f - \psi_n) \, d\mu \right|$$

$$\leq \lim_{n \to \infty} \|g\|_q \|f - \psi_n\|_p = 0.$$

This completes the proof for the case where μ is a finite measure.

-36h(2017)-