
Chapter 5

Lp spaces

5.1 Basic theory

Throughout this chapter, we assume a fixed measure space (X,⌃, µ).
Definition 5.1 Let f ∶ X→ R be measurable. For p ∈ (0,∞) we define

� f �p = ��
X
� f �p dµ�1�p

.

(This expression can be infinite.)

Definition 5.2 Let p ∈ (0,∞).
Lp(µ) = { f ∶ X→ R ∶ f is measurable and � f �p <∞.}

Lp(µ)-spaces are generalizations of L1(µ)-spaces; the elements of Lp(µ) are equiv-
alence classes of functions, which may di↵er on sets of zero measure.

Lemma 5.3 Lp(µ) is a vector space.

Proof : Closure under scalar multiplication is obvious. Closure under addition
follows from the inequality

� f + g�p ≤ (2 max(� f �, �g�))p ≤ 2p(� f �p + �g�p),
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hence � f + g�p
p ≤ 2p �� f �p

p + �g�p
p�

n—29h(2018)—

We next show that as the notation indicates, � ⋅ �p is a norm on Lp(µ) (for p ≥ 1).

Definition 5.4 Let p > 1. We denote its conjugate exponent (�%$&/7 %8'() by

p∗ = p�(p − 1).
Note that

1
p
+ 1

p∗ = 1.

Lemma 5.5 (Young’s inequality) Let p > 1 and set q = p∗. Then, for every a,b ∈
R:

�ab� ≤ �a�p
p
+ �b�q

q

Proof : Since (− log) is a convex function and since 1�p and 1�q sum up to one,
then, for every ↵,� > 0:

− log�↵
p
+ �

q
� ≤ −1

p
log↵ − 1

q
log� = − log(↵1�p�1�q).

It follows that:
↵

p
+ �

q
≥ ↵1�p�1�q.

Setting ↵ = �a�p and � = �b�q we recover the desired result. n

Proposition 5.6 (Hölder inequality) Let p > 1 and set q = p∗. For every measur-
able f ,g ∶ X→ R, � f g�1 ≤ � f �p�g�q.
In particular, if f ∈ Lp(µ) and q ∈ Lq(µ), then f g ∈ L1(µ).
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Proof : If either � f �p = 0 or �g�q = 0, then the result is trivial. Otherwise, using
Young’s inequality,

� f g� f �p�g�q�1

= �
X

f� f �p

g�g�q dµ ≤ 1
p �X

� f �p� f �p
p

dµ + 1
q �X

�g�q�g�qq dµ = 1
p
+ 1

q
= 1.

Multiplying both sides by � f �p�g�q we obtain the desired result. n

Proposition 5.7 (Minkowski inequality) Let p ≥ 1. For every f ,g ∈ Lp(µ),
� f + g�p ≤ � f �p + �g�p.

Proof : The inequality is trivial for p = 1. For p > 1 set q = p∗; it follows from the
triangle inequality that

� f + g�p = � f + g� � f + g�p−1 ≤ � f � � f + g�p−1 + �g� � f + g�p−1.

Integrating, and using Hölder’s inequality:

� f + g�p
p ≤ � f �p� f + g�p−1

p + �g�p� f + g�p−1
p ,

where we used the defining property of q. This completes the proof. n

Corollary 5.8 For every p ≥ 1, � ⋅ �p is a norm on Lp(µ).

Proof : Positivity and homogeneity are immediate; the triangle inequality is noth-
ing but Minkowski’s inequality. n

. Exercise 5.1 Show that � ⋅ �p is not a norm for 0 < p < 1.

Proposition 5.9 Lp(µ) is a complete normed space, i.e., a Banach space ("(9/
�+1").

. Exercise 5.2 Prove the completeness of Lp(µ) in two steps:
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(a) Prove that it su�ces to prove that for every sequence fn ∈ Lp(µ),
if

∞�
n=1
� fn�p <∞ then

∞�
n=1

fn converges in Lp(µ).

(b) Prove the statement by showing that ∑∞n=1 � fn�p <∞ implies that F def= ∑∞n=1 fn exists a.e.;
then show that F ∈ Lp(µ) and that convergence is in Lp(µ).

Proposition 5.10 For every p ≥ 1, the space of simple functions f = ∑ j a j�E j for
which µ(E j) <∞ for all j is dense in Lp(µ).

Proof : Let f ∈ Lp(µ). Then, there exist simple functions �n ∈ SF+(X) converging
monotonically to f +, and simple functions  n ∈ SF+(X) converging monotonically
to f −. Set fn = �n −  n. Then, fn → f pointwise, and

� fn� ≤ �n +  n ≤ f + + f − = � f �.
It follows that fn ∈ Lp(µ), hence the E j in the representation of fn satisfy µ(E j) <∞.

Furthermore,
� fn − f �p ≤ (� fn� + � f �)p ≤ 2p� f �p,

i.e., � fn − f �p ∈ L1(µ). It follows from dominated convergence that

lim
n→∞�X � fn − f �p dµ = 0.

n

The spaces Lp are generalizations of the space L1(µ). In general, there is no
inclusion relations between those space:

Proposition 5.11 In general, for every p ≠ q there is no inclusion relation be-
tween Lp(µ) and Lq(µ).
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Proof : Consider the space ([1,∞),B([1,∞)),m) and set f (x) = 1�x. Then,

f ∈ L2(m) but f �∈ L1(m).
Consider the space ([−1,1),B([−1,1)),m) and set g(x) = 1�√x. Then,

g ∈ L1(m) but g �∈ L2(m).
n

However, we have the following results:

Proposition 5.12 Let 1 < p < q < r . Then,

Lq(µ) ⊂ Lp(µ) + Lr(µ).
That is, every f ∈ Lq(µ) can be represented as g + h, where g ∈ Lp(µ) and h ∈
Lr(µ).

Proof : Let f ∈ Lq(µ) be given and let

E = {x ∶ � f (x)� > 1}.
Define g = f �E and h = f �Ec . Then, f = g + h, and

�g�p = � f �p �E ≤ � f �q �E and �h�r = � f �r �Ec ≤ � f �q �Ec ,

which proves that

�g�p ≤ � f �q and �h�r ≤ � f �q.
n

Proposition 5.13 Let 1 < p < q < r . Then,

Lp(µ) ∩ Lr(µ) ⊂ Lq(µ).
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Proof : Let f ∈ Lp(µ) ∩ Lr(µ). Since q�p > 1 and q�r < 1, there exists a � ∈ (0,1)
satisfying

�q
p
+ (1 − �)q

r
= 1.

Using Hölder’s inequality

� f �qq = �
X
� f �q dµ = �

X
� f ��q� f �(1−�)q dµ = �� f ��q� f �(1−�)q�

1

≤ �� f ��q�p��q�� f �(1−�)q�r�(1−�)q = � f ��q
p � f �(1−�)qr ,

i.e., � f �q ≤ � f ��p� f �1−�r <∞. n

If the measure space is finite, then the Lp(µ) space satisfy the following inclusion
relation:

Proposition 5.14 If µ(X) <∞ then 1 ≤ p < q implies that Lq(µ) ⊂ Lp(µ).

Proof : Let f ∈ Lq(µ) and let

E = {x ∶ � f (x)� ≤ 1}.
Then,

�
X
� f �p dµ = �

E
� f �p dµ +�

Ec
� f �p dµ ≤ µ(E) +�

Ec
� f �q dµ <∞.

n

TA material 5.1 Define and treat the case of p =∞.

. Exercise 5.3 Let (X,⌃, µ) be a finite measure space, let f ∈ Lp(µ) and let q = p∗. Show
that � f �1 ≤ (µ(X))1�q� f �p.

. Exercise 5.4 Consider the measure space ([0,1],B([0,1]),m) and let f ∈ Lp(m) for some
p > 1. Let q = p∗. Prove that

lim
t↘0

1
t1�q �[0,t] � f �dm = 0.
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. Exercise 5.5 Let (X,⌃, µ) be a finite measure space. Let fn, f ∈ L2(µ), such that

� fn�2 ≤ M and lim
n→∞ fn = f a.e.

(a) Prove that f ∈ L2. (b) Use Egorov’s theorem to show that fn → f in L1(µ).
. Exercise 5.6 Let µ be the counting measure on N and let 1 < p < q,∞. Show that

� f �p ≤ � f �q.

5.2 Duality

Definition 5.15 Let p ≥ 1. A bounded linear functional (�.&2( *9!*1*- -1&*781&5)
on Lp(µ) is a linear mapping � ∶ Lp(µ)→ R, satisfying

��� def= sup{��( f )� ∶ � f �p = 1} <∞.
This space is called the space dual (�*-!&$) to Lp(µ) and is denoted (Lp(µ))∗.
The mapping � � ��� is the operator norm (�;*9&)95&! %/9&1); you must have
seen in the past that it is indeed a norm on (Lp(µ))∗.
Also,

Proposition 5.16 Bounded linear functionals on Lp(µ) are continuous.

Proof : Let fn → f in Lp(µ) and let � ∈ (Lp(µ))∗. Then,

��( fn) − �( f )� = ��( fn − f )� = ��� fn − f� fn − f �p
�� � fn − f �p ≤ ���� fn − f �p → 0.

n

Proposition 5.17 Let p > 1 and q = p∗ be its conjugate. Then, for every g ∈
Lq(µ), the map

�g ∶ f � �
X

f g dµ

is a bounded linear functional. Moreover,

��g� = �g�q.
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Proof : Clearly, �q is a linear functional. Let � f �p = 1. By Hölder’s inequality,

��g( f )� ≤ �
X
� f g�dµ ≤ � f �p�g�q = �g�q,

from which follows that ���g ≤ �g�q. Equality is obtained by taking,

f = sgn(g) �g�q−1

�g�q−1
q
,

in which case
� f �p = �

X

�g�p(q−1)
�g�p(q−1)

q
dµ = �

X

�g�q�g�qq dµ = 1,

and
��g( f )� = �

X
sgn(g) �g�q−1

�g�q−1
q

g dµ = �
X

�g�q
�g�q−1

q
dµ = �g�q.

n

In other words, the mapping

Lq(µ)→ (Lp(µ))∗,
which maps g ∈ Lq(µ) into �g ∈ (Lp(µ))∗ is an isometric embedding (0&,*:
�*9)/&'*!). The following seminal theorem shows that this map is in fact an isome-
try.

Theorem 5.18 (Riesz representation for Lp-spaces) Let p > 1 and let q = p∗.
Then

Lq(µ) � (Lp(µ))∗
in the category of Banach spaces. That is, to every � ∈ (Lp(µ))∗ corresponds a
unique g ∈ Lq(µ) such that � = �g and ��� = �g�q.

Proof : We will only prove the theorem for the case of a finite measure space. It
remains to prove that to every � corresponds a unique g such that � = �g.
Step 1: uniqueness: If �g = �h, then for every f ∈ Lp(µ),

�
X

f g dµ = �
X

f h dµ,



Lp spaces 157

hence for every f ∈ Lp(µ),
0 = �

X
f (g − h)dµ.

Suppose that g ≠ h. Then, one of the sets

{x ∶ g(x) > f (x)} or {x ∶ g(x) < f (x)}.
has positive measure. Without loss of generality, we may assume that this is the
first. Then, for some n,

En = �x ∶ g(x) − h(x) > 1
n
�

has positive measure. Setting f = �En we obtain a contradiction.
Step 2: construct a signed-measure ⌫: Let � ∈ (Lp(µ))∗ be given. Since µ is
finite, �E ∈ Lp(µ) for every measurable set E ∈ ⌃; define

⌫(E) = �(�E).
We will show that ⌫ is a signed measure:

(a) Since �� = 0 as an element of Lp(µ), and � is linear,

⌫(�) = �(�E) = �(0) = 0.

(b) Let

E = ∞�
n=1

En,

then
lim
n→∞

n�
k=1
�Ek = �E pointwise,

and

��E − n�
k=1
�Ek�

p

= � ∞�
k=n+1

�Ek�
p

= ���∞k=n+1Ek

dµ�1�p = �µ� ∞�
k=n+1

Ek��
1�p
.

Letting n→∞, using the upper-semicontinuity of µ and the fact that�∞n=1�∞k=n+1 Ek =�,

lim
n→∞��E − n�

k=1
�Ek�

p

= lim
n→∞�µ�

∞�
k=n+1

Ek��
1�p = �µ�∞�

n=1

∞�
k=n+1

Ek��
1�p = 0,
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i.e.,

lim
n→∞

n�
k=1
�Ek = �E in Lp(µ).

—35h(2017)—
Since � is linear and continuous,

⌫(E) = �(�E) = ∞�
n=1
�(�En) = ∞�

n=1
⌫(En).

proving that ⌫ is countably-additive, i.e., it is a signed measure.

Step 3: Show that ⌫ � µ and apply Radon-Nikodym to obtain a function g:
Suppose that µ(E) = 0. Then, �E = 0 (as an element of Lp(µ)), hence

⌫(E) = �(�E) = 0.

It follows from the Radon-Nikodym theorem that there exists an integrable func-
tion g ∈ L1(µ), such that

⌫(E) = �
E

g dµ,

which amounts to
�(�E) = �

X
g�E dµ.

By linearity,

�( ) = �
X

g dµ for all simple functions  ∶ X→ R.
By definition of the norm ���,

��( )� = ��
X

g dµ� ≤ ���� �p for all simple functions  ∶ X→ R.
Step 4: Prove that g ∈ Lq(µ): (Recall that Lq(µ) ⊂ L1(µ), but not the other way
around.) Let gn be a sequence of simple functions converging to g pointwise, such
that �gn� ≤ �g�. By Fatou’s lemma for �gn�→ �g�,

�g�q ≤ lim inf
n→∞ �gn�q.

Set
fn = sgn(g) �gn�q−1

�gn�q−1
q
,
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which is a sequence of simple functions satisfying � fn�p = 1. Then,

�gn�q = 1�gn�q−1 �X �gn�q dµ

= �
X
� fngn�dµ

≤ �
X
� fng�dµ

= �
X

fng dµ

= �( fn) ≤ ���.
In the passage to the second line we used the definition of fn; in the passage to the
third line we used the fact that �gn� ≤ �g�; in the passage to the fourth line we used
the fact that fng > 0; in the passage to the fifth line we used the characterization
of � for simple functions; in the passage to the sixth line we used the definition of
the operator norm and the fact that � fn�p = 1.
It follows that �g�q ≤ lim inf

n→∞ �gn�q ≤ ���.
Step 5: Prove that � ∈ �g: Finally, let f ∈ Lp(µ). Since the space of simple
functions is dense in Lp(µ) and � is continuous, for  n → f in Lp(µ),

��
X

g f dµ − �( f )� = lim
n→∞ ��X g f dµ − �( n)�
= lim

n→∞ ��X g f dµ −�
X

g n dµ�
= lim

n→∞ ��X g( f −  n)dµ�
≤ lim

n→∞ �g�q� f −  n�p = 0.

This completes the proof for the case where µ is a finite measure. n —36h(2017)—


