Chapter 5

L^{p} spaces

5.1 Basic theory

Throughout this chapter, we assume a fixed measure space $(\mathbb{X}, \Sigma, \mu)$.
Definition 5.1 Let $f: \mathbb{X} \rightarrow \mathbb{R}$ be measurable. For $p \in(0, \infty)$ we define

$$
\|f\|_{p}=\left(\int_{\mathbb{X}}|f|^{p} d \mu\right)^{1 / p}
$$

(This expression can be infinite.)
Definition 5.2 Let $p \in(0, \infty)$.

$$
L^{p}(\mu)=\left\{f: \mathbb{X} \rightarrow \mathbb{R}: f \text { is measurable and }\|f\|_{p}<\infty .\right\}
$$

$L^{p}(\mu)$-spaces are generalizations of $L^{1}(\mu)$-spaces; the elements of $L^{p}(\mu)$ are equivalence classes of functions, which may differ on sets of zero measure.

Lemma 5.3 $L^{p}(\mu)$ is a vector space.

Proof: Closure under scalar multiplication is obvious. Closure under addition follows from the inequality

$$
|f+g|^{p} \leq(2 \max (|f|,|g|))^{p} \leq 2^{p}\left(|f|^{p}+|g|^{p}\right),
$$

hence

$$
\|f+g\|_{p}^{p} \leq 2^{p}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)
$$

We next show that as the notation indicates, $\|\cdot\|_{p}$ is a norm on $L^{p}(\mu)$ (for $p \geq 1$).
Definition 5.4 Let $p>1$. We denote its conjugate exponent (חקה צמודה) by

$$
p^{*}=p /(p-1) .
$$

Note that

$$
\frac{1}{p}+\frac{1}{p^{*}}=1 .
$$

Lemma 5.5 (Young's inequality) Let $p>1$ and set $q=p^{*}$. Then, for every $a, b \in$ \mathbb{R} :

$$
|a b| \leq \frac{|a|^{p}}{p}+\frac{|b|^{q}}{q}
$$

Proof: Since $(-\log)$ is a convex function and since $1 / p$ and $1 / q$ sum up to one, then, for every $\alpha, \beta>0$:

$$
-\log \left(\frac{\alpha}{p}+\frac{\beta}{q}\right) \leq-\frac{1}{p} \log \alpha-\frac{1}{q} \log \beta=-\log \left(\alpha^{1 / p} \beta^{1 / q}\right)
$$

It follows that:

$$
\frac{\alpha}{p}+\frac{\beta}{q} \geq \alpha^{1 / p} \beta^{1 / q} .
$$

Setting $\alpha=|a|^{p}$ and $\beta=|b|^{q}$ we recover the desired result.

Proposition 5.6 (Hölder inequality) Let $p>1$ and set $q=p^{*}$. For every measurable $f, g: \mathbb{X} \rightarrow \mathbb{R}$,

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

In particular, if $f \in L^{p}(\mu)$ and $q \in L^{q}(\mu)$, then $f g \in L^{1}(\mu)$.

Proof: If either $\|f\|_{p}=0$ or $\|g\|_{q}=0$, then the result is trivial. Otherwise, using Young's inequality,

$$
\left\|\frac{f g}{\|f\|_{p}\|g\|_{q}}\right\|_{1}=\int_{\mathbb{X}} \frac{f}{\|f\|_{p}} \frac{g}{\|g\|_{q}} d \mu \leq \frac{1}{p} \int_{\mathbb{X}} \frac{|f|^{p}}{\|f\|_{p}^{p}} d \mu+\frac{1}{q} \int_{\mathbb{X}} \frac{|g|^{q}}{\|g\|_{q}^{q}} d \mu=\frac{1}{p}+\frac{1}{q}=1 .
$$

Multiplying both sides by $\|f\|_{p}\|g\|_{q}$ we obtain the desired result.

Proposition 5.7 (Minkowski inequality) Let $p \geq 1$. For every $f, g \in L^{p}(\mu)$,

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Proof: The inequality is trivial for $p=1$. For $p>1$ set $q=p^{*}$; it follows from the triangle inequality that

$$
|f+g|^{p}=|f+g||f+g|^{p-1} \leq|f||f+g|^{p-1}+|g||f+g|^{p-1} .
$$

Integrating, and using Hölder's inequality:

$$
\|f+g\|_{p}^{p} \leq\|f\|_{p}\|f+g\|_{p}^{p-1}+\|g\|_{p}\|f+g\|_{p}^{p-1},
$$

where we used the defining property of q. This completes the proof.

Corollary 5.8 For every $p \geq 1,\|\cdot\|_{p}$ is a norm on $L^{p}(\mu)$.

Proof: Positivity and homogeneity are immediate; the triangle inequality is nothing but Minkowski's inequality.

Q Exercise 5.1 Show that $\|\cdot\|_{p}$ is not a norm for $0<p<1$.

Proposition $5.9 L^{p}(\mu)$ is a complete normed space, i.e., a Banach space (מרחב בנ).

2 Exercise 5.2 Prove the completeness of $L^{p}(\mu)$ in two steps:
(a) Prove that it suffices to prove that for every sequence $f_{n} \in L^{p}(\mu)$,

$$
\text { if } \quad \sum_{n=1}^{\infty}\left\|f_{n}\right\|_{p}<\infty \quad \text { then } \quad \sum_{n=1}^{\infty} f_{n} \quad \text { converges in } L^{p}(\mu) .
$$

(b) Prove the statement by showing that $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{p}<\infty$ implies that $F \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} f_{n}$ exists a.e.; then show that $F \in L^{p}(\mu)$ and that convergence is in $L^{p}(\mu)$.

Proposition 5.10 For every $p \geq 1$, the space of simple functions $f=\sum_{j} a_{j} \chi_{E_{j}}$ for which $\mu\left(E_{j}\right)<\infty$ for all j is dense in $L^{p}(\mu)$.

Proof: Let $f \in L^{p}(\mu)$. Then, there exist simple functions $\phi_{n} \in \mathrm{SF}^{+}(\mathbb{X})$ converging monotonically to f^{+}, and simple functions $\psi_{n} \in \mathrm{SF}^{+}(\mathbb{X})$ converging monotonically to f^{-}. Set $f_{n}=\phi_{n}-\psi_{n}$. Then, $f_{n} \rightarrow f$ pointwise, and

$$
\left|f_{n}\right| \leq \phi_{n}+\psi_{n} \leq f^{+}+f^{-}=|f| .
$$

It follows that $f_{n} \in L^{p}(\mu)$, hence the E_{j} in the representation of f_{n} satisfy $\mu\left(E_{j}\right)<$ ∞.

Furthermore,

$$
\left|f_{n}-f\right|^{p} \leq\left(\left|f_{n}\right|+|f|\right)^{p} \leq 2^{p}|f|^{p},
$$

i.e., $\left|f_{n}-f\right|^{p} \in L^{1}(\mu)$. It follows from dominated convergence that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{X}}\left|f_{n}-f\right|^{p} d \mu=0
$$

The spaces L^{p} are generalizations of the space $L^{1}(\mu)$. In general, there is no inclusion relations between those space:

Proposition 5.11 In general, for every $p \neq q$ there is no inclusion relation between $L^{p}(\mu)$ and $L^{q}(\mu)$.

Proof: Consider the space $([1, \infty), \mathscr{B}([1, \infty)), m)$ and set $f(x)=1 / x$. Then,

$$
f \in L^{2}(m) \quad \text { but } \quad f \notin L^{1}(m)
$$

Consider the space $([-1,1), \mathscr{B}([-1,1)), m)$ and set $g(x)=1 / \sqrt{x}$. Then,

$$
g \in L^{1}(m) \quad \text { but } \quad g \notin L^{2}(m)
$$

However, we have the following results:

Proposition 5.12 Let $1<p<q<r$. Then,

$$
L^{q}(\mu) \subset L^{p}(\mu)+L^{r}(\mu)
$$

That is, every $f \in L^{q}(\mu)$ can be represented as $g+h$, where $g \in L^{p}(\mu)$ and $h \in$ $L^{r}(\mu)$.

Proof: Let $f \in L^{q}(\mu)$ be given and let

$$
E=\{x:|f(x)|>1\} .
$$

Define $g=f \chi_{E}$ and $h=f \chi_{E^{c}}$. Then, $f=g+h$, and

$$
|g|^{p}=|f|^{p} \chi_{E} \leq|f|^{q} \chi_{E} \quad \text { and } \quad|h|^{r}=|f|^{r} \chi_{E^{c}} \leq|f|^{q} \chi_{E^{c}},
$$

which proves that

$$
\|g\|_{p} \leq\|f\|_{q} \quad \text { and } \quad\|h\|_{r} \leq\|f\|_{q}
$$

Proposition 5.13 Let $1<p<q<r$. Then,

$$
L^{p}(\mu) \cap L^{r}(\mu) \subset L^{q}(\mu)
$$

Proof: Let $f \in L^{p}(\mu) \cap L^{r}(\mu)$. Since $q / p>1$ and $q / r<1$, there exists a $\lambda \in(0,1)$ satisfying

$$
\frac{\lambda q}{p}+\frac{(1-\lambda) q}{r}=1
$$

Using Hölder's inequality

$$
\begin{aligned}
\|f\|_{q}^{q} & =\int_{\mathbb{X}}|f|^{q} d \mu=\int_{\mathbb{X}}|f|^{\lambda q}|f|^{(1-\lambda) q} d \mu=\left\||f|^{\mid \lambda q}|f|^{(1-\lambda) q}\right\|_{1} \\
& \leq\left\||f|^{\lambda q}\right\|_{p / \lambda q}\left\||f|^{(1-\lambda) q}\right\|_{r /(1-\lambda) q}=\|f\|_{p}^{\lambda q}\|f\|_{r}^{(1-\lambda) q},
\end{aligned}
$$

i.e., $\|f\|_{q} \leq\|f\|_{p}^{\lambda}\|f\|_{r}^{1-\lambda}<\infty$.

If the measure space is finite, then the $L^{p}(\mu)$ space satisfy the following inclusion relation:

Proposition 5.14 If $\mu(\mathbb{X})<\infty$ then $1 \leq p<q$ implies that $L^{q}(\mu) \subset L^{p}(\mu)$.

Proof: Let $f \in L^{q}(\mu)$ and let

$$
E=\{x:|f(x)| \leq 1\} .
$$

Then,

$$
\int_{\mathbb{X}}|f|^{p} d \mu=\int_{E}|f|^{p} d \mu+\int_{E^{c}}|f|^{p} d \mu \leq \mu(E)+\int_{E^{c}}|f|^{q} d \mu<\infty .
$$

$\mathcal{T A}$ material 5.1 Define and treat the case of $p=\infty$.
Q Exercise 5.3 Let $(\mathbb{X}, \Sigma, \mu)$ be a finite measure space, let $f \in L^{p}(\mu)$ and let $q=p^{*}$. Show that

$$
\|f\|_{1} \leq(\mu(\mathbb{X}))^{1 / q}\|f\|_{p} .
$$

* Exercise 5.4 Consider the measure space $([0,1], \mathscr{B}([0,1]), m)$ and let $f \in L^{p}(m)$ for some $p>1$. Let $q=p^{*}$. Prove that

$$
\lim _{t>0} \frac{1}{t^{1 / q}} \int_{[0, t]}|f| d m=0 .
$$

© Exercise 5.5 Let $(\mathbb{X}, \Sigma, \mu)$ be a finite measure space. Let $f_{n}, f \in L^{2}(\mu)$, such that

$$
\left\|f_{n}\right\|_{2} \leq M \quad \text { and } \quad \lim _{n \rightarrow \infty} f_{n}=f \text { a.e. }
$$

(a) Prove that $f \in L^{2}$. (b) Use Egorov's theorem to show that $f_{n} \rightarrow f$ in $L^{1}(\mu)$.

Q Exercise 5.6 Let μ be the counting measure on \mathbb{N} and let $1<p<q, \infty$. Show that

$$
\|f\|_{p} \leq\|f\|_{q} .
$$

5.2 Duality

Definition 5.15 Let $p \geq 1$. A bounded linear functional (פונקציונל ליניארי חoום) on $L^{p}(\mu)$ is a linear mapping $\phi: L^{p}(\mu) \rightarrow \mathbb{R}$, satisfying

$$
\|\phi\| \stackrel{\operatorname{def}}{=} \sup \left\{|\phi(f)|:\|f\|_{p}=1\right\}<\infty .
$$

This space is called the space dual (דואלי) to $L^{p}(\mu)$ and is denoted $\left(L^{p}(\mu)\right)^{*}$.
The mapping $\phi \mapsto\|\phi\|$ is the operator norm (נורמה אופרטורית); you must have seen in the past that it is indeed a norm on $\left(L^{p}(\mu)\right)^{*}$.
Also,
Proposition 5.16 Bounded linear functionals on $L^{p}(\mu)$ are continuous.

Proof: Let $f_{n} \rightarrow f$ in $L^{p}(\mu)$ and let $\phi \in\left(L^{p}(\mu)\right)^{*}$. Then,

$$
\left|\phi\left(f_{n}\right)-\phi(f)\right|=\left|\phi\left(f_{n}-f\right)\right|=\left|\phi\left(\frac{f_{n}-f}{\left\|f_{n}-f\right\|_{p}}\right)\right|\left\|f_{n}-f\right\|_{p} \leq\|\phi\|\left\|f_{n}-f\right\|_{p} \rightarrow 0
$$

Proposition 5.17 Let $p>1$ and $q=p^{*}$ be its conjugate. Then, for every $g \in$ $L^{q}(\mu)$, the map

$$
\phi_{g}: f \mapsto \int_{\mathbb{X}} f g d \mu
$$

is a bounded linear functional. Moreover,

$$
\left\|\phi_{g}\right\|=\|g\|_{q}
$$

Proof: Clearly, ϕ_{q} is a linear functional. Let $\|f\|_{p}=1$. By Hölder's inequality,

$$
\left|\phi_{g}(f)\right| \leq \int_{\mathbb{X}}|f g| d \mu \leq\|f\|_{p}\|g\|_{q}=\|g\|_{q},
$$

from which follows that $\|\phi\|_{g} \leq\|g\|_{q}$. Equality is obtained by taking,

$$
f=\operatorname{sgn}(g) \frac{|g|^{q-1}}{\|g\|_{q}^{q-1}},
$$

in which case

$$
\|f\|_{p}=\int_{\mathbb{X}} \frac{|g|^{p(q-1)}}{\|g\|_{q}^{p(q-1)}} d \mu=\int_{\mathbb{X}} \frac{|g|^{q}}{\|g\|_{q}^{q}} d \mu=1
$$

and

$$
\left|\phi_{g}(f)\right|=\int_{\mathbb{X}} \operatorname{sgn}(g) \frac{|g|^{q-1}}{\|g\|_{q}^{q-1}} g d \mu=\int_{\mathbb{X}} \frac{|g|^{q}}{\|g\|_{q}^{q-1}} d \mu=\|g\|_{q} .
$$

In other words, the mapping

$$
L^{q}(\mu) \rightarrow\left(L^{p}(\mu)\right)^{*}
$$

which maps $g \in L^{q}(\mu)$ into $\phi_{g} \in\left(L^{p}(\mu)\right)^{*}$ is an isometric embedding (שיכון איזומטרי). The following seminal theorem shows that this map is in fact an isometry.

Theorem 5.18 (Riesz representation for L^{p}-spaces) Let $p>1$ and let $q=p^{*}$. Then

$$
L^{q}(\mu) \simeq\left(L^{p}(\mu)\right)^{*}
$$

in the category of Banach spaces. That is, to every $\phi \in\left(L^{p}(\mu)\right)^{*}$ corresponds a unique $g \in L^{q}(\mu)$ such that $\phi=\phi_{g}$ and $\|\phi\|=\|g\|_{q}$.

Proof: We will only prove the theorem for the case of a finite measure space. It remains to prove that to every ϕ corresponds a unique g such that $\phi=\phi_{g}$.
Step 1: uniqueness: If $\phi_{g}=\phi_{h}$, then for every $f \in L^{p}(\mu)$,

$$
\int_{\mathbb{X}} f g d \mu=\int_{\mathbb{X}} f h d \mu,
$$

hence for every $f \in L^{p}(\mu)$,

$$
0=\int_{\mathbb{X}} f(g-h) d \mu .
$$

Suppose that $g \neq h$. Then, one of the sets

$$
\{x: g(x)>f(x)\} \quad \text { or } \quad\{x: g(x)<f(x)\} .
$$

has positive measure. Without loss of generality, we may assume that this is the first. Then, for some n,

$$
E_{n}=\left\{x: g(x)-h(x)>\frac{1}{n}\right\}
$$

has positive measure. Setting $f=\chi_{E_{n}}$ we obtain a contradiction.
Step 2: construct a signed-measure v : Let $\phi \in\left(L^{p}(\mu)\right)^{*}$ be given. Since μ is finite, $\chi_{E} \in L^{p}(\mu)$ for every measurable set $E \in \Sigma$; define

$$
v(E)=\phi\left(\chi_{E}\right) .
$$

We will show that v is a signed measure:
(a) Since $\chi_{\varnothing}=0$ as an element of $L^{p}(\mu)$, and ϕ is linear,

$$
v(\varnothing)=\phi\left(\chi_{E}\right)=\phi(0)=0 .
$$

(b) Let

$$
E=\coprod_{n=1}^{\infty} E_{n},
$$

then

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \chi_{E_{k}}=\chi_{E} \quad \text { pointwise }
$$

and

$$
\left\|\chi_{E}-\sum_{k=1}^{n} \chi_{E_{k}}\right\|_{p}=\left\|\sum_{k=n+1}^{\infty} \chi_{E_{k}}\right\|_{p}=\left(\int_{\mathrm{U}_{k=n+1}^{\infty} E_{k}} d \mu\right)^{1 / p}=\left(\mu\left(\coprod_{k=n+1}^{\infty} E_{k}\right)\right)^{1 / p} .
$$

Letting $n \rightarrow \infty$, using the upper-semicontinuity of μ and the fact that $\bigcap_{n=1}^{\infty} \amalg_{k=n+1}^{\infty} E_{k}=$ \varnothing,

$$
\lim _{n \rightarrow \infty}\left\|\chi_{E}-\sum_{k=1}^{n} \chi_{E_{k}}\right\|_{p}=\lim _{n \rightarrow \infty}\left(\mu\left(\coprod_{k=n+1}^{\infty} E_{k}\right)\right)^{1 / p}=\left(\mu\left(\bigcap_{n=1}^{\infty} \coprod_{k=n+1}^{\infty} E_{k}\right)\right)^{1 / p}=0,
$$

i.e.,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \chi_{E_{k}}=\chi_{E} \quad \text { in } L^{p}(\mu)
$$

Since ϕ is linear and continuous,

$$
v(E)=\phi\left(\chi_{E}\right)=\sum_{n=1}^{\infty} \phi\left(\chi_{E_{n}}\right)=\sum_{n=1}^{\infty} v\left(E_{n}\right) .
$$

proving that v is countably-additive, i.e., it is a signed measure.
Step 3: Show that $v \ll \mu$ and apply Radon-Nikodym to obtain a function g : Suppose that $\mu(E)=0$. Then, $\chi_{E}=0$ (as an element of $L^{p}(\mu)$), hence

$$
v(E)=\phi\left(\chi_{E}\right)=0
$$

It follows from the Radon-Nikodym theorem that there exists an integrable function $g \in L^{1}(\mu)$, such that

$$
v(E)=\int_{E} g d \mu
$$

which amounts to

$$
\phi\left(\chi_{E}\right)=\int_{\mathbb{X}} g \chi_{E} d \mu
$$

By linearity,

$$
\phi(\psi)=\int_{\mathbb{X}} g \psi d \mu \quad \text { for all simple functions } \psi: \mathbb{X} \rightarrow \mathbb{R}
$$

By definition of the norm $\|\phi\|$,

$$
|\phi(\psi)|=\left|\int_{\mathbb{X}} g \psi d \mu\right| \leq\|\phi\|\|\psi\|_{p} \quad \text { for all simple functions } \psi: \mathbb{X} \rightarrow \mathbb{R}
$$

Step 4: Prove that $g \in L^{q}(\mu)$: (Recall that $L^{q}(\mu) \subset L^{1}(\mu)$, but not the other way around.) Let g_{n} be a sequence of simple functions converging to g pointwise, such that $\left|g_{n}\right| \leq|g|$. By Fatou's lemma for $\left|g_{n}\right| \rightarrow|g|$,

$$
\|g\|_{q} \leq \liminf _{n \rightarrow \infty}\left\|g_{n}\right\|_{q} .
$$

Set

$$
f_{n}=\operatorname{sgn}(g) \frac{\left|g_{n}\right|^{q-1}}{\left\|g_{n}\right\|_{q}^{q-1}},
$$

which is a sequence of simple functions satisfying $\left\|f_{n}\right\|_{p}=1$. Then,

$$
\begin{aligned}
\left\|g_{n}\right\|_{q} & =\frac{1}{\left\|g_{n}\right\|^{q-1}} \int_{\mathbb{X}}\left|g_{n}\right|^{q} d \mu \\
& =\int_{\mathbb{X}}\left|f_{n} g_{n}\right| d \mu \\
& \leq \int_{\mathbb{X}}\left|f_{n} g\right| d \mu \\
& =\int_{\mathbb{X}} f_{n} g d \mu \\
& =\phi\left(f_{n}\right) \leq\|\phi\| .
\end{aligned}
$$

In the passage to the second line we used the definition of f_{n}; in the passage to the third line we used the fact that $\left|g_{n}\right| \leq|g|$; in the passage to the fourth line we used the fact that $f_{n} g>0$; in the passage to the fifth line we used the characterization of ϕ for simple functions; in the passage to the sixth line we used the definition of the operator norm and the fact that $\left\|f_{n}\right\|_{p}=1$.
It follows that

$$
\|g\|_{q} \leq \liminf _{n \rightarrow \infty}\left\|g_{n}\right\|_{q} \leq\|\phi\| .
$$

Step 5: Prove that $\phi \in \phi_{g}$: Finally, let $f \in L^{p}(\mu)$. Since the space of simple functions is dense in $L^{p}(\mu)$ and ϕ is continuous, for $\psi_{n} \rightarrow f$ in $L^{p}(\mu)$,

$$
\begin{aligned}
\left|\int_{\mathbb{X}} g f d \mu-\phi(f)\right| & =\lim _{n \rightarrow \infty}\left|\int_{\mathbb{X}} g f d \mu-\phi\left(\psi_{n}\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|\int_{\mathbb{X}} g f d \mu-\int_{\mathbb{X}} g \psi_{n} d \mu\right| \\
& =\lim _{n \rightarrow \infty}\left|\int_{\mathbb{X}} g\left(f-\psi_{n}\right) d \mu\right| \\
& \leq \lim _{n \rightarrow \infty}\|g\|_{q}\left\|f-\psi_{n}\right\|_{p}=0 .
\end{aligned}
$$

This completes the proof for the case where μ is a finite measure.

