
Chapter 6

Radon Measures

6.1 Locally-compact Hausdor↵ spaces

Definition 6.1 Let (X, ⌧) be a topological space. It is called hausdor↵ if every
two points x, y ∈ X have disjoint open neighborhoods. That is, there exist U,V ∈ ⌧
such that

x ∈ U y ∈ V and U ∩ V = �.
Definition 6.2 Let (X, ⌧) be a topological space. It is called locally-compact

(�;*/&8/ *)85/&8) if every point x ∈ X has an open neighborhood whose closure is
compact.

Examples:

(a) Every compact space is locally-compact.
(b) Rn is a locally-compact hausdor↵ space (and of course, any space homeo-

morphic to it).
(c) {(0,0)} ∪ {(x, y) ∶ x > 0, y ∈ R} ⊂ R2 is hausdor↵ but not locally-compact,

since the origin does not have an open neighborhood whose closure is com-
pact.
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This section is concerned with topological spaces that are hausdor↵ and locally-
compact (LCH) . Throughout this chapter, the �-algebra will be the Borel sets
B(X).
Definition 6.3 Let X be a topological space and let f ∶ X → R. The support

(�+/&;) of f is
Supp( f ) = {x ∈ X ∶ f (x) ≠ 0}.

Definition 6.4 We denote by Cc(X) the set of continuous functions X → R that
have compact support (�*)85/&8 +/&;).

For f ∈ Cc(X), we denote � f �∞ = sup
x∈ X
� f (x)�.

We endow Cc(X) with the compact convergence topology. It is defined through
converging sequences: a sequence fn converges to f if it converges to f uniformly
on every compact set

Comment: If X is compact, then Cc(X) = C(X), which is a complete normed
space.

Comment: WhenX is not compact, functions in Cc(X) are not necessarily bounded.

Example: Consider the sequence of functions fn ∶ R→ R,

fn(x) =
�������

1 − �x − n� �x − n� ≤ 1
0 otherwise.

This sequence belongs to Cc(R) and converges to zero in the compact convergence
topology. Note however that � fn�∞ = 1, so that this is not a convergence in norm.▲▲▲
There are two facts about LCH spaces, which are normally taught in a topology
course, and which will be used in this chapter:

Lemma 6.5 (Urysohn) LetX be an LCH space. Let U ⊂ X be open and let K � U.
Then, there exists an f ∈ Cc(X), such that f �K = 1 and Supp( f ) � U. In particular,
taking U = X, there exists a function f ∈ Cc(X), such that f �K = 1.
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Definition 6.6 For open sets U ⊂ X and functions f ∈ Cc(X), we denote by

f � U

the fact that 0 ≤ f ≤ 1 and Supp( f ) ⊂ U. (Note that this condition is stronger than
0 ≤ f ≤ �U since Supp(�U) = Ū.)

In other words, Urysohn’s lemma states that for K � U there exists an �K ≤ f � U.

Theorem 6.7 (Partition of unity (�%$*(* -&7*5)) Let X be an LCH space. Let
U1, . . . ,Un be a finite open cover of K � X. Then, there exist functions  j � U j,
such that

n�
j=1
 j = 1 on K.

6.2 Radon measures

Radon measures are a subset of Borel measures, satisfying regularity conditions.
Their importance will be seen in the next section.

Definition 6.8 Let µ be a Borel measure on X and let A ∈B(X). The measure µ
is said to be outer-regular (�;*1&7*( ;*9-&#9) on A if

µ(A) = inf{µ(U) ∶ A ⊂ U ∈ ⌧X}.
It is said to be inner-regular (�;*/*15 ;*9-&#9) on A if

µ(A) = sup{µ(K) ∶ K � A}.
Example: We proved that locally-finite Borel measures on R are both outer- and
inner-regular. ▲▲▲
Definition 6.9 A Radon measure (�0&$9 ;$*/) on X is a Borel measure that is

(a) Finite on all compact sets.

(b) Outer-regular on all Borel sets.
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(c) Inner-regular on all open sets.

. Exercise 6.1 Show that a Dirac measure on any topological space is a Radon measure.

In view of the fact that every Borel measure on R (and hence also Rn) which is
finite on every compact set is regular, one may wonder whether there are examples
of Borel measures satisfying that property which are not regular, and even not
Radon measure. We state the following theorem, without a proof:

Theorem 6.10 Let X be a LCH space in which every open set is �-compact (i.e.,
a countable union of compact sets). Then every Borel measure on X that is finite
on compact sets is regular and hence a Radon measure.

Proposition 6.11 In particular, ifX is second-countable, then it satisfies this con-
dition.

6.3 Positive functionals on Cc(X)
Cc(X) is a topological vector space (�*#&-&5&) *9&)8& "(9/) (which means that it
is a vector space endowed with a topology, such that vector addition and scalar
multiplication are continuous). Such spaces are often studied via spaces of linear
functionals that operate on them.

Definition 6.12 A linear functional I ∈ Hom(Cc(X);R) is called positive if I( f ) ≥
0 for every f ≥ 0.

Note that positivity does not mention any notion of continuity, however, the fol-
lowing proposition establishes a connection between the two:

Proposition 6.13 Let I be a positive linear functional on Cc(X). Then, for each
K � X there exists a constant CK, such that

�I( f )� ≤ CK � f �∞
for all f ∈ C(K), where

C(K) = { f ∈ Cc(X) ∶ Supp f � K}.
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Comment: In particular, if X compact, then positive functionals are bounded.

Proof : Let K � X be given. Let � ∈ Cc(X) be non-negative and satisfy ��K = 1
(here we use Urysohn’s lemma). For every f ∈ C(K),

� f � ≤ � f �∞�.
Then, � f �∞� − f ≥ 0 and � f �∞� + f ≥ 0,

and by the linearity and positivity of I,

� f �∞I(�) − I( f ) ≥ 0 and � f �∞I(�) + I( f ) ≥ 0,

from which we get that �I( f )� ≤ I(�) � f �∞,
Setting CK = I(�) we obtain the desired result. n

Lemma 6.14 Let µ be a Borel measure on X. If µ(K) <∞ for every K � X, then
Cc(X) ⊂ L1(µ).

Proof : Let f ∈ Cc(X) have support in K � X. Then,

�
X
� f �dµ = �

K
� f �dµ ≤ � f �∞ µ(K) <∞.

n

Corollary 6.15 Let µ be a Borel measure on X, such that µ(K) < ∞ for every
K � X. The map

f � �
X

f dµ

is a positive linear functional on Cc(X).

Proof : By the previous lemma, the right-hand side is finite. Positivity is immedi-
ate. n —32h(2018)—
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Theorem 6.16 (Riesz representation) For every positive linear functional I on
Cc(X) there exists a unique Radon measure µ on X, such that

I( f ) = �
X

f dµ.

Moreover, for all open U,

µ(U) = sup{I( f ) ∶ f � U} (6.1)

and for all compact K,

µ(K) = inf{I( f ) ∶ �K ≤ f}. (6.2)

Comment: Frigyes Riesz proved it in 1909 for continuous functions on R. An-
drei Markov extended it in 1938 for some non-compact spaces. Shizuo Kakutani
finally extended it in 1941 for locally-compact hausdor↵ spaces.—38h(2017)—

Proof : Step 1: Uniqueness: Suppose that µ is a Radon measure satisfying

I( f ) = �
X

f dµ.

We will see that I determines µ uniquely.
Let U be open. Then,

sup{µ(K) ∶ K � U} = sup��
X
�K dµ ∶ K � U�

≤ sup{I( f ) ∶ �K ≤ f � U, K � U}
≤ sup{I( f ) ∶ f � U}
≤ �

X
�U dµ

= µ(U),
Since µ is inner-regular on U, the left-hand side and the right-hand side are equal,
from which we deduce that

µ(U) = sup{I( f ) ∶ f � U}.
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Thus, I determines µ uniquely on all open sets. Since µ is outer-regular, I deter-
mines µ on all Borel sets.
Step 2: Define a set function µ on open sets: Let I be given. Define a set function
µ ∶ ⌧X → R̄ by

µ(U) = sup{I( f ) ∶ f � U}.
Note that if U ⊂ V , then f � U implies that f � V , hence µ(U) ≤ µ(V); that is, µ
is monotone.
Likewise, define a set function µ∗ ∶P(X)→ R̄,

µ∗(Y) = inf{µ(U) ∶ Y ⊂ U ∈ ⌧X}.
Note that µ∗(U) = µ(U) for open sets; it follows that µ∗ is monotone as well.
Step 3: Prove that µ is sub-additive: Let (Un) be a sequence of open sets and
let U = �∞n=1 Un. Let f � U and let K = Supp( f ). Since K is compact and (Un) is
an open cover of K, there exists a finite set n1, . . . ,nr, such that

K ⊂ r�
j=1

Un j .

Let  j � Un j be a partition of unity for K, namely,
n�

j=1
 j = 1 on K.

Now,

f = n�
j=1
 j f and  j f � Un j .

Using the linearity of I and the definition of µ for open sets,

I( f ) = n�
j=1

I( j f ) ≤ n�
j=1
µ(Un j) ≤ ∞�

n=1
µ(Un).

Since this holds for every f � U, taking the supremum over f ,

µ(U) ≤ ∞�
n=1
µ(Un).

Step 4: Prove that µ∗ is the outer-measure induced by µ: For every Y ⊂ X,
using the sub-additivity of µ,

µ∗(Y) = inf{µ(U) ∶ Y ⊂ U ∈ ⌧X} ≤ inf �∞�
n=1
µ(Un) ∶ Y ⊂ ∞�

n=1
Un� .
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This inequality is in fact an equality because we can take U1 = U and Un = �
for n ≥ 2. By Proposition 2.39, µ∗ is an outer-measure on X (the outer-measure
induced by µ).
Step 5: Prove that every open set is µ∗-measurable, i.e., ⌧X ⊂ �(µ∗): We need
to show that for every open set U and Y ⊂ X,

µ∗(Y) = µ∗(Y ∩U) + µ∗(Y ∩Uc).
It su�ces to prove an inequality for sets Y of finite outer-measure. Suppose first
that Y is open. Then, Y ∩U is open, hence, given " > 0, there exists an f � Y ∩U,
such that

I( f ) > µ(Y ∩U) − ".
Moreover, Y �Supp( f ) is open, hence there exists a g � (Y �Supp( f )), such that

I(g) > µ(Y � Supp( f )) − ".

U
Y ∩U Y ∩Uc

Supp( f )

Putting it together, and since f + g � Y ,

µ(Y) ≥ I( f + g)
= I( f ) + I(g)
> µ(Y ∩U) + µ(Y � Supp( f )) − 2"
= µ∗(Y ∩U) + µ∗(Y � Supp( f )) − 2"
≥ µ∗(Y ∩U) + µ∗(Y ∩Uc) − 2".

Since this holds for every " > 0, we obtain the desired results, so far, only for open
sets.
Let now Y be an arbitrary set. By the definition of µ∗, given " > 0, there exists an
open set V ⊃ Y , such that

µ∗(V) ≤ µ∗(Y) + ".
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Hence,

µ∗(Y) + " ≥ µ∗(V)
= µ∗(V ∩U) + µ∗(V ∩Uc)
≥ µ∗(Y ∩U) + µ∗(Y ∩Uc),

and it remains to take "→ 0.
Step 6: Prove that every Borel set is µ∗-measurable, i.e., B(X) ⊂ �(µ∗): Since
the collection of µ∗-measurable sets forms a �-algebra containing the open sets,
it contains all the Borel sets.
Step 7: Prove that µ∗�B(X) is a Borel measure extending µ: This follows from
Carathéodory’s theorem; we denote this measure by µ, with no ambiguity.
Step 8: Prove that µ is outer-regular and satisfies (6.1): µ satisfies (6.1) by
definition. It is outer-regular by the definition of µ∗. That is, for every Borel set
A,

µ(A) = µ∗(A) = inf{µ(U) ∶ A ⊂ U ∈ ⌧X}.
Step 9: Prove that µ satisfies (6.2): We need to show that for every compact K,

µ(K) = inf{I( f ) ∶ �K ≤ f ∈ Cc(X)}.
Let K be compact and �K ≤ f ∈ Cc(X). Let

U" = {x ∶ f (x) > 1 − "}.
Note that K � U". Since f is continuous, U" is open. Since f �U" > 1 − ", for every
g � U",

f
1 − " − g ≥ 0,

and by the positivity of I,
I( f )
1 − " ≥ I(g).

It follows that

µ(K) ≤ µ(U") = sup{I(g) ∶ g � U"} ≤ I( f )
1 − " .

Since this holds for every " > 0, µ(K) ≤ I( f ), i.e.,

µ(K) ≤ inf{I( f ) ∶ �K ≤ f ∈ Cc(X)}.
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By Urysohn’s lemma, there exists for every open U satisfying K � U a function
f � U satisfying f ≥ �K , and

I( f ) ≤ µ(U).
I.e.,

inf{I( f ) ∶ �K ≤ f ∈ Cc(X)} ≤ µ(U).
Since µ is outer-regular,

µ(K) ≤ inf{I( f ) ∶ �K ≤ f ∈ Cc(X)} ≤ inf{µ(U) ∶ K � U ∈ ⌧X} = µ(K).
Step 10: Prove that µ is finite on compact sets: This is an immediate conse-
quence of (6.2), as µ(K) ≤ I( f ), for every �K ≤ f ∈ Cc(X).
Step 11: Prove that µ is inner-regular on open sets: Let U be open and let
↵ < µ(U). Choose f � U, such that I( f ) > ↵ (such an f exists by the definition of
µ). Let K = Supp( f ) and let �K ≤ g ∈ Cc(X). Then, g − f ≥ 0, hence

I(g) > I( f ) > ↵.
By (6.2), taking the infimum over all g,

µ(K) > I( f ) > ↵.
That is, for every ↵ < µ(U) there exists a K � U, such that µ(K) > ↵.
Step 12: Prove that I( f ) = ∫X f dµ: Thus, given I there exists a unique µ satis-
fying a collection of properties. We still need to show that I is the integral of its
argument with respect to µ. Since I is linear, it su�ces to prove that

I( f ) = �
X

f dµ

for f whose image is [0,1]. Given N ∈ N, set

Kj = {x ∶ f (x) ≥ j�N}, j = 1, . . . ,N.

These sets are decreasing. Set also K0 = Supp( f ).
Then define

f j(x) =
�����������

0 x �∈ Kj−1

f (x) − ( j − 1)�N x ∈ Kj−1 � Kj

1�N x ∈ Kj.
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One may verify that

f = N�
j=1

f j

and
�K j

N
≤ f j ≤ �K j−1

N
.

Integrating,
1
N
µ(Kj) ≤ �

X
f j dµ ≤ 1

N
µ(Kj−1).

Let U be open with Kj−1 � U. Then, N f j � U hence I( f j) ≤ µ(U)�N. By (6.2)
and outer-regularity,

1
N
µ(Kj) ≤ I( f j) ≤ sup{µ(U)�N ∶ Kj−1 � U} = 1

N
µ(Kj−1).

Summing over j,

1
N

N�
j=1
µ(Kj) ≤ �

X
f dµ ≤ 1

N

N�
j=1
µ(Kj−1),

and
1
N

N�
j=1
µ(Kj) ≤ I( f ) ≤ 1

N

N�
j=1
µ(Kj−1).

It follows that

�I( f ) −�
X

f dµ� ≤ µ(K0) − µ(KN)
N

≤ µ(Supp( f ))
N

.

It remain to take N →∞.
n


