
Chapter 3

Di↵erential Calculus in Rn

In the first chapter, we learned about metric spaces, their topology, and specifi-
cally, about metric spaces of real-valued functions. Note that we have almost not
dealt with di↵erential and integral calculus. The reason is that derivatives and
integrals are associated with limits of di↵erences and sums, which are not per-
tinent to general metric spaces. The notions of derivatives and integrals can be
defined for functions that take values in normed spaces, which, as we learned,
are a subclass of metric spaces. In this chapter we will develop the di↵erential
calculus of functions between finite-dimensional normed spaces, which are all
isomorphic to a Euclidean space. Di↵erential calculus can also be constructed for
infinite-dimensional normed spaces, but this is beyond the scope of the present
course (physics students who studied analytical mechanics encountered func-
tional derivatives, which are derivatives of mappings between functions and real
numbers).

3.1 Di↵erentiability and derivatives

In this chapter we consider functions f ∶ Rk → Rm. More generally, we will
consider functions f ∶ A→ Rm, where A ⊂ Rk; we will always assume that A has a
non-empty interior, so that there exist points a ∈ A that have an open neighborhood
in the domain of f .

We will usually denote points in A by a,b, . . . ; we will commonly use the symbols
x, y, . . . to denote vectors in Rk connecting two points in A. If a is an interior point
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of A, there there exists a su�ciently small r > 0, such that a + tx ∈ A for for every
x ∈ Rk and t ∈ (−r, r).
Each function f ∶ A→ Rm is a collection of m functions f j ∶ A→ R, each depending
on k variables:

f (a) = ( f1(a1, . . . ,ak), . . . , fm(a1, . . . ,ak)) .
We will denote vectors in Rk as column vectors, whereas row vectors will repre-
sent linear functionals on vectors, acting via multiplication; sometimes, we will
not do so for notational convenience.

Example: Consider the function f ∶ R2 → R3,

f �a1

a2
� = ���

a2
1 sin a2�

a1�a2

a1

��� .
The vector-valued function f has three component, given by

f1(a) = a2
1 sin a2 f2(a) = �a1�a2 and f3(a) = a1.

▲▲▲
By default, we endow Rn with the Euclidean norm, which we will denote by� ⋅ �n, to have an explicit mention to the dimension of the space. Since Rk and
Rm are metric spaces, we have a well-defined notion of continuity. A function
f ∶ Rk → Rm is continuous at a ∈ Rk. if for every sequence an converging to a, i.e.,

lim
n→∞an = a in Rk,

we have
lim
n→∞ f (an) = f (a) in Rm.

Moreover, since convergence in Rm amounts to the convergence of each compo-
nent, f is continuous at a if an → a implies that

lim
n→∞ f j(an) = f j(a) j = 1, . . . ,m.

The most elementary functions from Rk to Rm are linear maps, which are repre-
sented by m-by-k matrices acting on vectors in Rk via matrix-vector multiplica-
tion. That is, a linear map T ∶ Rk → Rm has a representation

T
���

a1⋮
ak

��� =
���

T11 � T1k⋮ � ⋮
Tm1 � Tmk

���
���

a1⋮
ak

��� .
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If ei denotes the i-th unit vector in Rk, then

T(ei) = ���
T1i⋮
Tmi

��� ,
so that (e j,T(ei)) = T ji.
We denote the set of linear transformations from Rk to Rm by Hom(Rk,Rm) (a
linear transformation is a homomorphism with respect to the group structure of
the vector spaces). Recall that Hom(Rk,Rm) is a normed space with respect to the
operator norm (�;*9&)95&!% %/9&1%),

�T�k,m = max�x�k=1
�T x�m.

The operator norm on matrices is induced by the norm for vectors; we will always
assume the vector norm to be the Euclidean norm (even though, as we recall,
all the norms on Rn are equivalent). Note our choice of notation � ⋅ �k,m, which
reminds us that we have an operator norm between a k-dimensional space and an
m-dimensional space.

TA material 3.1 Obtain an explicit expression for the operator norm � ⋅ �k,m.

Example: Real-valued functions, f ∶ R → R, are best visualized by their graphs,
as one-dimensional curves embedded in the plane. One coordinate of the plane—
the abscissa—represents the value of the independent variable, whereas the sec-
ond coordinate—the ordinate—represents the value of its image. Similarly, real-
valued functions f ∶ R2 → R are visualized by their graph which is a (two-
dimensional) surface embedded in R3 (see Figure 3.1). In the same way, the graph
of a real-valued function f ∶ Rn → R is an n-dimensional manifold (�%3*9*) em-
bedded in Rn+1. ▲▲▲
Back to general functions f ∶ Rk → Rm, our goal is to define a notion of di↵er-
entiability. To this end, let’s first recall how we define derivatives of functions
f ∶ R→ R. The most common definition for the derivative of f at a point a ∈ R is

f ′(a) = lim
x→0

f (a + x) − f (a)
x

.

Let now f ∶ Rk → Rm; if we replace the denominator by the norm of x, we may
obtain a meaningful expression, in which case, the limit would be an element
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Figure 3.1: The graphs of real-valued functions R→ R (left) and R2 → R (right).

of Rm. It turns out, however, that this is not the natural generalization of the
derivative.
Recall that the derivative is (the limit of) a ratio between a variation in the image
and a variation in the domain,

� f � f ′(a)�x.

Viewed under this angle, f ′(a) is a linear transformation from R to R. In the
multivariate case, �x ∈ Rk and � f ∈ Rm, hence the derivative should be a linear
transformation from Rk to Rm.
In fact, an equivalent definition of the derivative of a univariate function is the
following: we say that f is di↵erentiable at a if there exists a real number T such
that

lim
x→0

f (a + x) − f (a) − T x�x� = 0,

and this number T , which can be shown to be unique, is the derivative of f at a.
Note that although a and x are both real-numbers, they play di↵erent roles: a is a
point in R, whereas x is a displacement in R (in a more general context, x is said
to be an element to the space tangent (�8*:/ "(9/) to R at the point a).
Having formulated di↵erentiability this way, we think of the number T as a lin-
ear transformation, converting the displacement x from the point a, into a dis-
placement T x from the image f (a). This interpretation of the derivative can be
generalized in a natural way into mappings from Rk to Rm:



Di↵erential Calculus in Rn 147

Definition 3.1 Let A ⊂ Rk and let a ∈ A be an interior point. A function f ∶
A → Rm is said to be di↵erentiable (�;*-*"!*7195*$) at a is there exists a linear
transformation T ∈ Hom(Rk,Rm) such that

lim
x→0

f (a + x) − f (a) − T x�x�k = 0. (3.1)

We will denote the linear transformation T by (D f )a (the derivative of f at the
point a). We denote by (D f )a(x) the di↵erential of f at a operating on a vector
x ∈ Rk, resulting in a vector in Rm.

Comment: Recall that the limit in (3.1) amounts to a component-wise limit, i.e.,
for all j = 1, . . . ,m,

lim
x→0

f j(a + x) − f j(a) − (T x) j�x�k = 0.

Comment: The derivative function (�;9'#1% ;*781&5) D f is a (generally nonlinear)
function,

D f ∶ Rk → Hom(Rk,Rm).
Its evaluation at a point a is denoted (D f )a rather than D f (a), since it is a linear
operator acting on vectors x ∈ Rk, and the notation D f (a)(x) would be somewhat
confusing. Note again the di↵erent role played by a and x; the first is an element
of a set A, where the second is an element in a vector space.
We first need to check that the derivative (D f )a is well defined, i.e., that if a linear
transformation with the required properties exists, then it is unique.

Proposition 3.2 If f is di↵erentiable at a then the linear transformation T in the
definition (3.1) is unique.

Proof : Suppose that T,S ∈ Hom(Rk,Rm) both satisfy

lim
x→0

f (a + x) − f (a) − T x�x�k = 0 and lim
x→0

f (a + x) − f (a) − S x�x�k = 0.
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For every finite displacement x ∈ Rn for which a + x ∈ A,

(S − T)x = ( f (a + x) − f (a) − T x) − ( f (a + x) − f (a) − S x) .
By the triangle inequality,

lim
x→0

�(S − T)x�m�x�k ≤ lim
x→0

� f (a + x) − f (a) − T x�m�x�k + lim
x→0

� f (a + x) − f (a) − S x�m�x�k= 0.

Using the homogeneity of the norm,

lim
x→0
�(S − T)� x�x�k��m

= 0.

This limit holds for every sequence x → 0. Taking x = te j and letting t → 0, we
deduce that for every j, (S − T)(e j) = 0,

which implies that S − T = 0. n

At this stage, the meaning of (D f )a may seem intriguing; in particular, what is the
significance of (D f )a acting on a vector x? The following proposition provides
an answer.

Proposition 3.3 Let A ⊂ Rk and let f ∶ A → Rm be di↵erentiable at an interior
point a ∈ A. Then, for every x ∈ Rk,

(D f )a(x) = lim
t→0

f (a + tx) − f (a)
t

. (3.2)

That is, (D f )a(x) is the rate of change of f when moving from the point a along
the direction x.

Proof : By definition, if f is di↵erentiable at a, then for every x ≠ 0,

lim
t→0

f (a + tx) − f (a) − (D f )a(tx)�tx�k = 0.
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Using the linearity of (D f )a and the homogeneity of the norm, if f is di↵erentiable
at a, then

lim
t→0

f (a + tx) − f (a) − t (D f )a(x)
t

= 0,

which reduces to (3.2). n

The vector (D f )a(x) ∈ Rm it is the rate of change of f when we displace its
argument from a in the x-direction; it is called the directional derivative (;9'#1
�;*1&&*,) of f at a in the x-direction (despite the name, note that x is a general vector,
and not only a unit vector defining a direction). It is useful to note the following:

Corollary 3.4 Let f ∶ A → R and a ∈ A be defined as above and let x ∈ Rk. We
Define the function g ∶ (−",−")→ R where " > 0 is su�ciently small such that

g(t) = f (a + tx).
Then,

g′(0) = (D f )a(x).

Eq. (3.2) may be somewhat intriguing: think of it with respect to the vector x ∈ Rk.
On the left-hand side, there is linear operator (D f )a ∈ Hom(Rk,Rm) acting on x.
The right-hand side doesn’t look linear in x. The fact that it is linear in x is due to
f being di↵erentiable. In other words, the following non-obvious relation holds,

lim
t→0

f (a + t(↵x + �y)) − f (a)
t

= ↵ lim
t→0

f (a + tx) − f (a)
t

+ � lim
t→0

f (a + ty) − f (a)
t

.

. Exercise 3.1 Find a continuous function f for which the limit (3.2) exists for
all x, but it is nevertheless not a linear function of x.

Definition 3.5 Let A ⊂ Rk and let f ∶ A → Rm be di↵erentiable at an interior
point a ∈ A. For every j = 1, . . . , k we define the partial derivative (�;*8-( ;9'#1) of
f at a in the j-th direction,

@ j f (a) = (D f )a(e j) = lim
t→0

f (a + te j) − f (a)
t

.
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Such an equation can be written for every one of the m components of f , i.e., there
are m × k partial derivatives,

@ j fi(a) = lim
t→0

fi(a + te j) − fi(a)
t

i = 1, . . . ,m j = 1, . . . , k.

Comment: The more common notation for the partial derivative in the j-th direc-
tion is @ f

@x j
. I prefer not to use it for the same reasons that I prefer f ′ over d f

dx in the
univariate case.

Example: Consider the case where A = Rk and f is a linear transformation, f (a) =
Ta, with T ∈ Hom(Rk,Rm). Such a mapping is always di↵erentiable as

f (a + x) − f (a) − T x�x�k = 0.

By definition, (D f )a = T for all a ∈ Rk. That is

f (a) = Ta implies (D f )a(x) = T x ∀a ∈ A.

This generalizes the identity (cx)′ = c for f ∶ R→ R, f (x) = cx. ▲▲▲
Example: If f is a constant function, f = c ∈ Rm, then (D f )a is the zero transfor-
mation, (D f )a ∶ Rk ∋ x� 0 ∈ Rm. ▲▲▲
As we have already pointed out, if f ∶ Rk ⊃ A → Rm is di↵erentiable, then for
every a ∈ A, (D f )a ∈ Hom(Rk,Rm), i.e.,

D f ∶ A→ Hom(Rk,Rm).
Since Hom(Rk,Rm) is a normed space, we have a notion of continuity of D f .

Definition 3.6 Let A ⊂ Rk be an open set and let f ∶ A → Rm be di↵erentiable in
A. f is said to be continuously-di↵erentiable (�;&5*79" %9*'#) at a if the mapping

D f ∶ A→ Hom(Rk,Rm)
is continuous at a.
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That is, D f is continuous at a ∈ A if for every converging sequence in A, an → a,

lim
n→∞(D f )an = (D f )a in Hom(Rk,Rm),

which amounts to
lim
n→∞ �(D f )an − (D f )a�k,m = 0.

This further means that for all Rk ∋ x ≠ 0,

lim
n→∞ �(D f )an(x) − (D f )a(x)�m = lim

n→∞ �((D f )an − (D f )a)(x)�m
≤ lim

n→∞ �(D f )an − (D f )a�k,m�x�k = 0.

Proposition 3.7 Let f ∶ A ⊂ Rk → Rm be di↵erentiable at a point a ∈ A. Then, all
the m×k partial derivatives of f at a exists and the operator (D f )a has the matrix
representation

(D f )a = ���
@1 f1(a) . . . @k f1(a)⋮ � ⋮
@1 fm(a) . . . @k fm(a)

��� .

Proof : By definition,

(D f )a(e j) = lim
t→0

f (a + te j) − f (a)
t

.

Both sides are vectors in Rm. Taking the inner product with ei ∈ Rm, and noting
that limits commute with inner products, we obtain

(ei, (D f )a(e j)) = �ei, lim
t→0

f (a + te j) − f (a)
t

�
= lim

t→0

(ei, f (a + te j) − f (a))
t

= lim
t→0

fi(a + te j) − fi(a)
t= @ j fi(a).

n —31h(2019)—
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Example: Let f ∶ R2 → R2 be given by

f (a) = �a2
1 + a2

a1 + a2
2
� .

First note that

@1 f (a) = lim
t→0

f �a1 + t
a2
� − f �a1

a2
�

t
= lim

t→0

�(a1 + t)2 + a2

a1 + t + a2
2
� − �a2

1 + a2

a1 + a2
2
�

t

= lim
t→0

�2ta1

t �
t
= �2a1

1 � ,
and

@2 f (a) = lim
t→0

f � a1

a2 + t� − f �a1

a2
�

t
= lim

t→0

� a2
1 + a2 + t

a1 + (a2 + t)2� − �a
2
1 + a2

a1 + a2
2
�

t

= lim
t→0

� t
2ta2
�

t
= � 1

2a2
� .

If f is di↵erentiable, then its derivative at a = (a1,a2)T is represented by the 2-by-
2 matrix

(D f )a = �2a1 1
1 2a2

� .
To verify whether it is di↵erentiable, we need to check whether

lim
x→0

1�
x2

1 + x2
2

��(a1 + x1)2 + (a2 + x2)(a1 + x1) + (a2 + x2)2� − �a
2
1 + a2

a1 + a2
2
� − �2a1 1

1 2a2
��x1

x2
�� = 0.

That is

lim
x→0

1�
x2

1 + x2
2

�x2
1

x2
2
� = 0,

which is indeed the case.
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Now, what would be the directional derivative of f at a in the direction (2,5)T ?
By definition it is the vector

lim
t→0

f �a1 + 2t
a2 + 5t� − f �a1

a2
�

h
= lim

t→0

�(a1 + 2t)2 + (a2 + 5t)(a1 + 2t) + (a2 + 5t)2� − �a
2
1 + a2

a1 + a2
2
�

t
.

However, we don’t need to recalculate a limit, Since f is di↵erentiable, this direc-
tional derivative equals

(D f )a �25� = 2 (D f )a �10� + 5 (D f )a �01� = 2@1 f (a) + 5@2 f (a) = �4a1 5
2 10a2

� .
▲▲▲

Example: Consider the function f ∶ R2 → R,

f (a) = �a2
1 + a2

2.

This function is not di↵erentiable at 0 because its partial derivatives do not exist.
For example,

lim
t→0

f (0 + te1) − f (0)
t

= lim
t→0

�t�
t

does not exist. ▲▲▲
Example: For k = 1, f can be thought of as a collection of m univariate functions.
That is, there is only one “direction” along which f can be di↵erentiated. For
f ∶ R ⊃ A → Rm we have (D f )a ∈ Hom(R,Rm); a linear map R → Rm acts on
numbers by multiplication by a vector in Rm. In other words, Hom(R,Rm) is
naturally isomorphic to Rm, by its action on the “vector” 1 ∈ R.
By definition, for a ∈ R,

(D f )a(1) = lim
t→0

f (a + t) − f (a)
t

,

and by linearity, for x ∈ R,

(D f )a(x) = (D f )a(1) x.
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That is, the derivative of f at a is represented by a column vector whose entries
are

(D f )a(1) = lim
t→0

1
h

���
���

f1(a + t)⋮
fm(a + t)

��� −
���

f1(a)⋮
fm(a)

���
��� =
���

f ′1(a)⋮
f ′m(a)

��� .
For functions defined on subsets of R we often use the notation f ′(a) for their
derivative at a ∈ R. ▲▲▲
Example: We next consider the case where the range of the function is one-
dimensional. For f ∶ Rk ⊃ A→ R and a ∈ A,

(D f )a ∈ Hom(Rk,R),
i.e., the derivative of f at a is represented by a row vector whose entries are

(@1 f (a), . . . ,@k f (a)) .
The space Hom(Rk,R) is k-dimensional; as such, it is isomorphic to Rk, however,
there is no natural isomorphism unless some structure is incorporated beyond the
vector space structure. If Rk is endowed with an inner-product, then one obtains
an isomorphism between Rk to Hom(Rk,R). Define

◆ ∶ Rk → Hom(Rk,R)
via,

◆(v)(x) = (v, x).
Clear, for every v ∈ Rk, ◆(v) is an element of Hom(Rk,R). To show that it is an
isomorphism, it su�ce to show that it is one-to-one, i.e., that it has a trivial kernel.
Indeed, if there exists a v such that ◆(v) is the zero element of Hom(Rk,R), then
for every x ∈ Rk,

0 = ◆(v)(x) = (v, x),
and in particular (v, v) = 0, from which we deduce that v = 0. In fact, the mapping
◆ is even an isometry: for every v ∈ Rk,

�◆(v)�k,1 = max�x�k=1
�◆(v)(x)�1 = max�x�k=1

�(v, x)�.
By the Cauchy-Schwarz inequality,

�◆(v)�k,1 ≤ max�x�k=1
�v�k�x�k = �v�k.
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The maximum is attained by taking x = v��v�k.
For the particular case where the inner-product is Euclidean,

◆(v)(x) = k�
i=1

vixi,

i..e, ◆(v) is a row vector whose elements are the elements of the column vector v.
While the isomorphism between column vectors and row vectors seems the “most
natural” it is not; it reflects a particular choice of an inner-product. In the case
where the norm on Rk is obtained from an inner-product, then there is a natural
inner-product, however recall that not every norm is induced by an inner-product.
Our choice has been to work with the Euclidean norm, hence we use the Euclidean
inner-product to obtain an isomorphism from Rk to Hom(Rk,R).
Definition 3.8 Let f ∶ Rk ⊃ A → R and a ∈ A. The gradient (�)1!*$9#) of f at a is
a vector ∇ f (a) ∈ Rk,

defined by (∇ f (a), x) = (D f )a(x) ∀x ∈ Rk.

That is,

∇ f (a) = ���
@1 f (a)⋮
@k f (a)

��� .

The gradient of f at a, ∇ f (a) ∈ Rk, has a geometric interpretation. Consider
f ∶ A → R in the vicinity of a ∈ A. One may ask in which direction is the rate of
change of f maximal? That is, which among all unit vectors x̂ ∈ Rk maximizes the
directional derivative.

lim
t→0

f (a + tx̂) − f (a)
t

.

By (3.2), we are looking for a maximizer of

(D f )a(x̂) = (∇ f (a), x̂) .
The unit vector along which f changes the fastest is parallel to the gradient,

x̂ = ∇ f (a)�∇ f (a)�k .
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Thus, the gradient of f is a vector pointing in the direction of maximal growth
rate of f , and whose magnitude is the rate of change of f along that direction.
Moreover, consider the space

M⊥f (a) def= �x ∈ Rk ∶ (D f )a(x) = 0� = �x ∈ Rk ∶ x ⊥ ∇ f (a) = 0� .
This is a (k − 1)-dimensional subspace of Rk that spans all the directions along
which f does not change, to first order in the displacement. This space spans the
plane tangent to the level sets of f at the point a. ▲▲▲
We next address the following question: does the existence of all the m× k partial
derivatives ensure the di↵erentiability of a function? We approach this question
in two steps. We first show that di↵erentiability implies the di↵erentiability of all
the components (which shouldn’t come as a surprise since limits in Rm coincide
with component-wise limits).

Proposition 3.9 Let A ⊂ Rk be an open set and f ∶ A → Rm; we denote its com-
ponents by f1, . . . , fm, which are all functions A → R. Then f is di↵erentiable at
a ∈ A if and only if all its components f j ∶ A→ R are di↵erentiable at a.

Proof : The function f is di↵erentiable at a if (and only if) there exists a T ∈
Hom(Rk,Rm), such that

lim
x→0

f (a + x) − f (a) − T(x)�x�k = 0.

Since convergence of the norm amounts to the convergence of each component, f
is di↵erentiable at a if and only if for every j = 1, . . . ,m,

lim
x→0

f j(a + x) − f j(a) − (T(x)) j�x�k = 0.

Define S j ∈ Hom(Rk,R) by

S j(x) = k�
i=1

T jixi = (T(x)) j.

We conclude that f is di↵erentiable at a if and only if each of each components f j

is di↵erentiable at a. n

Having reduced the question of di↵erentiability to that of the di↵erentiability of
scalar-valued functions, we prove the following:
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Theorem 3.10 Let A ⊂ Rk be an open set and let f ∶ A → R. If all the k partial
derivatives of f exist in a neighborhood of a ∈ Rk and are continuous at a, then f
is di↵erentiable at a.

Proof : We need to show that there exists a linear operator T ∈ Hom(Rk,R) such
that

lim
x→0

f (a + x) − f (a) − T x�x�k = 0.

We know what T , if it exists, should be; it is the row vector

T = (@1 f (a), . . . ,@k f (a)) .
That is, we need to show that

lim
x→0

1�x�k � f (a + x) − f (a) − k�
j=1
@ j f (a)x j� = 0.

Since f has continuous partial derivatives we can invoke the mean-value theorem
along each component of its arguments. We first write the displacement of f in
the form of a telescoping sum,

f (a + x) − f (a) = f (a + x1e1) − f (a)
+ f (a + x1e1 + x2e2) − f (a + x1e1)+ . . .
+ f (a + x) − f (a + x1e1 + x2e2 + ⋅ ⋅ ⋅ + xk−1ek−1).

That is, —33h(2019)—

f (a + x) − f (a) = k�
j=1
� f �a + j�

i=1
xiei� − f �a + j−1�

i=1
xiei�� .

Each term in this sum consists of a variation of f upon the displacement of its
argument along a single axis. Consider the j-th term; define the function g ∶[0, xk]→ R,

g(t) = f �a + j−1�
i=1

xiei + te j� ,
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so that the j-th term equals g(xk) − g(0). Furthermore,

g′(t) = lim
h→0

g(t + h) − g(t)
h

= lim
h→0

f �a +∑ j−1
i=1 xiei + te j + he j� − f �a +∑ j−1

i=1 xiei + te j�
h

By the definition of the directional derivative,

g′(t) = @ j f �a + j−1�
i=1

xiei + te j� .
By the (one-dimensional!) mean-value theorem, there exists a number ✓ j ∈ (0,1),
such that

g(x j) − g(0) = g′(✓ jxk)xk.

Putting it all together,

f (a + x) − f (a) = k�
j=1
@ j f �a + j−1�

i=1
xiei + ✓ jx je j� .

Thus,

1�x�k � f (a + x) − f (a) − k�
j=1
@ j f (a)x j� = k�

j=1
�@ j f �a + j−1�

i=1
xiei + ✓ jx je j� − @ j f (a)� x j�x�k .

Letting x→ 0, the right-hand side vanishes by the continuity of the partial deriva-
tives. n

Example: A “counter example” is when f has all its m×k derivatives at a point, but
it is nevertheless not di↵erentiable. This can happen only if the partial derivatives
are not continuous. Let f ∶ R2 → R be given by

f (a) =
�����������

a3
1

a2
1 + a2

2
a ≠ 0

0 a = 0.
.

This function has partial derivatives at zero,

@1 f (0) = lim
t→0

f (0 + te1) − f (0)
t

= lim
t→0

t3�t2

t
= 1

@2 f (0) = lim
t→0

f (0 + te2) − f (0)
t

= 0.
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On the other hand, this function is not di↵erentiable at 0. If it were, we would
have

lim
x→0

1�
x2

1 + x2
2

� x3
1

x2
1 + x2

2
− �1 0��x1

x2
�� = 0,

i.e.,

lim
x→0

−x1x2
2(x2

1 + x2
2)3�2 = 0.

This is not the case as seen when taking x1 = x2 → 0.
▲▲▲

The existence of partial derivatives is a necessary by not su�cient condition for
di↵erentiability. The continuity of the partial derivatives ensures di↵erentiability.
In fact, it ensures that the derivative is also continuous. Conversely, the continuity
of the derivative implies the continuity of the partial derivatives. This leads us to
the following corollary:

Corollary 3.11 Let A ∈ Rk be an open set. Then, f ∶ A → Rm is continuously
di↵erentiable at a ∈ A if and only if its m × k partial derivatives exist and are
continuous at a.

Definition 3.12 Let A ∈ Rk be an open set. We denote by C1(A;Rm) the set of
continuously-di↵erentiable functions from A into Rm.

. Exercise 3.2 Let f ∶ Rk → R such that (D f )x = 0 on an open connected set
U ⊂ Rk. Prove that f is constant on U.

. Exercise 3.3 Let A ⊂ Rk be an open set and let f ∶ A → Rm. Show that if f is
di↵erentiable in A then it is also continuous, in fact, Lipschitz continuous.

We have thus defined a notion of di↵erentiability that generalizes the “old” con-
cept of di↵erentiability for functions R → R. Moreover, we have a formula for
calculating the derivative of a function Rk → Rm, which involves the calculation
of m × k partial derivatives. The next stage is to do “useful” things with this new
concept, and in particular, generalize results known for real-valued functions.
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Proposition 3.13 (The chain rule) Let A ⊆ Rk and B ⊆ Rm be open domains and
let f ∶ A → B and g ∶ B → Rn. Assume that f is di↵erentiable at a ∈ A and that
g is di↵erentiable at f (a) ∈ B. Then, g ○ f ∶ A → Rn is di↵erentiable at a and its
derivative is given by the chain rule:

(D(g ○ f ))a���������������������������������������������������
Rk→Rn

= (Dg) f (a)�����������������������������
Rm→Rn

○ (D f )a�����������
Rk→Rm

.

Proof : For su�ciently small displacements x ∈ Rn and y ∈ Rm we define the
functions, r ∶ Rk → Rm and s ∶ Rm → Rn by

r(x) = f (a + x) − f (a) − (D f )a(x)
s(y) = g( f (a) + y) − g( f (a)) − (Dg) f (a)(y).

By the definition of (D f )a and (Dg) f (a),

lim
x→0

�r(x)�m�x�k = 0 and lim
y→0

�s(y)�n�y�m = 0.

By the definition of r,

f (a + x) = f (a) + (D f )a(x) + r(x),
and by the definition of s, substituting y = (D f )a(x) + r(x),

s((D f )a(x) + r(x)) = g( f (a) + (D f )a(x) + r(x))
− g( f (a))
− (Dg) f (a)((D f )a(x) + r(x)),

which we can re-organize as follows,

g( f (a + x)) − g( f (a)) = (Dg) f (a)((D f )a(x))+ (Dg) f (a)(r(x))+ s((D f )a(x) + r(x)).
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Moving (Dg) f (a)((D f )a(x)) to the right hand side, dividing by �x�k, and writing
expressions such as g( f (a)) as compositions, we obtain

g ○ f (a + x) − g ○ f (a) − (Dg) f (a) ○ (D f )a(x)�x�k = (Dg) f (a) r(x)�x�k
+ s((D f )a(x) + r(x))�x�k .

Taking norms, and using the triangle inequality,

�g ○ f (a + x) − g ○ f (a) − (Dg) f (a) ○ (D f )a(x)�n�x�k ≤ �(Dg) f (a)�m,n �r(x)�m�x�k
+ �s((D f )a(x) + r(x))�n�x�k .

We need to prove that the right-hand side tends to zero as x → 0. The first term
tends to zero by the defining property of r(x). It remains to prove that

lim
x→0

�s((D f )a(x) + r(x))�n�x�k������������������������������������������������������������������������������������������������������������������������������������������
def=  (x)

= 0.

Then,

 (x) =
���������
�s((D f )a(x) + r(x))�n�(D f )a(x) + r(x)�m

�(D f )a(x) + r(x)�m�x�k (D f )a(x) + r(x) ≠ 0

0 otherwise.

By the triangle inequality,

 (x) ≤
�����������
�s((D f )a(x) + r(x))�n�(D f )a(x) + r(x)�m ��(D f )a�k,m + �r(x)�m�x�k � (D f )a(x) + r(x) ≠ 0

0 otherwise.

Let now x→ 0. Then, (D f )a(x)+ r(x)→ 0. By the definition of s, the first factor
tends to zero whereas the second term is bounded, hence

lim
x→0

 (x) = 0.

n
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Example: Consider f ∶ R2 → R3 given by

f (a) = ���
cos a1 cos a2

cos a1 sin a2

sin a1

��� ,

and let g ∶ R3 → R be given by

g(b) = b2
1 + 2b2

2 + 3b2
3.

The composite function is

(g ○ f )(a) = cos2 a1 cos2 a2 + 2 cos a2
1 sin a2

2 + 3 sin2 a1.

The derivative of f at a is given by

(D f )a = ���
− sin a1 cos a2 − cos a1 sin a2− sin a1 sin a2 cos a1 cos a2

cos a1 0

��� ,

whereas the derivative of g at b is given by

(Dg)b = (2b1,4b2,6b3) .
The composition of the derivatives gives

(Dg) f (a)○(D f )a = (2 cos a1 cos a2,4 cos a1 sin a2,6 sin a1)���
− sin a1 cos a2 − cos a1 sin a2− sin a1 sin a2 cos a1 cos a2

cos a1 0

��� .

On the other hand,

(D(g ○ f ))a = �sin 2a1 �− cos2 a2 − 2 sin a2
2 + 3� − cos2 a1 sin 2a2 + 2 cos a2

1 sin 2a2� .
It is easily checked that the two are equal. ▲▲▲
Definition 3.14 Let f ∶ Rk ⊃ A → Rk be di↵erentiable at a. The Jacobian

(�0!*"&83*) of f at a is defined as

J f (a) = det(D f )a.
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Comment: A non-zero Jacobian means that the derivative is an invertible trans-
formation. The Jacobian also plays an important role in integration theory, since
it quantifies how volumes are transformed under mappings. Specifically,

J f (a) = lim
r→0

Vol( f (Br(a)))
Vol(Br(a))

Example: Consider the transformation

f ∶ a� �a1 cos a2

a1 sin a2
� .

Its Jacobian is J f (a) = a1. ▲▲▲
Example: The Jacobian of the identity is 1. ▲▲▲
Proposition 3.15 Let f ,g ∶ Rk → Rk. Than,

J(g ○ f )(a) = Jg( f (a)) J f (a).

Proof : Immediate from the properties of the determinant, as

J(g ○ f )(a) = det(D(g ○ f ))a = det �(Dg) f (a)(D f )a� = det(Dg) f (a) det(D f )a.
n

For real-valued function, a “small” derivative implies that the function changes by
“little” relative to the displacement of its argument. We expect a similar result to
hold for functions between multi-dimensional Euclidean spaces, except that now
the magnitude of the derivative should be the norm of its derivative.

Lemma 3.16 Let � ∶ [0,1]→ Rm be a continuously-di↵erentiable path in Rm such
that

sup
0≤t≤1
�(D�)t�1,m = M.

Then, ��(1) − �(0)�m ≤ M.

(Recall that the derivative (D�)t = �′(t) is a column vector whose entries are
�′j(t).)
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Proof : Define the function, f ∶ [0,1]→ R, given by

f (t) = ��(t) − �(0)�m = � k�
j=1
(� j(t) − � j(0))2�

1�2
.

Di↵erentiating f 2 (this is a univariate function),

f 2′(t) = 2
k�

j=1
�′j(t)(� j(t) − � j(0))

= 2 (�′(t),�(t) − �(0))
≤ 2�(D�)t�1,m��(t) − �(0)�≤ 2M f (t),

where in the passage to the third line we used the Cauchy-Schwarz inequality. It
follows that

2 f (t) f ′(t) ≤ 2M f (t),
and since f (t) is non-negative, f ′(t) ≤ M for all t. It then follows from the mean-
value theorem that f (1) ≤ M, which is the desired result. n

With this lemma we prove the following theorem:

Theorem 3.17 Let A be an open subset of Rk, g ∶ A→ Rm a di↵erentiable function,
and a,b ∈ A such that

I = {tb + (1 − t)a ∶ 0 ≤ t ≤ 1} ⊂ A

(the segment connecting a and b is in the domain). Assume furthermore that

sup
c∈I �(Dg)c�k,m = M.

Then, �g(b) − g(a)�m ≤ M �b − a�k.

Proof : We define the path � ∶ [0,1]→ A,

�(t) = g( f (t)), where f (t) = tb + (1 − t)a.
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By the chain rule.

(D�)t = (Dg) f (t) ○ (D f )t = (Dg) f (t)(b − a).
For every t ∈ [0,1],

�(D�)t�1,m ≤ �(Dg) f (t)�k,m �b − a�k ≤ M �b − a�k.
By Lemma 3.16, ��(1) − �(0)�m ≤ M�b − a�k, which is the desired result. n —35h(2019)—

3.2 Higher derivatives

The space C1(A;Rm), A ⊂ Rk is the space of continuously-di↵erentiable functions
from A to Rm, and it coincides with the space of functions that have continuous
partial derivatives. For f ∈ C1(A;Rm), its derivative is a mapping

D f ∶ A� Hom(Rk,Rm),
i.e., a (generally nonlinear!) mapping between two finite-dimensional normed
spaces. Thus, we can define the derivative of D f at a: D f is di↵erentiable at a if
there exists a linear operator

(D2 f )a ∈ Hom(Rk,Hom(Rk,Rm)),
such that

lim
x→0

(D f )a+x − (D f )a − (D2 f )a(x)�x�k = 0,

which is an equality between elements in Hom(Rk,Rm). Note that (D2 f )a maps
an ordered pair of vectors in Rk into a vector in Rm. Specifically,

(D2 f )a ∈ Hom(Rk,Hom(Rk,Rm))
(D2 f )a(x) ∈ Hom(Rk,Rm)
(D2 f )a(x)(y) ∈ Rm.

Proposition 3.18 The second derivative of f at a is bilinear (�;*9!*1*-*"), namely,

(D2 f )a(↵x1 + �x2)(y) = ↵ (D2 f )a(x1)(y) + � (D2 f )a(x2)(y),
and (D2 f )a(x)(↵y1 + �y2) = ↵ (D2 f )a(x)(y1) + � (D2 f )a(x)(y2),
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Proof : This is an immediate consequence of x � (D2 f )a(x) being linear and
y� (D2 f )a(x)(y) being linear. n

To understand how does the second derivative operate, we use the notion of the
directional derivative (3.2) to get

(D2 f )a(x) = lim
t→0

(D f )a+tx − (D f )a
t

.

Note that the right-hand side is a limit in Hom(Rk,Rm).
Applying both sides on y ∈ Rk, and using the fact that matrix-vector multiplication
is continuous,

(D2 f )a(x)(y) = lim
t→0

(D f )a+tx(y) − (D f )a(y)
t

.

In particular, for x = ei and y = e j,

(D2 f )a(ei)(e j) = lim
t→0

(D f )a+tei(e j) − (D f )a(e j)
t

= lim
t→0

@ j f (a + tei) − @ j f (a)
t= @i@ j f (a).

Since (D2 f )a is bilinear (Proposition 3.18), for

x = k�
i=1

xiei and y = k�
j=1

y je j,

(D2 f )a(x)(y) = k�
i=1

k�
j=1
@i@ j f (a)xiy j.

That is, the second derivative of f at a is an Rm-valued bilinear form represented
by the m × k × k numbers

@i@ j f `(a).
In a similar way, higher derivatives may be defined. The `-th derivative of f is a
map (D` f )a ∈ Hom(Rk,Hom(Rk, . . . ,Hom(Rk,Rm))),
which can be defined as a `-multilinear map from Rk to Rm. Moreover,

(D` f )a(ei1) . . . (ei`) = @i1@i2 . . .@i` f (a).
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Comment: For T ∈ Hom(Rk,Hom(Rk,Rm))we will write for convenience T(x, y)
rather than T(x)(y).
The following lemma will come up handy:

Lemma 3.19 Let f ∶ Rk ⊃ A → Rm be twice-di↵erentiable at a. Define g ∶ A → Rm

by
g(a) = (D f )a(y),

where y ∈ Rk is a fixed vector. Then, g is di↵erentiable at a, and

(Dg)a(z) = (D2 f )a(z, y).
(Note that g is in general a nonlinear function.)

Proof : By definition,

(Dg)a(z) = lim
t→0

g(a + tz) − g(a)
t

= lim
t→0

(D f )a+tz(y) − (D f )a(y)
t

= �lim
t→0

(D f )a+tz − (D f )a
t

� (y)
= (D2 f )(z)(y).

n

3.3 Multivariate mean-value and Taylor theorems

Proposition 3.20 Let A ⊆ Rk be an open, path-connected set (i.e., for every a,b ∈
A there exists a di↵erentiable path connecting a and b). Then f ∶ A → Rm is
constant if and only if (D f )a = 0 (the zero operator) for all a ∈ A.

Proof : We have already seen that f = const implies D f = 0. Suppose now
that D f = 0 in A, and let a,b ∈ A. Since A is path-connected, there exists a
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(continuously-di↵erentiable) path ' ∶ [0,1] → A such that '(0) = a and '(1) = b.
Define the path g ∶ [0,1]→ Rm by

g(t) = f ('(t)).
By the chain rule,

g′(t) = (Dg)t = (D f )'(t) ○ (D')t = 0,

from which we conclude that all the components of g are constant, i.e., f (a) =
f (b). n

Corollary 3.21 Let A ⊆ Rk be open and path connected and f ,g ∈ C1(A;Rm) such
that (D f )a = (Dg)a for all a ∈ A.

Then there exists a constant c ∈ Rm such that

f = g + c.

Proof : Apply the previous proposition to the function h(a) = f (a) − g(a). n

We now consider a generalization of the mean-value theorem (�37&//% +93% )5:/).
Recall that for f ∈ C1([a,b];R), there exists a ✓ ∈ (0,1) such that

f (b) − f (a) = f ′(a + ✓(b − a))(b − a).
The question is whether this theorem holds for functions f ∶ Rk → Rm, i.e., is it
true that for every a,b ∈ Rk there exists a ✓ ∈ (0,1) such that

f (b) − f (a) = (D f )b+✓(b−a)(b − a)?
In general, this is false. It only holds for real-valued functions.

Example: The following example show that the mean-value theorem does not
generally hold when the range is Rm. Consider the function f ∶ R→ R3:

f ∶ t � ���
cos t
sin t

t

��� .
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This function is di↵erentiable with

(D f )t = ���
− sin t
cos t

1

��� .
Now,

f (2⇡) − f (0) = ���
0
0

2⇡

��� whereas (D f )2⇡✓(2⇡ − 0) = 2⇡
���
− sin 2⇡✓
cos 2⇡✓

1

��� ,
and there is no value of ✓ for which the two are equal. ▲▲▲

Theorem 3.22 (mean-value theorem) Let A ⊆ Rk be open, a,b ∈ A, such that the
segment connecting them is in A, and f ∈ C1(A;R). Then there exists a ✓ ∈ (0,1)
such that

f (b) − f (a) = (D f )a+✓(b−a)(b − a).

Proof : The idea is to use the mean-value theorem for univariate function. Con-
sider the function ' ∶ [0,1]→ A given by

'(t) = a + t(b − a),
and the function g ∶ I → R given by

g(t) = f ('(t)).
The function g is di↵erentiable with

g′(t) = (D f )'(t) ○ (D')t = (D f )'(t)(b − a).
By the univariate mean-value theorem there exists a ✓ ∈ (0,1), such that

g(1) − g(0) = g′(✓) = (D f )a+✓(b−a)(b − a),
which concludes the proof. n
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Comment: Since a function f ∶ Rk → Rm is a row of m real-valued functions, each
component satisfies the mean-value theorem, but with a di↵erent ✓, that is there
exist ✓1, . . . , ✓m ∈ (0,1) such that

f j(b) − f j(a) = (D fj)a+✓ j(b−a)(b − a).
—37h(2019)—

We proceed to show that if f ∶ Rk → Rm has continuous second partial derivatives,
i.e., f ∈ C2(Rk;Rm), then its second derivative is symmetric. In particular, for
every i, j = 1, . . . , k,

@i@ j f = @ j@i f .

Clearly, it is enough to consider real-valued functions.

Theorem 3.23 (Equality of mixed derivatives) Let A ⊂ Rk be an open set and
let f ∈ C2(A;R). Then, (D2 f )a ∈ Hom(Rk,Hom(Rk,R)) is a symmetric bilinear
operator. That is, for every x, y ∈ Rk,

(D2 f )a(x, y) = (D2 f )a(y, x).

Proof : Fixing a ∈ A and x, y ∈ Rk, consider the expression

I = ( f (a + tx + sy) − f (a + tx)) − ( f (a + sy) − f (a))
= ( f (a + tx + sy) − f (a + sy)) − ( f (a + tx) − f (a)).

For every s we define a function gs ∶ A→ R,

gs(z) = f (z + sy) − f (z).
Likewise, for every t we define a function ht ∶ A→ R,

ht(z) = f (z + tx) − f (z).
Then,

I = gs(a + tx) − gs(a) = ht(a + sy) − ht(a).
By the the mean-value theorem, there exist a family of constants ✓s ∈ (0,1) and a
family of constants ⌧t ∈ (0,1), such that

I = (Dgs)a+✓stx(tx) = (Dht)a+⌧t sy(sy).
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By the chain rule,

(Dgs)a+✓stx(tx) = t ((D f )a+✓stx+sy(x) − (D f )a+✓stx(x))(Dht)a+⌧t sy(sy) = s ((D f )a+⌧t sy+tx(y) − (D f )a+⌧t sy(y)) .
We are going to apply the mean-value theorem a second time. Define the functions
p, r ∶ R→ R (both depend on s and t),

p(u) = (D f )a+✓stx+uy(x) − (D f )a+✓stx(x)
r(u) = (D f )a+⌧t sy+ux(y) − (D f )a+⌧t sy(y).

Then, there exist ⇠s,t, ⇣s,t ∈ (0,1), such that

(Dgs)a+✓stx(tx) = t (p(s) − p(0)) = ts p′(⇠s,t s)(Dht)a+⌧t sy(sy) = s (r(t) − r(0)) = ts r′(⇣s,tt).
However,

p′(⇠s,t s) = (D2 f )a+✓stx+⇠s,t sy(y, x)
r′(⇣s,tt) = (D2 f )a+⌧t sy+⇣s,t tx(x, y).

Putting it all together,

I
st
= (D2 f )a+✓stx+⇠s,t sy(y, x) = (D2 f )a+⌧t sy+⇣s,t tx(x, y).

Set now s = t and let t → 0. By the continuity of Df we obtain that

(D2 f )(x, y) = (D2 f )a(y, x).
n

Finally, we prove a multivariate version of Taylor’s theorem ("9% 9&-**) )5:/
�*$//). Here again, we consider real-valued functions. The result applies for Rm-
valued functions in a row-by-row fashion.

Lemma 3.24 Let f ∶ Rk ⊃ A → R be p-times di↵erentiable, let a ∈ A and x ∈ Rk

such that the segment connecting a and a + x is in A, and let g ∶ [0,1] → R be
given by

g(t) = f (a + tx).
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Then,
g′(t) = (D f )a+tx(x)
g′′(t) = (D2 f )a+tx(x, x)
g′′′(t) = (D3 f )a+tx(x, x, x)⋮ = ⋮

g(p)(t) = (Dp f )a+tx(x, x, . . . , x).

Proof : Define ' ∶ R→ Rk by
'(t) = a + tx.

Then g = f ○ ', and by the chain rule

g′(t) = (D f )'(t) ○ '′(t) = (D f )a+xt(x).
For the second derivative, we’ve already proven such a result, but the simplest
would be to re-derive it,

g′′(t) = lim
h→0

(D f )a+xt+xh(x) − (D f )a+xt(x)
h

= �lim
h→0

(D f )a+xt+xh − (D f )a+xt

h
� (x)

= (D2 f )a+tx(x)(x).
Likewise,

g′′′(t) = lim
h→0

(D2 f )a+xt+xh(x, x) − (D2 f )a+xt(x, x)
h

= �lim
h→0

(D2 f )a+xt+xh − (D2 f )a+xt

h
� (x, x)

= (D3 f )a+tx(x)(x, x),
and so on. n
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Theorem 3.25 (Multivariate Taylor) Let A ⊂ Rk be an open set, f ∈ Cp+1(A;R),
a ∈ A, a + x ∈ A (as well as the segment connecting the two points). Then there
exists a ✓ ∈ (0,1) such that

f (a + x) = f (a) + (D f )a(x) + 1
2
(D2 f )a(x, x) + 1

3!
(D3 f )a(x, x, x) + ⋅ ⋅ ⋅ + Rp(x),

where
Rp(x) = 1(k + 1)!(Dp+1 f )a+✓x(x, x, . . . , x).

. Exercise 3.4 Convince yourself that the multivariate Taylor theorem reduces
to the univariate Taylor theorem for k = 1.

Proof : Here again, we base the proof on the univariate version of Taylor’s theo-
rem. Define g ∶ (−1,1)→ R by

g(t) = f (a + tx),
and expand g(1) about t = 0. By the previous lemma,

g′(t) = (D f )a+tx(x)
g′′(t) = (D2 f )a+tx(x, x)
g′′′(t) = (D3 f )a+tx(x, x, x)⋮ = ⋮

Finally,

g(1) = g(0) + g′(0) + 1
2

g′′(0) + ⋅ ⋅ ⋅ + 1(p + 1)!g(p+1)(✓).
n

Comment: For functions f ∶ Rk → Rm each component f j satisfies Taylor’s the-
orem, but every component will have its own ✓, as we have already seen for the
mean-value theorem.

Example: Let f ∶ R2 → R by given by

f (a) = ea1+2a2 .
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Then, f (0) = 1,

(D f )0(x) = @1 f (0)x1 + @2 f (0) x2 = x1 + 2x2,

(D2 f )0(x, x) = @1@1 f (0)x2
1 + 2@1@2 f (0) x1x2 + @2@2 f (0)x2

2 = x2
1 + 2x1x2 + 4x2

2,

so that the second-order Taylor polynomial of f at zero is

P2 f (x) = 1 + (x1 + 2x2) + 1
2
(x2

1 + 4x1x2 + 4x2
2).

▲▲▲
Example: Taylor’s theorem is above all an approximation method. It states that
every (smooth) function can, to zeroth order, be approximated by a constant, to
first order by a linear function, and so on. First-order approximation gives rise
to the multivariate Newton method. Suppose we have a function f ∶ Rk → Rk

whose root(s) we want to compute. That is, we are looking for r ∈ Rk for which
Rk ∋ f (r) = 0. Suppose we have an initial guess a0 close enough to the desired r.
By Taylor’s theorem,

f (a) = f (a0) + (D f )a0(a − a0) + remainder.

Retaining only the linear approximation, and provided that (D f )a0 is not singular,
an approximation a1 for r is obtained by

f (a0) + (D f )a0(a1 − a0) = 0 ⇒ a1 = a0 − [(D f )a0]−1 f (a0).
This suggests the following iterative method:

an+1 = an − [(D f )an]−1 f (an),
known as the multivariate Newton method. The hope is that an → r. This sequence
does not always converge, but when it does, it does it extremely fast! ▲▲▲
. Exercise 3.5 Assume that f ∈ C1(Rk;Rk), r a root of f and J f (r) ≠ 0. Show
that there exists a neighborhood of r in which Newton’s method converges to r.



Di↵erential Calculus in Rn 175

3.4 Minima and maxima

We devote this short section to the identification of extrema of multivariate real-
valued functions. Throughout this section we consider functions f ∈ C2(A;R),
where A ⊆ Rk is open.

Definition 3.26 An interior point a ∈ A is called a local maximum (.&/*28/
�*/&8/) of f if there exists an open neighborhood of a, U, such that

f (a) = sup
b∈U f (b).

A local minimum is defined similarly.

The following proposition generalizes the well-known property of extremal points
for univariate functions.

Proposition 3.27 If a ∈ A is a local maximum of f then (D f )a = 0.

Comment: A point where the derivative vanishes is called a critical point (%$&81
�;*)*98).

Proof : Let U be a neighborhood of a in which f (a) is maximal. By definition,
there exists an open ball Br(a) ⊂ U in which f (a) is maximal. To show that(D f )a = 0 we need to show that (D f )a(x) = 0 for every vector x. Let x̂ be an
arbitrary unit vector and consider the function g ∶ (−r, r)→ R,

g(t) = f (a + tx̂).
The function g is di↵erentiable and reaches a local maximum at t = 0, hence

0 = g′(0) = (D f )a(x̂).
Since (D f )a(x̂) = 0 for every unit vector x̂, (D f )a(x) = 0 for every x ∈ Rk. n

In the univariate case, a vanishing first derivative does not guarantee a local ex-
tremum. A su�cient (but not necessary!) condition for a univariate functions
f to reach a local maximum at a is that its first derivative vanishes and its sec-
ond derivative is negative. We expect a similar condition to hold for multivariate
functions, except that the second derivative is a symmetric bilinear form,

(D2 f )a(x, y) = (D2 f )a(y, x) = n�
i, j=1

@ j@i f (a) xiy j.
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Definition 3.28 A bilinear operator T ∈ Hom(Rk,Hom(Rk,R)) is called positive-

definite (�)-(%" ;*"&*() if

T(x, x) ≥ 0 for all x ∈ Rk,

with equality only if x = 0. T is called positive-semidefinite (�%7(/- ;*"&*()
if equality may also hold for x ≠ 0. Negative-definiteness and negative semi-
definiteness are defined similarly.

Note that (D2 f )a is positive-definite if the matrix H whose entries are

hi j = @i@ j f (a)
satisfies

(x,Hx) > 0

for all x ≠ 0.

Lemma 3.29 A bilinear form T ∈ Hom(Rk,Hom(Rk,R)) is positive definite if
and only if

T(x̂, x̂) > 0

for every unit vector x̂ ∈ Rk.

Proof : The “only-if” part is trivial. The “if” part follows from the bilinearity of
A. If

T(x̂, x̂) > 0

for every unit vector x̂, then for every non-zero vector x ∈ Rk,

T(x, x) = T � x�x�k ,
x�x�k��x�2k > 0.

n
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Lemma 3.30 Let T ∈ Hom(Rk,Hom(Rk,R)) be positive definite. Then, there
exists an ↵ > 0, such that

T(x̂, x̂) ≥ ↵
for every unit vector x̂. Similarly, if T is negative-definite, then there exists an
↵ > 0, such that

T(x̂, x̂) ≤ −↵
for every unit vector x̂.

Proof : Consider the function g ∶ Rk → R,

g(x) = T(x, x).
We will show that g is continuous. Indeed,

�T(xn, xn) − T(x, x)� = �T(xn, xn − x) + T(xn − x, x)�
≤ �T � xn�xn�k ,

xn − x�xn − x�k�� �xn�k�xn − x�k + � xn − x�xn − x�k ,
x�x�k � �x�k�xn − x�k

≤ �T�op�xn�k�xn − x�k + �A�op�x�k�xn − x�k.
Letting xn → x we obtain that T(xn, xn) → T(x, x). Since the unit sphere is com-
pact, g assumes a minimum on the unit sphere; that is, there exists a unit vector ẑ,
such that for all unit vectors x̂,

T(x̂, x̂) ≥ T(ẑ, ẑ) def= ↵ > 0.

n —39h(2019)—

Lemma 3.31 Let A ⊂ Rk be an open domain, and let f ∈ C2(A;R). Suppose
that (D2 f )a is negative-definite. Then, there exists an open ball Br(a), such that(D2 f )b is negative-definite for all b ∈ Br(a).
Proof : In essence, this lemma asserts that if the second derivative is continuous,
then, its “definiteness” is continuous as well. By Lemma 3.30, there exists an
↵ > 0, such that for every unit vector ŷ,

(D2 f )a(ŷ, ŷ) ≤ −↵.



178 Chapter 3

We need to show that there exists an open ball Br(a), such that for all b ∈ Br(a)
and all unit vectors ŷ, (D2 f )b(ŷ, ŷ) < 0.

Since D2 f is continuous, there exists an r, such that for all b ∈ Br(a),
�(D2 f )b − (D2 f )a�op < ↵2 .

Recall the definition of the operator norm of an element of T ∈ Hom(Rk,Hom(Rk,R)),
�T�op = sup

ŷ,ẑ
�T(ŷ, ẑ)�.

Thus, for every b ∈ Br(a) and every unit vector ŷ,

(D2 f )b(ŷ, ŷ) = (D2 f )a(ŷ, ŷ) + ((D2 f )b(ŷ, ŷ) − (D2 f )a(ŷ, ŷ))≤ −↵ + �((D2 f )b − (D2 f )a)(ŷ, ŷ)�≤ −↵ + �(D2 f )b − (D2 f )a�op

≤ −↵ + ↵
2
< 0.

n

Theorem 3.32 Let f ∈ C2(A;R), where A ⊂ Rk is open, and let a ∈ A be a critical
point.

1. If (D2 f )a is negative-definite then a is a local maximum.

2. If a is a local maximum then (D2 f )a is negative-semidefinite.

Proof :

1. Suppose that (D f )a = 0 and (D2 f )a(x, x) < 0 for all x ≠ 0. By Taylor’s
theorem, there exists for every su�ciently small x a ✓ ∈ (0,1) such that

f (a + x) = f (a) + (D2 f )a+✓x(x, x),
where we used the fact that a is a critical point, i.e., (D f )a(x) = 0. Since(D2 f )a is negative-definite, it follows from Lemma 3.31 that there exists an
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open ball Br(a), such that for every a + x ∈ Br(a), (D2 f )a+x is negative-
definite. Thus, for every x ∈ Br(a),

f (a + x) = f (a) + (D2 f )a+✓x(x, x) ≤ f (a),
which proves that a is a local maximum.

2. Suppose that a is a local maximum of f . Here we may use the univariate
condition of a maximum. Let Br(a) be an open ball in which f reaches its
maximum at a, and let x̂ be a unit vector. Consider the path g ∶ (−r, r)→ R,

g(t) = f (a + tx̂).
Then,

g′(t) = (D f )a+tx̂(x̂),
and

g′′(t) = (D2 f )a+tx̂(x̂, x̂).
Since g reaches a local maximum at t = 0,

g′(0) = (D f )a(x̂) = 0 and g′′(0) = (D2 f )a(x̂, x̂) ≤ 0,

i.e., (D2 f )a is negative semi-definite.

n

3.5 The inverse function theorem

In this section we consider under what conditions does a function f ∶ Rk ⊃ A →
B ⊂ Rk have an inverse.

Example: Consider the function f ∶ A→ B, where

A = (0,∞) × (0,⇡)→ R × (0,∞)
given by

f (a) = �a1 cos a2

a1 sin a2
� .



180 Chapter 3

Then f is invertible. Indeed, suppose that f (a) = b, i.e.,

b1 = a1 cos a2 and b2 = a1 sin a2.

Then,
b2

1 + b2
2 = a2

1 and
b2

b1
= tan2 .

Thus,

f −1(b) = �
�

b2
1 + b2

2
tan−1 b2

b1

� .
▲▲▲

First of all, note that the domain and the range have the same dimension. In-
deed, we know that in the particular case of linear functions this is a mandatory
condition. In fact, we know the following:

Proposition 3.33 Let T ∈ Hom(Rk,Rk) and let f ∶ Rk → Rk be the linear function
f (a) = Ta. Then, f is invertible if and only if at some point a ∈ Rk,

(D f )a ∈ Hom(Rk,Rk)
is invertible, which is the case if and only if det(D f )a > 0.

Proof : For every a ∈ Rk, (D f )a = T . The function inverse to f is b� T−1b, and it
exists if and only if T is invertible, which as we learned in linear algebra, occurs
if and only if det T > 0. n

If f is nonlinear, then its derivative is not a constant matrix. If D f is invertible
at a point, this is not su�cient to ensure that f is invertible, but as we will see, it
ensures that f restricted to some neighborhood of a is invertible (on its image).

Lemma 3.34 Let A ⊂ Rk be an open set and f ∈ C1(A;Rm). Let a,b, c ∈ A such
that the segment I connecting b and c is in A. Then,

� f (c) − f (b) − (D f )a(c − b)�m ≤ �c − b�k sup
w∈I �(D f )a − (D f )w�k,m.
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Proof : Define the function g ∶ A→ Rm,

g(w) = f (w) − (D f )a(w − a).
The derivative of the linear operator (D f )a is constant and equals (D f )a, hence,

(Dg)w = (D f )w − (D f )a.
By Theorem 3.17,

�g(c) − g(b)�m ≤ �c − b�n sup
w∈I �(Dg)w�k,m,

which is the desired result. n —41h(2019)—

Theorem 3.35 (Inverse function theorem (�;*,5&%% %*781&5% )5:/)) Let
A ⊂ Rk be an open set and let f ∈ C1(A; Rk). Suppose that det(D f )a ≠ 0 for some
point a ∈ A. Then there exists an open neighborhood U of a, a ∈ U ⊂ A, such that
V = f (U) is also open, and f �U is one-to-one and onto V. This defines an inverse
function f −1 ∶ V → U, which is also continuously di↵erentiable.

Comment: For real-valued functions, the inverse function theorem states that if
f ∶ R ⊃ A → R is continuously-di↵erentiable and f ′(a) ≠ 0 at a point a, then there
exists a neighborhood U of a in which f �U ∶ U → f (U) has an inverse, which is
also continuously-di↵erentiable.

Comment: If the theorem holds, then we can derive a formula for the derivative
of f −1. Since

f −1 ○ f = Id,

it follows from the chain rule that

(D f −1) f (a) ○ (D f )a = Id

(the derivative of the linear operator Id at every point is Id), or,

(D f −1) f (a) = (D f )−1
a .
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Proof : Since det(D f )a ≠ 0, the linear transformation (D f )a has an inverse (D f )−1
a .

Moreover, since D f is continuous, there exists a closed ball B̂r(a) ⊂ A such that

�(D f )b − (D f )a�k,k ≤ 1
2 �(D f )−1

a �k,k
for all b ∈ B̂r(a).
Step 1: Show that f is one-to-one in B̂r(a): By Lemma 3.34 and by our choice
of r, for every two points b, c ∈ B̂r(a)

� f (c) − f (a) − (D f )a(c − b)�k ≤ �c − b�k sup
w∈B̂r(a)

�(D f )w − (D f )a�k,k
≤ �c − b�k

2 �(D f )−1
a �k,k .

Applying the (reverse) triangle inequality,

� f (c) − f (b)�k ≥ �(D f )a(c − b)�k − � f (c) − f (b) − (D f )a(c − b)�k
≥ �(D f )a(c − b)�k − �c − b�k

2 �(D f )−1
a �k,k

= 1�(D f )−1
a � k,k

��(D f )−1
a �k,k �(D f )a(c − b)�k − 1

2
�c − b�k�

≥ 1�(D f )−1
a �k,k ��(D f )−1

a (D f )a(c − b)�k − 1
2
�c − b�k� ,

where in the last step we used the fact that �T�k,k�x�k ≥ �T x�k. It follows that.,

� f (c) − f (b)�k ≥ �c − b�k
2 �(D f )−1

a �k,k . (3.3)

This implies that f is one-to-one in B̂r(a).
Step 2: We show that D f is invertible in B̂r(a): It su�ces to show that its kernel
is trivial,

∀b ∈ B̂r(a) and ∀0 ≠ y ∈ Rk (D f )b(y) ≠ 0.

Let b ∈ B̂r(a) and let 0 ≠ y ∈ Rk; by the continuity of the norm and (3.3),

�(D f )b(y)�k = �lim
t→0

f (b + ty) − f (b)
t

�
k
= lim

t→0

1�t� � f (b + ty) − f (b)�k
≥ lim

t→0

1�t� �ty�k
2 �(D f )−1

a �k,k =
�y�k

2 �(D f )−1
a �k,k > 0,
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which proves that (D f )b is invertible.

a f!a"

B!a,r"

f!B!a,r""

V

f#1!V"

Step 3: construction of U and V: f is one-to-one in B̂r(a). It seems as if the
open ball Br(a) is a good candidate for the neighborhood U of a. The problem
is that it is not necessarily true that f (Br(a)) is open, as continuous functions not
necessarily map open sets into open sets. We rather show that f (Br(a)) contains
an open neighborhood V of f (a); since f is continuous, its pre-image intersected
with Br(a), which we denote by U, is open; f is then a one-to-one function from
U onto V .
Let b ∈ @Br(a); since f is one-to-one f (b) ≠ f (a). The boundary @Br(a) is
closed and bounded, hence compact, which implies that f (@Br(a)) is compact
and does not include f (a). We proved in the past that it implies that there is a
positive distance, ", between f (a) and f (@Br(a)). Consider now the open ballB"�2( f (a)). We claim that

B"�2( f (a)) ⊂ f (Br(a)),
i.e., ∀w ∈ B"�2( f (a)) ∃b ∈ Br(a) such that f (b) = w.

While this may seem obvious by geometric intuition, this requires a proof. Let w
be an arbitrary point in B"�2( f (a)). Consider the function h ∶ B̂a(r) → R defined
by

h(b) = � f (b) −w�2k .
This function is continuous and defined on a compact set, hence it reaches a min-
imum. Denote this minimum by b, that is, b ∈ B̂a(r) satisfies

� f (b) −w�k ≤ � f (c) −w�k for all c ∈ B̂a(r).
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The point b cannot be on the boundary, since b ∈ @B̂a(r) would imply
"

2
< � f (b) −w�k ≤ � f (a) −w�k < "2 ,

which is a contradiction.
Thus, b ∈ Br(a). Since b is the minimizer of the di↵erentiable function h, its
derivative vanishes at b, i.e.,

0 = (Dh)b = 2(D f )b( f (b) −w).
Since (D f )b is invertible, it follows that f (b) = w, i.e., that w ∈ f (Br(a)). Since
w was chosen as an arbitrary point in B"�2( f (a)) it follows that

B"�2( f (a)) ⊂ f (Ba(r)).
At this point we set V = B"�2( f (a)) and U = f −1(V) ∩ Br(a). The sets U and V
are open and f is one-to-one and onto V , hence f −1 is defined on V .
Step 4: We show that f −1 is Lipschitz continuous: Let v,w ∈ V . By (3.3),
substituting f −1(v) and f −1(w),

� f ( f −1(w)) − f ( f −1(v))�k ≥ � f −1(w) − f −1((v)�k
2 �(D f )−1

a �k,k ,

i.e., � f −1(w) − f −1(v)�k ≤ 2 �(D f )−1
a �k,k�w − v�k.

Step 5: We show that f −1 is continuously-di↵erentiable: Let v be an arbitrary
point in V , and y ∈ Rk su�ciently small such that v + y ∈ V . We define

b = f −1(v) and x = f −1(v + y) − f −1(v),
and note that

v = f (b) and y = f (b + x) − f (b).
Since f −1 is Lipschitz continuous in V , there exists a constant M such that

�x�k ≤ M �y�k. (3.4)

Then,

f −1(v + y) − f −1(v) − (D f )−1
b (y) = x − (D f )−1

b (y)= (D f )−1
b [(D f )b(x) − y]

= −(D f )−1
b [ f (b + x) − f (b) − (D f )b(x)] .
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Taking norms, dividing by �y�k and using (3.4),

� f −1(v + y) − f −1(v) − (D f )−1
b (y)�k�y�k ≤ �(D f )−1

b �k,k � f (b + x) − f (b) − (D f )b(x)�k�y�k
≤ M�(D f )−1

b �k,k � f (b + x) − f (b) − (D f )b(x)�k�x�k .

Letting y→ 0, (3.4) implies that x → 0, hence the right-hand side tends to zero by
the definition of (D f )x. It follows that f −1 is di↵erentiable at y, and

(D f −1)v = (D f )−1
b .

Finally f −1 is continuously-di↵erentiable due to the continuity of the matrix in-
verse. n —43h(2019)—

Before we proceed, some preliminaries. Recall that the column rank (�;&$&/3 ;#9$)
of a linear transformation A ∈ Hom(Rk,Rm) is the dimension of the vector space
spanned by its columns (a subspace of Rm), or the dimension of its image. Sim-
ilarly, its row rank (�;&9&: ;#9$) is the dimension of the vector space spanned
by its rows (a subspace of Rk). The row rank and column rank are always equal,
hence

rank(A) ≤ min(m, k).
A is said to have full rank (�%!-/ %#9$) if its rank of the largest possible given
the dimensions. If A has full rank, then it is onto if and only if m ≤ k (it is a
transformation from a “large” space into a “small” space; A is a “fat-and-short”
matrix).

Lemma 3.36 If m ≤ k and S ∈ Hom(Rk,Rm) has full rank (i.e., it is onto), then
there exists a matrix T ∈ Hom(Rm,Rk) such that S T ∈ Hom(Rm,Rm) is invertible.

Proof : Since S has rank m, its kernel is (k − m)-dimensional, i.e., Rk has an m-
dimensional subspace which is orthogonal to ker S —there exist m independent
vectors u1, . . . ,um ∈ Rk, such that

(ker S )⊥ = Span{u1, . . . ,um}.
Construct T such that its columns are the uj’s. Let Rm ∋ x ≠ 0. Then,

T x ∈ (ker S )⊥
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(here we use the independence of the uj’s), hence S T x ≠ 0. This proves that S T
is non-singular. n

Consider momentarily functions f ∶ R → R. The derivative f ′(a) tells us that
locally a displacement x from the point a will be mapped into a displacement
f ′(a)x from the point f (a). If f ′(a) ≠ 0, a small enough open neighborhood
of a will be mapped into an open neighborhood of f (a), that is, the mapping is
locally an “open” one. Similarly, for functions f ∶ Rk → Rm the derivative (D f )a
tells us that a displacement x from a is mapped into a displacement (D f )a(x) of
f (a) (up to an o(�x�k) correction). If the rank of (D f )a is less than m, then there
are directions in Rm which are not “covered” by local displacements. If, on the
other hand, (D f )a has full rank, then we expect again that a small enough open
neighborhood of a will be mapped into an open neighborhood of f (a). The open
mapping theorem formalizes these ideas.

Theorem 3.37 (Open mapping theorem (�%(&;5% %8;3%% )5:/)) Let m ≤ k.
Let A ⊂ Rk be an open set, and let f ∈ C1(A;Rm) be such that (D f )a has full rank
for all a ∈ A. Then f is an open mapping: if B ⊂ A is open in Rk then f (B) is
open in Rm.

Proof : We need to show that for every open set B ⊂ A and for every a ∈ B, f (a)
is an interior point of f (B), since it would imply that f (B) only contains interior
points, i.e., f (B) is open. This follows from the next lemma. n

Lemma 3.38 Let m ≤ k. Let A ⊂ Rk be an open set and f ∈ C1(A;Rm). Suppose
that at a point a ∈ A, rank (D f )a = m (i.e., the derivative has full rank), then f (a)
is an interior point of f (A).

Proof : Since (D f )a has full rank, there exists a linear mapping T ∶ Rm → Rk, such
that (D f )a ○ T is invertible. Define the linear function S ∶ Rm → Rk,

S (x) = a + T x,

and on S −1(A) we define the function

g(x) = f (S (x)),
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which is a function from an open subset of Rm into Rm (since T is continuous). By
the chain rule (Dg)0 = (D f )S (0) ○ T = (D f )a ○ T,

which is an invertible transformation. From the inverse mapping theorem, the
point 0 ∈ Rm has an open neighborhood which is mapped onto an open set that
contains g(0) = f (a). Since the image of g is a subset of the image of f , we
conclude that f (a) has a neighborhood included in f (A), i.e., f (a) is an interior
point. n

a

A ⊂ Rk
f (a)

f (A) ⊂ Rm

Rm

S −1(A)

f

S (x) = a + T x

Comment: This theorem has a generalized version, known as the Banach-Schauder
theorem: if X and Y are Banach spaces and A ∶ X → Y is a surjective continuous
linear transformation, then A is an “open mapping”.

Example: Here is a “counter example”: the mapping f ∶ R→ R,

f (x) = x2,

has a point x = 0, where (D f )0 = 0 has rank less than one. This mapping is not
open since f (R) = [0,∞). ▲▲▲



188 Chapter 3

3.6 The implicit function theorem

Consider, for example, the equation,

G(x, y) = ey cos(y3 + xy2 + x2) + ex sin(xy) − 1 = 0. (3.5)

This equation defines a relation between x and y; for every x there may exist
zero, one, or more values of y for which this equation is satisfied. Thus, such an
equation defines a function R→ R, that may not be defined on the whole real line,
and that may or may not be single-valued. If a (single-valued) function f ∶ R→ R
satisfying

G(x, f (x)) = 0

does exists, in say, a domain A ⊂ R, we say that (3.5) defines implicitly the func-
tion f (x). The implicit function theorem, which is the main topic of this chapter,
states, in a more general setting, conditions on g that ensure that the equation
g(x, y) = 0 does indeed define a function y = f (x).

Theorem 3.39 (Implicit function theorem) Let A ⊂ Rk and B ⊂ Rm be open sets,
and

G ∈ C1(B × A;Rm) satisfies f (b,a) = 0

at a point (b,a) ∈ B × A. Furthermore, suppose that the square matrix

@iG j(b,a), i, j = 1, . . . ,m

is invertible. Then there exist an open neighborhood U ⊂ B × A of (b,a), and an
open neighborhood V ⊂ Rk of a, and a function f ∈ C1(V; B) such that for all(y, x) ∈ U,

G(y, x) = 0 i↵ y = f (x).
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x!R!

y!R"

A

B

f#y,x$=0

a

a

U

V

Comment: Just a variable count: the equation G(y, x) = 0 constitutes m equations
for m + k variables. Under the theorem’s condition, if we fix k of those variables,
we remain with m equations in m variables, and a unique solution exists. This
implicitly defines a mapping between the k “fixed” variables and m resulting vari-
ables, i.e., a mapping Rk → Rm.

Example: Consider the case m = k = 1 and the function

G(y, x) = x2y + xy3 − 2.

At the point (b,a) = (1,1) we have G(b,a) = 0. Does there exist a neighborhood
of x = 1 and a function y = f (x) such that G(y, x) = 0 i↵ y = g(x)? According to
the theorem, we only need to verify that

@1G(1,1) = 1 + 3 = 4 ≠ 0.

▲▲▲
Proof : Define a function F ∶ B × A→ Rm+k by

F ∶ (y, x)� (G(y, x), x).
At the point (y, x) = (b,a) we have

F(b,a) = (G(b,a),a) = (0,a),
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and

(DF)(b,a) =
����������

@1G1 . . . @mG1 @m+1G1 . . . @m+kG1⋮ ⋮ ⋮ ⋮ ⋮ ⋮
@1Gm . . . @mGm @m+1Gm . . . @m+kGm

0 . . . 0 1 . . . 0
0 . . . 0 0 � 0
0 . . . 0 0 � 1

����������
By assumption, the determinant of this matrix is non-zero. Thus, there exists, by
the inverse function theorem, an open neighborhood U of (b,a) such that W is an
open neighborhood of (0,a), F ∶ U →W is one-to-one and onto and F−1 ∶W → U
is continuously di↵erentiable. Note that F−1 is a mapping of the form

(z, x)� (h(z, x), x),
where h ∶W → B is continuously di↵erentiable.
Define now

V = {x ∈ Rm ∶ (0, x) ∈W}
and f ∶ V → B by f (x) = h(0, x). Since W is open so is V . And since h is
continuously di↵erentiable, so is f . Now,

(y, x) ∈ U, G(y, x) = 0 ⇔ (y, x) ∈ U, F(y, x) = (0, x)
⇔ (0, x) ∈W, F−1(0, x) = (y, x)
⇔ x ∈ V, h(0, x) = y
⇔ x ∈ V, f (x) = y.

n—45h(2019)—

Example: Consider the two equations:

0 = x3yt3 + ytz + 3y2 − 5
0 = z3 + xt2 − 2.

Does there exist a neighborhood of the point x = y = z = t = 1 where all the
solutions are of the form

�zt� = f �x
y� ,

where f is a continuously di↵erentiable function R2 → R2?
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To comply to the structure of the theorem we rewrite this system as

G1(y1, y2, x1, x2) = x3
1x2y3

2 + x2y2y1 + 3x2
2 − 5 = 0

G2(y1, y2, x1, x2) = y3
1 + x1y2

2 − 2 = 0,

where (y1, y2) are the old (z, t) and (x1, x2) are the old (x, y). Now

�@1G1 @2G1

@1G2 @2G2
� (1,1,1,1) = �1 4

3 2� ,
and the latter is invertible. ▲▲▲

3.7 Lagrange multipliers

In this section we consider the following problem: suppose we have a domain
B ⊂ Rn and a function f ∈ C1(B;R), and we are looking for local minima or
maxima of f . We have seen that a necessary condition is that D f (the gradient
of f ) vanishes as that point. Suppose however that we restrict ourselves to a
subset of B determined by a set of k constraints: gi(x) = 0, where gi ∈ C1(B;R),
i = 1, . . . , k. That is, we consider a restricted set:

A = {x ∈ B ∶ g1(x) = ⋅ ⋅ ⋅ = gk(x) = 0} .
(For A not to be a trivial set, we need n ≥ k + 1.) The question is how to find a
local extremum of f within the set A.

Example: A probability distribution on the set {1, . . . ,n} is a vector p = (p1, . . . , pn)
of non-negative entries that sum up to one. The entropy of the distribution is a
function H ∶ Rn → R:

H(p) = − n�
i=1

pi log pi.

We want to find the distribution that maximizes H under the constaint

g(p) = n�
i=1

pi − 1 = 0.

▲▲▲
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Before formalizing this problem, we can solve it by the following considerations.
Recall that the gradient of f at a points along the direction normal to the (n − 1)-
dimensional hyperplane tangent to the level set of f . That is,

(∇ f )a ⊥ M⊥f (a) def= {x ∈ Rn ∶ (D f )a(x) = 0} .
For f to be a local extremum in the constrained set A, we need f not to (locally)
vary along directions that are level sets of all the gi at a. That is, we need

y ∈ M⊥g1
(a) ∩ ⋅ ⋅ ⋅ ∩M⊥gk

(a) ⇒ y ∈ M⊥f (a),
or.

M⊥g1
(a) ∩ ⋅ ⋅ ⋅ ∩M⊥gk

(a) ⊆ M⊥f (a).
This can be re-written as follows

{x ∈ Rn ∶ (D f )a(x) = 0} ⊇ �x ∈ Rn ∶ k�
j=1
� j(Dgj)a(x) = 0,∀(�1, . . . ,�k)� .

It follows that for a to be a local extremum of f in the hyperplane tangent to the
level sets of all the gi there must exist k numbers (�1, . . . ,�k) such that

(D f )a = k�
j=1
� j(Dgj)a.

This will be found to be a corollary of the following theorem:

Theorem 3.40 Let B ⊂ Rn, k + 1 ≤ n,

f ,g1, . . . ,gk ∈ C1(B;R),
A = {x ∈ B ∶ g1(x) = ⋅ ⋅ ⋅ = gk(x) = 0} ,

and a ∈ A is a local extremum point of f �A. Then the (k + 1)-by-n matrix

�����������

@g1

@x1
. . .

@g1

@xn⋮ ⋮ ⋮
@gk

@x1
. . .

@gk

@xn

@1 f . . .
@ f
@xn

�����������
has rank less than k + 1.
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Proof : Suppose, wlog, that a is a local maximum point. That is, there exists an
open neighborhood U ⊂ B of a such that

f (a) = max
x∈A∩U

f (x).
Consider now the function F ∶ U → Rk+1 defined by

F(x) =
�����

g1⋮
gk

f

�����
.

We need to prove that (DF)a has rank less than k + 1. By contradiction, if it had
rank k + 1, then by the open mapping theorem

F(a) = (0, . . . ,0, f (a))T
would be an interior point of F(U) in Rn, which contradicts the fact that all the
points of the form (0, . . . ,0, t), t > f (a) are not in F(U). n

Corollary 3.41 If (Dg1)a, . . . , (Dgk)a are linearly independent, then there exist k
numbers �1, . . . ,�k, such that

(D f )a = k�
i=1
�i(Dg1)a.

The �i are called Lagrange multipliers. Thus, to find local extrema of f in A one
needs to solve n + k equations in n + k unknowns:

g1(x) = 0
⋮
gk(x) = 0

(D f )x = k�
i=1
�i(Dg1)x.
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Example: Let’s return to the above example: to maximize

f (p) = − n�
i=1

pi log pi,

subject to the constraint

g(p) = n�
i=1

pi − 1

we solve the system in n + 1 variables,

0 = n�
i=1

pi − 1

− 1 − log pj = �,
from which we get that all the pj are equal, i.e., equal to 1�n. This means that the
distribution that maximizes the entropy is the uniform distribution. ▲▲▲
Example: Find the non-negative vector in Rn that maximizes f (x) = x1x2 . . . xn

subject to the constraint that x1 + ⋅ ⋅ ⋅ + xn = n. Here we solve the system

x1 + ⋅ ⋅ ⋅ + xn = n
x1x2 . . . x j−1x j+1 . . . xn = �, j = 1, . . . ,n.

Here again, we deduce that all the x j are equal to each other, and given by 1. This
means that for all such x,

x1x2 . . . xn ≤ 1.

In particular, for every non-negative vector y the vector

x = ny
y1 + ⋅ ⋅ ⋅ + yn

satisfies the normalization requirement, and therefore

nny1y2 . . . yn(y1 + ⋅ ⋅ ⋅ + yn)n ≤ 1,

or,
(y1y2 . . . yn)1�n ≤ 1

n
(y1 + ⋅ ⋅ ⋅ + yn),

which is the well-known arithmetic-mean-geometric-mean inequality. ▲▲▲


