Chapter 3

Differential Calculus in R”

In the first chapter, we learned about metric spaces, their topology, and specifi-
cally, about metric spaces of real-valued functions. Note that we have almost not
dealt with differential and integral calculus. The reason is that derivatives and
integrals are associated with limits of differences and sums, which are not per-
tinent to general metric spaces. The notions of derivatives and integrals can be
defined for functions that take values in normed spaces, which, as we learned,
are a subclass of metric spaces. In this chapter we will develop the differential
calculus of functions between finite-dimensional normed spaces, which are all
isomorphic to a Euclidean space. Differential calculus can also be constructed for
infinite-dimensional normed spaces, but this is beyond the scope of the present
course (physics students who studied analytical mechanics encountered func-
tional derivatives, which are derivatives of mappings between functions and real
numbers).

3.1 Differentiability and derivatives

In this chapter we consider functions f : R — R™. More generally, we will
consider functions f : A - R™, where A c R*; we will always assume that A has a
non-empty interior, so that there exist points a € A that have an open neighborhood
in the domain of f.

We will usually denote points in A by a, b, . .. ; we will commonly use the symbols
X,y,... to denote vectors in R* connecting two points in A. If a is an interior point
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of A, there there exists a sufficiently small > 0, such that a + tx € A for for every
xeRkand e (-r,r).

Each function f: A — R™is a collection of m functions f; : A - R, each depending
on k variables:

fla) = (filar,....,a),..., fular,...,a)).

We will denote vectors in R as column vectors, whereas row vectors will repre-
sent linear functionals on vectors, acting via multiplication; sometimes, we will
not do so for notational convenience.

‘Example: Consider the function f : R? » R3,

ajsina,

f BN a
a5 1/az
a

The vector-valued function f has three component, given by

fi(a) = aisina, fr(a) = \/aJa, and  fi(a) = a;.
A A A

By default, we endow R” with the Euclidean norm, which we will denote by

| - |l.» to have an explicit mention to the dimension of the space. Since R¥ and

R™ are metric spaces, we have a well-defined notion of continuity. A function

f :R¥ - R™ is continuous at a € R*. if for every sequence a, converging to q, i.e.,
lima, =a in R,

n—o0
we have

lim f(a,) = f(a) in R™.

n—>oc0
Moreover, since convergence in R” amounts to the convergence of each compo-
nent, f is continuous at a if a, — a implies that

’}i_)rglofj(an) = fi(a) j=1,...,m.

The most elementary functions from R¥ to R” are linear maps, which are repre-
sented by m-by-k matrices acting on vectors in R¥ via matrix-vector multiplica-
tion. That is, a linear map 7 : R — R™ has a representation

ap Ty - Ty\ (a4
2| ) i
ak T - Tu) \ax
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If e; denotes the i-th unit vector in R¥, then

Tli
T(ei) = s
Tmi

so that (€j, T(e,)) = Tj,'.
We denote the set of linear transformations from R* to R by Hom(RK,R™) (a
linear transformation is a homomorphism with respect to the group structure of

the vector spaces). Recall that Hom(R¥, R™) is a normed space with respect to the
operator norm (D*MRIDINRT ANIIT),

IT [ = max [T x|,
xle=1
The operator norm on matrices is induced by the norm for vectors; we will always
assume the vector norm to be the Euclidean norm (even though, as we recall,
all the norms on R" are equivalent). Note our choice of notation | - ||z,,, which
reminds us that we have an operator norm between a k-dimensional space and an
m-dimensional space.

T4 material 3.1 Obtain an explicit expression for the operator norm | - | ;..

Example: Real-valued functions, f : R — R, are best visualized by their graphs,
as one-dimensional curves embedded in the plane. One coordinate of the plane—
the abscissa—represents the value of the independent variable, whereas the sec-
ond coordinate—the ordinate—represents the value of its image. Similarly, real-
valued functions f : R> — R are visualized by their graph which is a (two-
dimensional) surface embedded in R? (see Figure 3.1). In the same way, the graph
of a real-valued function f : R” — R is an n-dimensional manifold (7¥7°) em-
bedded in R™+!. AAA

Back to general functions f : R¥ — R”, our goal is to define a notion of differ-
entiability. To this end, let’s first recall how we define derivatives of functions
f :R — R. The most common definition for the derivative of f at a point a € R is

f’(a):limf(a+x)_f(a).

Let now f : R¥ - R™; if we replace the denominator by the norm of x, we may
obtain a meaningful expression, in which case, the limit would be an element
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The function sin(x) The function —(x-0.5)2 - (y-0.5)?
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Figure 3.1: The graphs of real-valued functions R — R (left) and R> — R (right).

of R™. It turns out, however, that this is not the natural generalization of the
derivative.

Recall that the derivative is (the limit of) a ratio between a variation in the image
and a variation in the domain,

Af ~ f'(a) Ax.

Viewed under this angle, f’(a) is a linear transformation from R to R. In the
multivariate case, Ax € R¥ and Af € R™, hence the derivative should be a linear
transformation from R¥ to R™.

In fact, an equivalent definition of the derivative of a univariate function is the
following: we say that f is differentiable at a if there exists a real number 7" such

that
limf(a+x) - f(a)-Tx _0
o F

b

and this number 7', which can be shown to be unique, is the derivative of f at a.
Note that although a and x are both real-numbers, they play different roles: a is a
point in R, whereas x is a displacement in R (in a more general context, x is said
to be an element to the space tangent (PR 21M) to R at the point a).

Having formulated differentiability this way, we think of the number 7T as a lin-
ear transformation, converting the displacement x from the point a, into a dis-
placement Tx from the image f(a). This interpretation of the derivative can be
generalized in a natural way into mappings from R to R”:
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Definition 3.1 Let A ¢ R* and let a € A be an interior point. A function f :
A - R™ is said to be differentiable (0"5"an"3198"7) at a is there exists a linear
transformation T € Hom(RF,R™) such that

fim /@) - fl@)-Tx _ 3.1)

*+0 [ xle

We will denote the linear transformation T by (Df), (the derivative of f at the
point a). We denote by (Df),(x) the differential of f at a operating on a vector
x € R, resulting in a vector in R™.

Comment: Recall that the limit in (3.1) amounts to a component-wise limit, i.e.,
forall j=1,...,m,

o fila3) - fi(a) - (T),

=0.
x>0 [

Comment: The derivative function (71227 N"3pND) D is a (generally nonlinear)
function,
Df : R* - Hom(RF,R™).

Its evaluation at a point a is denoted (Df), rather than D f(a), since it is a linear
operator acting on vectors x € R*, and the notation Df(a)(x) would be somewhat
confusing. Note again the different role played by a and x; the first is an element
of a set A, where the second is an element in a vector space.

We first need to check that the derivative (Df), is well defined, i.e., that if a linear
transformation with the required properties exists, then it is unique.

Proposition 3.2 If f is differentiable at a then the linear transformation T in the
definition (3.1) is unique.

Proof: Suppose that 7, S € Hom(R*, R™) both satisfy

TR G R CO R A A e A OIRE Y
x>0 [ x] & x>0 %[




148 Chapter 3

For every finite displacement x € R” for whicha + x € A,

(§ =T)x=(fla+x)-f(a) -Tx) - (f(a+x)-f(a)-Sx).

By the triangle inequality,

llm H(S B T)‘x”m < llm Hf(a + x) _f(a) B T'x”m + llm “f(a + x) _f(a) B Sme
=0l x=0 [ x[ x=0 [ x ]

=0.

Using the homogeneity of the norm,

(8 ‘”(m)

This limit holds for every sequence x — 0. Taking x = fe; and letting r — 0, we
deduce that for every J,

m

(§ -T)(e;) =0,
which implies that § — T = 0. |

At this stage, the meaning of (Df), may seem intriguing; in particular, what is the
significance of (Df), acting on a vector x? The following proposition provides
an answer.

Proposition 3.3 Let A c R and let f : A — R™ be differentiable at an interior
point a € A. Then, for every x € R,

f(a+txt)—f(a)' (32)

(DF)u() = lim
—
That is, (Df).(x) is the rate of change of f when moving from the point a along

the direction x.

Proof: By definition, if f is differentiable at a, then for every x + 0,

o St ) = (@) - (D) _

=0 2
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Using the linearity of (Df), and the homogeneity of the norm, if f is differentiable

at a, then
i Fat %) = fa) ~1(Df)a(x) _

t—0 13
which reduces to (3.2). |

The vector (Df),(x) € R™ it is the rate of change of f when we displace its
argument from a in the x-direction; it is called the directional derivative (D712
D*ImD) of f at a in the x-direction (despite the name, note that x is a general vector,
and not only a unit vector defining a direction). It is useful to note the following:

b

Coro[[my 34 Let f : A > R and a € A be defined as above and let x € R¥. We
Define the function g : (-&,—&) — R where & > 0 is sufficiently small such that

8(t) = f(a+tx).

Then,
g'(0) = (Df)a(x).

Eq. (3.2) may be somewhat intriguing: think of it with respect to the vector x € R
On the left-hand side, there is linear operator (Df), € Hom(R¥,R™) acting on x.
The right-hand side doesn’t look linear in x. The fact that it is linear in x is due to
f being differentiable. In other words, the following non-obvious relation holds,

L flar e ep) - @) flarm) - f(@)

t—0 t t—0 t
fla+ty) - f(a)
t

+ Blim
t—0

N ‘Exercise 3.1 Find a continuous function f for which the limit (3.2) exists for
all x, but it is nevertheless not a linear function of x.

Definition 3.5 Let A ¢ R* and let f : A - R™ be differentiable at an interior
point a € A. For every j=1,...,k we define the partial derivative ( n‘P5n Do) of
f at a in the j-th direction,

0,(a) = (DP)uley) = tim O NI )
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Such an equation can be written for every one of the m components of f, i.e., there
are m x k partial derivatives,

fila+te;) - fi(a)
t

9,f(a) = lim i=1,....m j=1,...,k
11—

Comment: The more common notation for the partial derivative in the j-th direc-
tion is g—{i. I prefer not to use it for the same reasons that I prefer f’ over % in the
univariate case.

‘Example: Consider the case where A = R¥ and f is a linear transformation, f(a) =
Ta, with T ¢ Hom(R*,R™). Such a mapping is always differentiable as

fla+x)-f(a)-Tx _

%

0.

By definition, (Df), = T for all a € R*. That is
fla)=Ta implies (Df)o(x)=Tx VacA.

This generalizes the identity (cx)’ = ¢ for f: R - R, f(x) = cx. AAA

Example: If f is a constant function, f = ¢ € R™, then (Df), is the zero transfor-
mation, (Df),:R¥> x> 0eR™ AAA

As we have already pointed out, if f : R¥ > A — R” is differentiable, then for
every a € A, (Df), € Hom(Rk,R™), i.e.,

Df : A - Hom(R",R™).
Since Hom(R*,R™) is a normed space, we have a notion of continuity of Df.

Definition 3.6 Let A c R¥ be an open set and let f : A — R" be differentiable in
A. f is said to be continuously-differentiable (MB*$72 117"M) at a if the mapping

Df : A - Hom(R*,R™)

s continuous at a.
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That is, Df is continuous at a € A if for every converging sequence in A, a,, - a,
lim (Df),, = (Df)a in Hom(R*,R™),
which amounts to
}H?o H(Df)an - (Df)aHk,m =0.
This further means that for all R¥ 3 x # 0,

,}LIEJ ”(Df)an(x) - (Df)a(x)Hm = }Hg H((Df)an - (Df)a)(x)um
< r}gglo H(Df)an - (Df)a”k,me“k =0.

Proposition 3.7 Let f : A c R* - R™ be differentiable at a point a € A. Then, all
the mx k partial derivatives of f at a exists and the operator (Df), has the matrix
representation

o1fi(a) ... ofi(a)
(Df)a= : . : .
alfm(a) akfm(a)
Proof': By definition,

(a+tej)—f(a).

t

(D1)uley) = 1im”

Both sides are vectors in R™. Taking the inner product with e; € R™, and noting
that limits commute with inner products, we obtain

(ei,(Df)al(e))) = (ei,lt’_%l fla+ te;) —f(a))

(¢, f(a+1e;) - f(a))

= lim ;

o flase) - fla)
t—0 t

=0;fi(a).

—31heo19—
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Example: Let f : R? - R? be given by

£la) = (a% + az) .

a) + a%
First note that

a, +1t a (a1 +1)> +ay ai +ap

AR S

. 2 a . a, +1+a; a, +a;
31f(a)=111r51 -

=lim
t—0 t

and

ai+ax+t ai +ap
o \ap+ (ap +1)? a+a;
= lim

t—0 t

ot (6]
62](‘(61) _ ltl_%l a + l’t a;

A ()

B 2612

If f is differentiable, then its derivative at a = (a;,a,)” is represented by the 2-by-

2 matrix
(Df)a:(z(lll ! )

To verify whether it is differentiable, we need to check whether

lim 1 (a1+x1)2+(a2+x2) _ a%+a2 _ 2(11 1 X1 -0
x—0 /.X% + X% (a1 + xl) + (112 + X2)2 a; + a% 1 2a; |\ x, '

That is

which is indeed the case.
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Now, what would be the directional derivative of f at a in the direction (2,5)7?
By definition it is the vector

7 ay+2t\ 7 a (a; +2t)> + (ap + 5¢) ~ ai +ap
ap + 5t a; (ar +2t) + (ap + 5¢)? a +a;
lim = lim .
t—0 h t—0 t

However, we don’t need to recalculate a limit, Since f is differentiable, this direc-
tional derivative equals

(Df)a (?) =2(Df)a ((1)) +5(Df)a ((1)) =20,f(a) +50,f(a) = (431 1()5a2) .

AAA

‘Example: Consider the function f : R? > R,

f(a) = \/ai +a.

This function is not differentiable at 0 because its partial derivatives do not exist.
For example,

lim 70+ 1) = SO _ i W

t—0 t =0 ¢

does not exist. AAA

‘Example: For k = 1, f can be thought of as a collection of m univariate functions.
That is, there is only one “direction” along which f can be differentiated. For
f:R>A - R" we have (Df), € Hom(R,R™); a linear map R — R™ acts on
numbers by multiplication by a vector in R”. In other words, Hom(R,R") is
naturally isomorphic to R™, by its action on the “vector” 1 € R.

By definition, for a € R,

2

(Df)a(1) = %f(aﬂ)t—f(a)

and by linearity, for x € R,

(Df)a(x) = (Df)a(1) x.
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That is, the derivative of f at a is represented by a column vector whose entries
fila+1)\ [ fi(a) fi(a)
fula+t)] \fu(a) fu(a)

For functions defined on subsets of R we often use the notation f’(a) for their
derivative at a € R. AAA

o1
(Df)a(l) :hmz

t—0

Example: We next consider the case where the range of the function is one-
dimensional. For f :R¥k> A > R and a € A,

(Df), € Hom(RK,R),
i.e., the derivative of f at a is represented by a row vector whose entries are

(0:1f(a),...,0cf(a)).

The space Hom(R*,R) is k-dimensional; as such, it is isomorphic to R¥, however,
there is no natural isomorphism unless some structure is incorporated beyond the
vector space structure. If R¥ is endowed with an inner-product, then one obtains
an isomorphism between R¥ to Hom(R*,R). Define

¢ : R* » Hom(R*,R)

via,
t(v)(x) = (v, x).

Clear, for every v € R¥, ((v) is an element of Hom(R*,R). To show that it is an
isomorphism, it suffice to show that it is one-to-one, i.e., that it has a trivial kernel.
Indeed, if there exists a v such that ¢(v) is the zero element of Hom(RX,R), then
for every x € RX,

0=t(v)(x) = (v,x),

and in particular (v, v) = 0, from which we deduce that v = 0. In fact, the mapping
¢ is even an isometry: for every v € R,

[e(W) it = max Je(v) ()]s = max |(v, x)].
”X”k:l ‘x‘k=1

By the Cauchy-Schwarz inequality,

le(W) k1 < max [v]e]x]e = v
[l x]e=1
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The maximum is attained by taking x = v/|v|;.

For the particular case where the inner-product is Euclidean,

t(v)(x) = évix,-,

i..e, t(v) is a row vector whose elements are the elements of the column vector v.
While the isomorphism between column vectors and row vectors seems the “most
natural” it is not; it reflects a particular choice of an inner-product. In the case
where the norm on R* is obtained from an inner-product, then there is a natural
inner-product, however recall that not every norm is induced by an inner-product.
Our choice has been to work with the Euclidean norm, hence we use the Euclidean
inner-product to obtain an isomorphism from R¥ to Hom(RX, R).

Definition 3.8 Let f : Rk 5 A — R and a € A. The gradient (23*17) of f at a is
a vector

Vf(a) e R,
defined by
(Vf(a),x) = (Df)a(x) Vx e RX.
That is,
0, f(a)
Vfta)=| |
of(a)

The gradient of f at a, Vf(a) € R, has a geometric interpretation. Consider
f +A - Rin the vicinity of a € A. One may ask in which direction is the rate of
change of f maximal? That is, which among all unit vectors £ € R¥ maximizes the
directional derivative. A

i L@ 1) = f(a)

t—0 t

By (3.2), we are looking for a maximizer of

(Df)a(%) = (Vf(a),%).
The unit vector along which f changes the fastest is parallel to the gradient,

vf(a)
IVf(a)l

X=
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Thus, the gradient of f is a vector pointing in the direction of maximal growth
rate of f, and whose magnitude is the rate of change of f along that direction.

Moreover, consider the space

def

Mi(a) Z {xeR*: (Df)o(x) =0} = {xeRt: x 1 Vf(a)=0}.

This is a (k — 1)-dimensional subspace of R that spans all the directions along
which f does not change, to first order in the displacement. This space spans the
plane tangent to the level sets of f at the point a. AAA

We next address the following question: does the existence of all the m x k partial
derivatives ensure the differentiability of a function? We approach this question
in two steps. We first show that differentiability implies the differentiability of all
the components (which shouldn’t come as a surprise since limits in R coincide
with component-wise limits).

Proposition 3.9 Let A c R¥ be an open set and f : A — R™; we denote its com-
ponents by fi,..., fm, which are all functions A — R. Then f is differentiable at
a € A if and only if all its components f;: A — R are differentiable at a.

Proof: The function f is differentiable at a if (and only if) there exists a T ¢
Hom (R, R™), such that

i fatx) - fla) -T(x) _

50 %

Since convergence of the norm amounts to the convergence of each component, f

is differentiable at a if and only if for every j=1,...,m,
R ORI E) N
x=0 [ %]

Define S ; e Hom(RX,R) by

Si(x)= ZTj,x, =(T(x));

We conclude that f is differentiable at a if and only if each of each components f;
is differentiable at a. |

Having reduced the question of differentiability to that of the differentiability of
scalar-valued functions, we prove the following:
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Theorem 3.10 Let A c R¥ be an open set and let f : A — R. If all the k partial
derivatives of f exist in a neighborhood of a € R* and are continuous at a, then f
is differentiable at a.

Proof: We need to show that there exists a linear operator T € Hom(R¥,R) such

that
limf(a+x) - f(a)-Tx _o.
=0 [ &

We know what T, if it exists, should be; it is the row vector

T = (8. f(a),...,0f(a)).

That is, we need to show that

limL (f(a+x) - f(a) - Z;éjf(a)xj) =0.

=0 | x|

Since f has continuous partial derivatives we can invoke the mean-value theorem
along each component of its arguments. We first write the displacement of f in
the form of a telescoping sum,

fla+x)-f(a) = f(a+xier) - f(a)
+ fla+xie +x0) - fla+xie)
+...

+f(a +X) —f(6l+X1€1 + X6y + -+ +xk_1ek_1).

That is, —33heo19—

fla+x)-f(a) :;(f(a+éxie,-)—f(a+];xie,-)).

Each term in this sum consists of a variation of f upon the displacement of its
argument along a single axis. Consider the j-th term; define the function g :
[0, Xk] - R,

-1
g(r) = f(a + JZ:xiei + tej) ,
i=1
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so that the j-th term equals g(x;) — g(0). Furthermore,

'(t) = lim glr+h)—g(t) . fla+ X xiei+te;+ hey) - f (a+ LI xiei + 1e))
g h—0 ]’l h—0 h

By the definition of the directional derivative,

-1
g'(t)=0;f (a + ) xiei + tej) .
i=1

By the (one-dimensional!) mean-value theorem, there exists a number 6, € (0, 1),
such that

8(x;) - 8(0) = g'(6xe)x.
Putting it all together,

fla+x)-f(a) = Zk:é?jf(a +J§xiei +9jxjej).
= i-1

Thus,

1

[ xl

k k J-1 X
(f(a +x) - f(a) - Zajf(a)xj) =y [6jf (a + ) xie; + Hjxjej) - @-f(a)] —]k
J:l ]=1 l=1
Letting x — 0, the right-hand side vanishes by the continuity of the partial deriva-
tives. |

Example: A “counter example” is when f has all its mxk derivatives at a point, but
it is nevertheless not differentiable. This can happen only if the partial derivatives
are not continuous. Let f : R - R be given by

3
aj

f(a)=1ai+a; :
0 a=0.

az0

This function has partial derivatives at zero,

(0) = lim L0 1) 2SO _ i EIE

alf t—0 t -0 f
azf(o) _ 1[1_%1 f(0+ tezt) _f(O) -0.
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On the other hand, this function is not differentiable at 0. If it were, we would
have

1 x3 X
li L__(1 0)[""']]=0,
0 VAT (x%”% ( )(XZ))

1.e.,
2

li —x1x2 0
m-———-= 7 =VuU.
AP

This is not the case as seen when taking x; = x, = 0.
A A A

The existence of partial derivatives is a necessary by not sufficient condition for
differentiability. The continuity of the partial derivatives ensures differentiability.
In fact, it ensures that the derivative is also continuous. Conversely, the continuity
of the derivative implies the continuity of the partial derivatives. This leads us to
the following corollary:

Corollary 3.11 Let A € R* be an open set. Then, f : A — R" is continuously
differentiable at a € A if and only if its m x k partial derivatives exist and are
continuous at a.

Definition 3.12 Let A € R* be an open set. We denote by C'(A;R™) the set of
continuously-differentiable functions from A into R™.

N Exercise 3.2 Let f : RF - R such that (Df), = 0 on an open connected set
U c RX. Prove that f is constant on U.

N ‘Exercise 3.3 Let A c R* be an open set and let f : A — R™. Show that if f is
differentiable in A then it is also continuous, in fact, Lipschitz continuous.

We have thus defined a notion of differentiability that generalizes the “old” con-
cept of differentiability for functions R — R. Moreover, we have a formula for
calculating the derivative of a function R¥ — R™, which involves the calculation
of m x k partial derivatives. The next stage is to do “useful” things with this new
concept, and in particular, generalize results known for real-valued functions.
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Proposition 3.13 (The chain rule) Let A ¢ R* and B < R™ be open domains and
let f:A - Bandg: B — R". Assume that f is differentiable at a € A and that
g is differentiable at f(a) € B. Then, go f : A - R" is differentiable at a and its
derivative is given by the chain rule:

(D(gof))a= (Dg)f(a) o(Df)a-
—_———— —_— Y——
RkRn Rm R Rk_Rm

Proof: For sufficiently small displacements x € R” and y € R™ we define the
functions, r : R - R” and s : R” - R” by

r(x) = fla+x) - f(a) - (Df)a(x)
s(y) = g(f(a) +y) - g(f(a)) - (Dg) (o) (¥)-

By the definition of (Df), and (Dg) (),

llm ”r(X)Hm _ O and llm Hs(y)Hn — 0

=0 | x] S ]

By the definition of r,

fla+x)=f(a)+(Df)a(x) +r(x),
and by the definition of s, substituting y = (Df),(x) + r(x),
s((Df)a(x) +1(x)) = 8(f(a) + (Df)a(x) + r(x))

-g(f(a))
—(Dg) () ((Df)a(x) + r(x)),

which we can re-organize as follows,

g(fla+x))-g(f(a)) = (Dg) s ((Df)a(x))
+(Dg) f(a) (r(x))
+5((Df)a(x) + r(x)).
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Moving (Dg) s(a)((Df)a(x)) to the right hand side, dividing by || x|/, and writing
expressions such as g(f(a)) as compositions, we obtain

of(a+x)—go f(a)-(D oo (Df)a(x r(x
gofla+x)—gof( ”)x|k( 8)s(@ © (Df)a( ):(Dg)f(a)ﬁ
. S((Df)ch(xﬁi) +r(x)

Taking norms, and using the triangle inequality,

lg o fla+x)-gofla) - (Dg) s (Df)a(x) ]

[ xl

() m

L s@f)a(x) +r(x))]n

%

We need to prove that the right-hand side tends to zero as x — 0. The first term
tends to zero by the defining property of r(x). It remains to prove that

L (DN + D,

x=0 [ x[l&
Ly (x)
Then,
Is(()a(x) + rCD o [(PF)al) + r(2)]
w(x) =1 [(Df)a(x)+r(x)|m Ix]e (Df)a(x)+r(x)#0
0 otherwise.

By the triangle inequality,

[s((Df)a(x) + ()] @) e
w(x) <1 1(DF)a(x) + 1) (|(Df>a”km e ) (Df)a(x) + r(x) 0

0 otherwise.

Let now x — 0. Then, (Df),(x) + r(x) — 0. By the definition of s, the first factor
tends to zero whereas the second term is bounded, hence

limy (x) = 0.
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Example: Consider f : R? - R3 given by
COSa; CoS
f(a) =|cosa;sina, |,
sina;
and let g : R? > R be given by
g(b) = b} +2b3 + 3b3.
The composite function is
(go f)(a) = cos?a, cos’a, + 2cosa? sina3 + 3sin® a;.
The derivative of f at a is given by
—sina; cosa, —cosajsina,
(Df),=| —-sina; sina, cosa;cosa; |,
cosa, 0
whereas the derivative of g at b is given by
(Dg)b = (2b1,4b2, 6b3) .
The composition of the derivatives gives
—sinajcosa, —cosajsinap

(Dg)f(a)o(Df)a = (2cosaj cosas,4cosay sinay,6sinay) | —sina; sina;  cosajcosay |.
cosaj 0

On the other hand,
(D(gof))a= (sin 2a; (— cos’a, -2 sina% + 3) —cos? ay sin2a; + 2 cos a% sin 2a2) )
It is easily checked that the two are equal. AAA

Definition 3.14 Let f : R¥ 5 A — RX be differentiable at a. The Jacobian
(R2PY) of f at a is defined as

J£(a) = det(Df)a.
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Comment: A non-zero Jacobian means that the derivative is an invertible trans-
formation. The Jacobian also plays an important role in integration theory, since
it quantifies how volumes are transformed under mappings. Specifically,

. Vol(f(B.(a)))
@) =lim =GB (a)

‘Example: Consider the transformation
a; cosa
fraw~ ( - 2) .
a sina,
Its Jacobian is Jf(a) = ay. AAA

‘Example: The Jacobian of the identity is 1. AAA

Proposition 3.15 Let f,g : Rk - R~ Than,

J(go f)(a) = Jg(f(a)) f(a).

Proof: Immediate from the properties of the determinant, as

J(go f)(a) = det(D(g o f))a = det ((Dg) s(a) (DS )a) = det(Dg) s(a) det(Df)a-
|

For real-valued function, a “small” derivative implies that the function changes by
“little” relative to the displacement of its argument. We expect a similar result to
hold for functions between multi-dimensional Euclidean spaces, except that now
the magnitude of the derivative should be the norm of its derivative.

Lemma 3.16 Letvy : [0, 1] — R™ be a continuously-differentiable path in R™ such
that
sup [|(Dy)ill1.m = M.

0<i<1
Then,

[(1) =7(0) [ < M.
(Recall that the derivative (Dy), = y'(t) is a column vector whose entries are

vi(1).)
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Proof: Define the function, f :[0,1] — R, given by

. 12
£0) = 1y(6) = YO = (;m(r) —y,<o>)2) |

Differentiating f? (this is a univariate function),

(1) =2 Z; () (7(1) =7,(0))

=2(Y'(1),y(t) -v(0))
<2[(Dy)i]1mly(r) = ¥(0)]
<2M £(1),

where in the passage to the third line we used the Cauchy-Schwarz inequality. It
follows that

2f(0)f(t) <2M £ (1),
and since f(t) is non-negative, f'(¢) < M for all ¢. It then follows from the mean-
value theorem that f(1) < M, which is the desired result. |

With this lemma we prove the following theorem:

Theorem 3.17 Let A be an open subset of R¥, g : A — R™ a differentiable function,
and a,b € A such that

I={th+(1-t)a: 0<t<1}cA
(the segment connecting a and b is in the domain). Assume furthermore that

sup | (Dg).lin = M.
ce

Then,
lg(D) - g(a)|m < M |b - al|x.

Proof: We define the path y : [0, 1] — A,

y(t) = g(f(2)), where f(@)=tb+(1-1)a.
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By the chain rule.
(Dy): = (Dg) sy © (Df): = (Dg) 1) (b - a).
For every ¢ € [0, 1],
[(DY)ell1m < (D) sy lim [0 = alx < M |6 - alx.

By Lemma 3.16, ||y(1) = ¥(0) | < M|b — a|, which is the desired result. [

3.2 Higher derivatives

The space C'(A;R™), A c R* is the space of continuously-differentiable functions
from A to R™, and it coincides with the space of functions that have continuous
partial derivatives. For f € C'(A;R™), its derivative is a mapping

Df : A~ Hom(R*,R™),

1.e., a (generally nonlinear!) mapping between two finite-dimensional normed
spaces. Thus, we can define the derivative of Df at a: Df is differentiable at a if
there exists a linear operator

(D?f), € Hom(R¥, Hom(RF, R™)),

such that )
lim (Df)a+x - (Df)a - (D f)a(X) —

*0 [l

0,

which is an equality between elements in Hom(R¥, R™). Note that (D?f), maps
an ordered pair of vectors in R* into a vector in R”. Specifically,

(D?f), € Hom(R¥, Hom(R¥,R™))

(D?f)4(x) e Hom(RF, R™)

(D?f)a(x)(v) €R™.

Proposition 3.18 The second derivative of f at a is bilinear ("™IRT2), namely,

(D*f)alax: +Bx2)(y) = @ (D*f)a(x1) (¥) + B (D*f)a(x2) ().

and

(D*f)a(x)(@y1 +By2) = a (D*f)a(x) (1) + B(D*f)a(x) (32),

—35h@o19—
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Proof: This is an immediate consequence of x — (D?f),(x) being linear and
y+ (D?f),(x)(y) being linear. u

To understand how does the second derivative operate, we use the notion of the
directional derivative (3.2) to get

(Df)a+tx - (Df)a'

t

(D*f)a(x) = ltl_%l

Note that the right-hand side is a limit in Hom(R*,R™).

Applying both sides on y € R¥, and using the fact that matrix-vector multiplication
is continuous,

(sz)a(x)(y) = lim (Df)a+tx(y) B (Df)a(y) )

In particular, for x = ¢; and y = e,

(DS arie(€)) = (Df)ale;)

(D*f)a(ei)(e;) = lim t
~ lim d;f(a+te;) —0d;f(a)

t—0 t

= 810Jf(61)
Since (D?f), is bilinear (Proposition 3.18), for

k k
x=2x,-e,~ and y=2yjej,
i=1 J=1

(D2 F)u()() = 3

i=1j

0,0, f(a)xiy;.

k
=1

That is, the second derivative of f at a is an R”-valued bilinear form represented
by the m x k x k numbers

8l~(9jff(a) .

In a similar way, higher derivatives may be defined. The ¢-th derivative of f is a
map
(D'f), e Hom(R*, Hom(R¥, ..., Hom(R¥,R™))),

which can be defined as a {-multilinear map from R¥ to R™. Moreover,

(fo)a(eil) ... (e,) =0,,0;,...0;f(a).
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Comment: For T € Hom(R¥, Hom(R¥,R™)) we will write for convenience T'(x, y)
rather than 7'(x)(y).

The following lemma will come up handy:

Lemma 3.19 Let f :R¥ 5 A - R” be twice-differentiable at a. Define g : A -~ R”
by
g(a) = (Df)a(y)

where y € R¥ is a fixed vector. Then, g is differentiable at a, and

(Dg)u(z) = (D*f)a(2.y).

(Note that g is in general a nonlinear function.)

Proof: By definition,
(Dg)a(2) =1lim gla+ ’Zt) - g(a)
= lim (Df)u+tz(y) - (Df)a(y)

t—0

- (lim (DS v _t(Df )“) ()

t—0 t

= (D)D) ).

3.3 Multivariate mean-value and Taylor theorems

Proposition 3.20 Let A < R¥ be an open, path-connected set (i.e., for every a,b €
A there exists a differentiable path connecting a and b). Then f : A — R™ is
constant if and only if (Df), = 0 (the zero operator) for all a € A.

Proof: We have already seen that f = const implies Df = 0. Suppose now
that Df = 0 in A, and let a,b € A. Since A is path-connected, there exists a
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(continuously-differentiable) path ¢ : [0, 1] — A such that ¢(0) = a and ¢(1) = b.
Define the path g : [0, 1] - R” by

8(1) = f(e(1)).

By the chain rule,

g'(t)=(Dg): = (Df)ea(z) o (Dg); =0,

from which we conclude that all the components of g are constant, i.e., f(a) =

£(b). m

Corollary 3.21 Let A ¢ R* be open and path connected and f,g € C'(A; R™) such
that
(Df)a=(Dg), forallaceA.

Then there exists a constant ¢ € R™ such that

f=g+c

Proof: Apply the previous proposition to the function h(a) = f(a) - g(a). |

We now consider a generalization of the mean-value theorem (Y3177 707 Bawn).
Recall that for f € C'([a,b];R), there exists a 6 € (0, 1) such that

f(b) = f(a) = f'(a+0(b-a))(b-a).

The question is whether this theorem holds for functions f : Rk - R™, i.e., is it
true that for every a, b € R* there exists a 6 € (0, 1) such that

f() - f(a) = (Df )pso(p-a) (b - a)?

In general, this is false. It only holds for real-valued functions.

Example: The following example show that the mean-value theorem does not
generally hold when the range is R™. Consider the function f : R — R3:

cost
f:t— | sint
t
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This function is differentiable with

—sint
(Df), =] cost
1
Now,
0 —sin 26
fQ2r)-f(0)=]0 whereas (Df)2re(2r—0) = 21| cos2n6 |,
2n 1
and there is no value of 8 for which the two are equal. AAA

Theorem 3.22 (mean-value theorem) Let A ¢ R¥ be open, a,b € A, such that the
segment connecting them is in A, and f € C'(A;R). Then there exists a 6 € (0,1)
such that

f(b) = f(a) = (Df)aro(p-a) (b = a).

Proof: The idea is to use the mean-value theorem for univariate function. Con-
sider the function ¢ : [0, 1] - A given by

o(t) =a+1t(b-a),
and the function g : I — R given by
8(1) = f(1)).

The function g is differentiable with

8'(t) = (Df)o(r) © (D) = (Df )y (b = a).

By the univariate mean-value theorem there exists a 6 € (0, 1), such that

8(1) = 8(0) = ¢"(6) = (Df )asop-a) (b — @),

which concludes the proof. |
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Comment: Since a function f : RK - R is a row of m real-valued functions, each
component satisfies the mean-value theorem, but with a different 6, that is there
exist 0y,...,6, € (0, 1) such that

[i(b) = fi(a) = (Df)are;o-a) (b~ a).-

We proceed to show that if f : R¥ — R™ has continuous second partial derivatives,
i.e., f € C*(Rk;R™), then its second derivative is symmetric. In particular, for
every i,j=1,...,k,

aia]‘f = aja,f

Clearly, it is enough to consider real-valued functions.

Theorem 3.23 (Equality of mixed derivatives) Let A ¢ R¥ be an open set and
let f € C*(A;R). Then, (D?f), € Hom(RX, Hom(R¥,R)) is a symmetric bilinear
operator. That is, for every x,y € R,

(D*£)a(x.y) = (D*f)a(. %)

Proof: Fixing a € A and x, y € R, consider the expression

I'=(f(a+tx+sy)-fla+ix)) - (f(a+sy)-f(a))
= (fla+ix+sy) - fla+sy)) - (fla+1ix) - f(a)).

For every s we define a function g, : A - R,

gs(2) = f(z+sy) - f(2).

Likewise, for every ¢t we define a function /2, : A - R,

h(z) = f(z+1tx) = f(2).

Then,
I= gs(a + IX) - gs(a) = ht(a + Sy) - ht(a)'

By the the mean-value theorem, there exist a family of constants 6, € (0,1) and a
family of constants 7, € (0, 1), such that

1= (Dgy)aro,u(tx) = (Dht)a+TzSy(sy)-

—37ho19—
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By the chain rule,

(Dgs)awstx(lx) =1 ((Df)a+e,§-tx+sy(x) - (Df)u#)slx(x))
(Dht)a+rrsy(sy) =S ((Df)a+my+tX(y) - (Df)a+7rsy(y)) .

We are going to apply the mean-value theorem a second time. Define the functions
p,r:R — R (both depend on s and ¢),

p(u) = (Df)a+9stxmy(x) ~ (Df)aro,x(x)
r(u) = (Df )arrisyrux(¥) = (Df asrsy (3)-

Then, there exist &, € (0, 1), such that

(Dgs)aroux(tx) =t (p(s) — p(0)) = 15 p'(£ss5)
(Dht)a+m‘y(s)’) =S (r(t) - r(O)) =1s ’”,({s,tt)-
However,
p,(é:s,ts) = (sz)awstﬂfs,rsy(y’x)
r,(gx,tt) = (sz)a+7rsy+§s,rtX(x’}’)-
Putting it all together,
I _ D2 _ DZ
E = ( f)u+9stx+§.uxy()’» x) = ( f)a+rzsy+§s,ztx(xa)’)-

Set now s =7 and let ¢ - 0. By the continuity of D/ we obtain that

(D?f)(x.y) = (D*f)a(y: %).
|

Finally, we prove a multivariate version of Taylor’s theorem (277 M52 town
»mm). Here again, we consider real-valued functions. The result applies for R”-
valued functions in a row-by-row fashion.

Lemma 3.24 Let f : R¥ 5 A - R be p-times differentiable, let a € A and x € R*
such that the segment connecting a and a + x is in A, and let g : [0,1] - R be
given by

g(t) = f(a+tx).
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Then,
g'(t) = (Df)arnx(X)
g"(1) = (D f)asix(x, x)
g"(1) = (D’ f)astx(x, %, x)

gP (1) = (DPf)sre(x,x, ..., X).

Proof: Define ¢ : R — R by
o(t) =a+tx.

Then g = f o ¢, and by the chain rule
8'(t) = (Df)o(r) © ¢'(1) = (Df ) ().

For the second derivative, we’ve already proven such a result, but the simplest
would be to re-derive it,

¢"(1) = }}_{% (Df)a+xt+xh(x)h_ (DS )asx(x)

_ (lim (Df)asxtexn = (Df)a+xt) (x)

h—0 h

= (D?f)asax(%) (%)

Likewise,

(D?f) ararsxn (X, X) = (D f) gire (%, X)

g"'(t) =lim

h—0 h
DZ a+xt+xh — D2 a+xt
= (D’ )arir(x) (%, %),

and so on. |
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Theorem 3.25 (Multivariate Taylor) Let A c R¥ be an open set, f € CP*'(A;R),
acA, a+xeA(as well as the segment connecting the two points). Then there
exists a 0 € (0, 1) such that

fla+x) = £(@) + (DF)a(x) + 3(D)ul3) + 55Dl 5.2) -+ Ry (),

where
1

(k+1)!

R,(x) = (D" ) pron(, %, ..., X).

N Exercise 3.4 Convince yourself that the multivariate Taylor theorem reduces
to the univariate Taylor theorem for k = 1.

Proof: Here again, we base the proof on the univariate version of Taylor’s theo-
rem. Define g: (-1,1) > R by

g(1) = fa+1x),
and expand g(1) about 7 = 0. By the previous lemma,
g'(t) = (Df)asnr(X)

g"(t) = (D’ f)asux(x,x)
8" (1) = (D*f)asx(x, X, %)

Finally,
g (o).

(1) = (0 +£(0) + 30+ +

Comment: For functions f : R¥ — R™ each component f; satisfies Taylor’s the-
orem, but every component will have its own 6, as we have already seen for the
mean-value theorem.

Example: Let f : R? - R by given by
f(a) — eal+2a2.
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Then, f(0) =1,
(Df)o(x) =81 f(0)x1 +02£(0) x2 = x1 + 22,

(sz)o(x, X) = 6161f(0)x% + 26102]‘(0) X1Xp + (92(92]‘(0))(% = X% + 2X1X2 + 4X%,

so that the second-order Taylor polynomial of f at zero is

1
Prf(x) =1+ (x;+2x;) + E(x% +4x Xy +4x5).

Example: Taylor’s theorem is above all an approximation method. It states that
every (smooth) function can, to zeroth order, be approximated by a constant, to
first order by a linear function, and so on. First-order approximation gives rise
to the multivariate Newton method. Suppose we have a function f : R* — RK
whose root(s) we want to compute. That is, we are looking for r € R* for which
R* 5 f(r) = 0. Suppose we have an initial guess ao close enough to the desired r.
By Taylor’s theorem,

f(a) = f(ap) + (Df)q(a—ap) + remainder.

Retaining only the linear approximation, and provided that (Df),, is not singular,
an approximation a; for r is obtained by

f(ao) + (Df)a, (a1 —ao) =0 = ar = ao~[(Df)a] ™" f(a0).
This suggests the following iterative method:
Qp+1 = dAp — [(Df)an]_lf(an)’

known as the multivariate Newton method. The hope is that @, — r. This sequence
does not always converge, but when it does, it does it extremely fast! AAA

N Exercise 3.5 Assume that f € C'(RF;R¥), raroot of f and Jf(r) # 0. Show
that there exists a neighborhood of r in which Newton’s method converges to r.
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3.4 Minima and maxima

We devote this short section to the identification of extrema of multivariate real-
valued functions. Throughout this section we consider functions f € C?(A;R),
where A € R¥ is open.

Definition 3.26 An interior point a € A is called a local maximum (2V3°0pR
"MpPR) of f if there exists an open neighborhood of a, U, such that

f(a) = sup f(b).
beU
A local minimum is defined similarly.

The following proposition generalizes the well-known property of extremal points
for univariate functions.

Proposition 3.27 If a € A is a local maximum of f then (Df), = 0.

Comment: A point where the derivative vanishes is called a critical point (772
memp).

Proof: Let U be a neighborhood of @ in which f(a) is maximal. By definition,
there exists an open ball B,(a) c U in which f(a) is maximal. To show that
(Df). = 0 we need to show that (Df),(x) = 0 for every vector x. Let % be an
arbitrary unit vector and consider the function g : (-r,7) - R,

g(t) = fla+1x).

The function g is differentiable and reaches a local maximum at ¢ = 0, hence

0=2¢'(0) = (Df)a(%).
Since (Df),(&) = 0 for every unit vector £, (Df).(x) = 0 for every x € R, |

In the univariate case, a vanishing first derivative does not guarantee a local ex-
tremum. A sufficient (but not necessary!) condition for a univariate functions
f to reach a local maximum at a is that its first derivative vanishes and its sec-
ond derivative is negative. We expect a similar condition to hold for multivariate
functions, except that the second derivative is a symmetric bilinear form,

(D Fa() = (D*F)a(rx) = 3 8,0:f () ).

ij=1
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Definition 3.28 A bilinear operator T € Hom(R¥, Hom(R*,R)) is called positive-
definite (5mma marn) if

T(x,x)>0 for all x € R,

with equality only if x = 0. T is called positive-semidefinite (T3> marm)
if equality may also hold for x + 0. Negative-definiteness and negative semi-
definiteness are defined similarly.

Note that (D?f), is positive-definite if the matrix H whose entries are
hij=0:0,f(a)
satisfies
(x,Hx) >0

for all x # 0.

Lemma 3.29 A bilinear form T € Hom(R*, Hom(R*,R)) is positive definite if
and only if
T(2,%) >0

for every unit vector % € R,

Proof: The “only-if” part is trivial. The “if” part follows from the bilinearity of
A If

T(%,%)>0

for every unit vector £, then for every non-zero vector x € R¥,

X X
T(x,x)=T (— —) ]2 > 0.
ol el )1
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Lemma 3.30 Let T € Hom(R¥, Hom(R¥,R)) be positive definite. Then, there
exists an a > 0, such that
T(%,3%)>a

for every unit vector x. Similarly, if T is negative-definite, then there exists an
a > 0, such that
T(%,%)<-a

for every unit vector X.

Proof: Consider the function g : R¥ — R,

g(x) =T (x,x).
We will show that g is continuous. Indeed,

T (X0, %) = T(x, )| = |T (%, X0 — X) + T(x, — X, X)|

< T( X, X, — X )
[ i 1 = x]x

T lopll il en = i + 1A  op ]| 00 = X[

X, — X X

[oen = ™ [xe

6 el 26n = [ + [l oen = [

Letting x,, — x we obtain that T'(x,, x,) — T(x,x). Since the unit sphere is com-
pact, g assumes a minimum on the unit sphere; that is, there exists a unit vector Z,
such that for all unit vectors X,

Lemma 3.31 Let A ¢ RF be an open domain, and let f € C*(A;R). Suppose
that (D*f), is negative-definite. Then, there exists an open ball B,(a), such that
(D%f), is negative-definite for all b € B,(a).

Proof: In essence, this lemma asserts that if the second derivative is continuous,
then, its “definiteness” is continuous as well. By Lemma 3.30, there exists an
a > 0, such that for every unit vector y,

(sz)a(y’j}) < -a.

—39h0199—
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We need to show that there exists an open ball 5,(a), such that for all b € B,(a)
and all unit vectors ¥,

(sz)b(j}’y) <0.

Since D?f is continuous, there exists an r, such that for all b € 5,(a),
2 2 @
(D21~ (D% Falep < &
Recall the definition of the operator norm of an element of 7 € Hom(R*, Hom(R*,R)),
IT oy = sup [7(5:2)L
9.2
Thus, for every b € B,(a) and every unit vector J,

(D*£)(3.9) = (D*£)a(3.9) + ((D*1)5(9.9) = (D*[)a(3.9))
<—a+|((D°f)p— (D°f)a)(3.9)|
<=+ [(D*)p = (D*Fallop

o
<—-a+—=<0.
)

Theorem 3.32 Let f € C*(A;R), where A c RF is open, and let a € A be a critical
point.

1. If (D?f), is negative-definite then a is a local maximum.

2. If ais a local maximum then (D?f), is negative-semidefinite.

Proof-

1. Suppose that (Df), = 0 and (D*f).(x,x) < 0 for all x # 0. By Taylor’s
theorem, there exists for every sufficiently small x a 6 € (0, 1) such that

fla+x)=f(a) + (D*f)asox(x. %),

where we used the fact that a is a critical point, i.e., (Df).(x) = 0. Since
(D?f), is negative-definite, it follows from Lemma 3.31 that there exists an



Differential Calculus in R" 179

open ball B,(a), such that for every a + x € B,(a), (D*f)... is negative-
definite. Thus, for every x € B,.(a),

fla+x)=f(a) + (D*fares(x, %) < f(a),
which proves that a is a local maximum.

2. Suppose that a is a local maximum of f. Here we may use the univariate
condition of a maximum. Let B,(a) be an open ball in which f reaches its
maximum at a, and let £ be a unit vector. Consider the path g : (-r,r) - R,

g(t) = f(a+1x).

Then,
8'(1) = (Df)arz(%),
and
8"(1) = (D*favs(%, 2).
Since g reaches a local maximum at ¢ = 0,

8'(0)=(Df)a(£)=0  and  g"(0) = (D*f)u(%.%) <0,

i.e., (D*f), is negative semi-definite.

3.5 The inverse function theorem

In this section we consider under what conditions does a function f : Rk 5 A —
B c R¥ have an inverse.

Z?(amp[e: Consider the function f : A — B, where
A= (0,00) x (0,7) > R x (0, 00)
given by

f(a) _ (a1 COSClz) .

a; sina,
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Then f is invertible. Indeed, suppose that f(a) = b, i.e.,

by =a; cosa, and b, = a; sina,.
Then,
b} +b3=al and 2 = tan,.
by
Thus,
SCH IR
tanl 22 |
by

AAA

First of all, note that the domain and the range have the same dimension. In-
deed, we know that in the particular case of linear functions this is a mandatory
condition. In fact, we know the following:

Proposition 3.33 Let T ¢ Hom(R¥,R¥) and let f : R* — R be the linear function
f(a) =Ta. Then, f is invertible if and only if at some point a € R¥,

(Df), € Hom(R¥, RF)

is invertible, which is the case if and only if det(Df), > 0.

Proof: For every a € RY, (Df), = T. The function inverse to f is b — T~'b, and it
exists if and only if 7 is invertible, which as we learned in linear algebra, occurs
if and only if det7" > 0. |

If f is nonlinear, then its derivative is not a constant matrix. If Df is invertible
at a point, this is not sufficient to ensure that f is invertible, but as we will see, it
ensures that f restricted to some neighborhood of « is invertible (on its image).

Lemma 3.34 Let A c R* be an open set and f € C'(A;R™). Let a,b,c € A such
that the segment I connecting b and c is in A. Then,

() = £(5) = (Df)ule =Bl < e = bli up | (DF)a = (PF ol
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Proof: Define the function g: A — R™,

gw) = f(w) = (Df)a(w = a).

The derivative of the linear operator (Df), is constant and equals (Df),, hence,

(Dg)w = (Df)w— (Df)a-

By Theorem 3.17,

lg(c) = &) m <= bl Sup [ (Dg)uwlim:

which is the desired result. |

Theorem 3.35 (Inverse function theorem (MW TSPNDT BDWN)) Let

A c R¥ be an open set and let f € C'(A; R¥). Suppose that det(Df), # 0 for some
point a € A. Then there exists an open neighborhood U of a, a € U c A, such that
V = f(U) is also open, and f|y is one-to-one and onto V. This defines an inverse
function f~':V — U, which is also continuously differentiable.

Comment: For real-valued functions, the inverse function theorem states that if
f:R>A - Ris continuously-differentiable and f’(a) # 0 at a point a, then there
exists a neighborhood U of a in which f|y : U — f(U) has an inverse, which is
also continuously-differentiable.

Comment: If the theorem holds, then we can derive a formula for the derivative
of f~1. Since

fef=1d,
it follows from the chain rule that

(Df ")y o (Df)a=1d

(the derivative of the linear operator Id at every point is Id), or,

(Dfil)f(a) = (Df);l

—41heo19—
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Proof: Since det(Df), # 0, the linear transformation (D f), has an inverse (Df);".
Moreover, since Df is continuous, there exists a closed ball 5,(a) c A such that

1
IP1)s = (Pf)als < 5ep AT
forall b € Br(a)‘

Step 1: Show that f is one-to-one in 5,(a): By Lemma 3.34 and by our choice
of r, for every two points b, ¢ € 55,(a)

|£(c) = f(a) = (Df)alc=b) i < llc =Dl sup [(Df)w = (Df)allix

weB,(a)
o le—ble
" 20(Df)a ka
Applying the (reverse) triangle inequality,

[7(c) = F(B) e 2 |(Df)alc = b) [ = [f(c) = f(B) = (Df)alc = b))

-b
2 [Pt~ 57ip i
1

1
= — D -1 D ; —b 1 _b ]
||(Df)d_1|k,k|:”( £ Lk [(DF)ale =) e = 5 le = ble
! 1
o (IO e b~ S 1.
BT || PNE (D)= D)l = 3le bl
where in the last step we used the fact that || T |z | x|z > | 7x|. It follows that.,
lc - b

|£(c) = f(B)] 2 10N

(3.3)

This implies that f is one-to-one in B,(a).

Step 2: We show that Df is invertible in B,(a): It suffices to show that its kernel
is trivial,

VbeB.(a) and VO#yeRk (Df)s(y) #0.
Let b € B.(a) and let 0 # y € R¥; by the continuity of the norm and (3.3),
nf ry) f(b) H

[(Df)e(¥) i =

- li 7 ||f(b+ty) f(B)

hmg ol _ bl
210N e~ 20100:

>0,
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which proves that (Df), is invertible.

Step 3: construction of U and V: f is one-to-one in B,(a). It seems as if the
open ball B,(a) is a good candidate for the neighborhood U of a. The problem
is that it is not necessarily true that f(5,(a)) is open, as continuous functions not
necessarily map open sets into open sets. We rather show that f(B,(a)) contains
an open neighborhood V of f(a); since f is continuous, its pre-image intersected
with B,(a), which we denote by U, is open; f is then a one-to-one function from
U onto V.

Let b € dB,(a); since f is one-to-one f(b) +# f(a). The boundary dB,(a) is
closed and bounded, hence compact, which implies that f(dB,(a)) is compact
and does not include f(a). We proved in the past that it implies that there is a

positive distance, &, between f(a) and f(dB,(a)). Consider now the open ball
B:j2(f(a)). We claim that

Byp(f(a)) ¢ f(B(a)),

1.e.,
VweB.(f(a)) 3IbeB.(a) suchthat f(b)=w.

While this may seem obvious by geometric intuition, this requires a proof. Let w
be an arbitrary point in B,,(f(a)). Consider the function % : 5,(r) - R defined
by

h(b) = £(b) - wli.
This function is continuous and defined on a compact set, hence it reaches a min-
imum. Denote this minimum by b, that is, b € B,(r) satisfies

|F(B) —=wl|i < || f(c) = wlk forallcel?a(r).
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The point b cannot be on the boundary, since b ¢ 0l§a(r) would imply

& &
> <[f(b) -wli <[ f(a) -wli < 5,
2 2
which is a contradiction.

Thus, b € B,(a). Since b is the minimizer of the differentiable function A, its
derivative vanishes at b, i.e.,

0= (Dh)y =2(Df)s(f(b) = w).
Since (Df), is invertible, it follows that f(b) = w, i.e., that w € f(B,(a)). Since
w was chosen as an arbitrary point in B,/,(f(a)) it follows that

Bypp(f(a)) € f(Ba(r)).

At this point we set V = B,»(f(a)) and U = f~!(V) n B,(a). The sets U and V
are open and f is one-to-one and onto V, hence f~! is defined on V.

Step 4: We show that f~! is Lipschitz continuous: Let v,w € V. By (3.3),
substituting f~!(v) and f~1(w),
[£7 ) = FH W) e

2|(Df)a I

A 0) = £ ) e 2
- £ 00) = £ ) < 21D ekl = v

Step 5: We show that /! is continuously-differentiable: Let v be an arbitrary
point in V, and y € R¥ sufficiently small such that v + y € V. We define

b=f"(v) and  x=fT(v+y)-fT(v),
and note that
v=f(b) and y=f(b+x)- f(b).
Since f~! is Lipschitz continuous in V, there exists a constant M such that
[l < Myl 3.4
Then,
FrO+y) =10 = (D), () = x = (Df), ()
= (Df);' [(Df)s(x) -]
==(Df);' [f(b+x) - f(b) - (Df)s(x)].
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Taking norms, dividing by |y and using (3.4),

I/ +y) =) = (D) () e
[¥lle

|f(b+x) = f(b) = (Df)s(x)
[l

< (D)3 Nk

<M[(DS);' lex

I£(b+ ) = F(b) = (DA .

%

Letting y — 0, (3.4) implies that x — 0, hence the right-hand side tends to zero by
the definition of (Df),. It follows that f~! is differentiable at y, and

(Df ™)y = (Df)".

Finally f~! is continuously-differentiable due to the continuity of the matrix in-
verse. |

Before we proceed, some preliminaries. Recall that the column rank (9722 N197)
of a linear transformation A € Hom(R*,R™) is the dimension of the vector space
spanned by its columns (a subspace of R™), or the dimension of its image. Sim-
ilarly, its row rank (017w M97) is the dimension of the vector space spanned
by its rows (a subspace of R¥). The row rank and column rank are always equal,
hence

rank(A) < min(m, k).

A is said to have full rank (851 m77) if its rank of the largest possible given
the dimensions. If A has full rank, then it is onto if and only if m < k (it is a
transformation from a “large” space into a “small” space; A is a “fat-and-short”
matrix).

Lemma 3.36 If m < k and S € Hom(R¥,R™) has full rank (i.e., it is onto), then
there exists a matrix T € Hom(R™,R%) such that ST € Hom(R™,R™) is invertible.

Proof:: Since S has rank m, its kernel is (k — m)-dimensional, i.e., R* has an m-
dimensional subspace which is orthogonal to ker S —there exist m independent
vectors uy, ..., u, € R¥, such that

(kerS)* = Span{uy,...,u,}.
Construct T such that its columns are the u;’s. Let R” 5 x # 0. Then,

Txe (kerS)*

—43ho19—
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(here we use the independence of the u;’s), hence S Tx # 0. This proves that ST
is non-singular. |

Consider momentarily functions f : R — R. The derivative f’(a) tells us that
locally a displacement x from the point a will be mapped into a displacement
f'(a)x from the point f(a). If f’'(a) # 0, a small enough open neighborhood
of a will be mapped into an open neighborhood of f(a), that is, the mapping is
locally an “open” one. Similarly, for functions f : R* — R the derivative (Df),
tells us that a displacement x from a is mapped into a displacement (Df),(x) of
f(a) (up to an o(| x|) correction). If the rank of (Df), is less than m, then there
are directions in R” which are not “covered” by local displacements. If, on the
other hand, (Df), has full rank, then we expect again that a small enough open
neighborhood of a will be mapped into an open neighborhood of f(a). The open
mapping theorem formalizes these ideas.

Theorem 3.37 (Open mapping theorem (MDD APNYAT BDWN)) Let m < k.
Let A c R¥ be an open set, and let f € C'(A;R™) be such that (Df), has full rank
forall a € A. Then f is an open mapping: if B c A is open in R¥ then f(B) is
open in R™.

Proof: We need to show that for every open set B c A and for every a € B, f(a)
is an interior point of f(B), since it would imply that f(B) only contains interior
points, i.e., f(B) is open. This follows from the next lemma. [

Lemma 3.38 Let m < k. Let A c R¥ be an open set and f € C'(A;R™). Suppose
that at a point a € A, rank (Df), = m (i.e., the derivative has full rank), then f(a)
is an interior point of f(A).

Proof: Since (D), has full rank, there exists a linear mapping 7 : R” — R, such

that (Df), o T is invertible. Define the linear function S : R” — R¥,
S(x)=a+Tx,

and on S~ (A) we define the function

8(x) = f(§(x)),
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which is a function from an open subset of R” into R (since T is continuous). By
the chain rule

(Dg)o=(Df)swyoT =(Df)soT,

which is an invertible transformation. From the inverse mapping theorem, the
point 0 € R™ has an open neighborhood which is mapped onto an open set that
contains g(0) = f(a). Since the image of g is a subset of the image of f, we
conclude that f(a) has a neighborhood included in f(A), i.e., f(a) is an interior

point. [
f(A) cRm
AcCRkK / .f(a)
‘a R™
S(x)xa+Tx
S1(A)

Comment: This theorem has a generalized version, known as the Banach-Schauder
theorem: if X and Y are Banach spaces and A : X — Y is a surjective continuous
linear transformation, then A is an “open mapping”.

Example: Here is a “counter example™: the mapping f : R - R,
f(x) =%,

has a point x = 0, where (Df), = 0 has rank less than one. This mapping is not
open since f(R) = [0, c0). AAA



188 Chapter 3

3.6 The implicit function theorem
Consider, for example, the equation,
G(x,y) = € cos(y’ + xy* + x*) + &* sin(xy) - 1 = 0. (3.5)

This equation defines a relation between x and y; for every x there may exist
zero, one, or more values of y for which this equation is satisfied. Thus, such an
equation defines a function R — R, that may not be defined on the whole real line,
and that may or may not be single-valued. If a (single-valued) function f : R - R
satisfying

G(x. f(x))=0

does exists, in say, a domain A c R, we say that (3.5) defines implicitly the func-
tion f(x). The implicit function theorem, which is the main topic of this chapter,
states, in a more general setting, conditions on g that ensure that the equation
g(x,y) = 0 does indeed define a function y = f(x).

Theorem 3.39 (Implicit function theorem) Let A c R* and B c R™ be open sets,
and
GeC'(BxA;R™) satisfies f(b,a)=0

at a point (b,a) € B x A. Furthermore, suppose that the square matrix
6,~Gj(b,a), i,j=1,...,m

is invertible. Then there exist an open neighborhood U c B x A of (b,a), and an
open neighborhood V c RF of a, and a function f € C'(V;B) such that for all
(v, x) €U,

G(y.x)=0 iff  y=f(x).
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yER™

a
fG.x)=0
B U

v xER™

e —

a

Comment: Just a variable count: the equation G(y, x) = 0 constitutes m equations
for m + k variables. Under the theorem’s condition, if we fix k of those variables,
we remain with m equations in m variables, and a unique solution exists. This
implicitly defines a mapping between the k “fixed” variables and m resulting vari-
ables, i.e., a mapping R¥ — R™.

E?(amp[e: Consider the case m = k = 1 and the function

G(y,x) = x>y +xy* - 2.
At the point (b,a) = (1,1) we have G(b,a) = 0. Does there exist a neighborhood
of x = 1 and a function y = f(x) such that G(y,x) = 0 iff y = g(x)? According to

the theorem, we only need to verify that

0:G(1,1)=1+3=4%0.

Proof: Define a function F : B x A — R by
F:(y,x) = (G(y,x),x).
At the point (y, x) = (b,a) we have

F(b,a) = (G(b,a),a) = (0,a),
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and
0G, ... 0,Gy 0,.G ... 0,Gi
108G ... 8.Gn 9uiGr ... OwisG
(DF)eay =" 7 1.0
0 ... 0 0 -~ 0
0 ... 0 0 -1

By assumption, the determinant of this matrix is non-zero. Thus, there exists, by
the inverse function theorem, an open neighborhood U of (b,a) such that W is an
open neighborhood of (0,a), F : U - W is one-to-one and onto and F~! : W - U
is continuously differentiable. Note that F~! is a mapping of the form

(z,x) = (h(z, %), x),

where 4 : W — B is continuously differentiable.
Define now
V={xeR": (0,x) e W}

and f : V - Bby f(x) = h(0,x). Since W is open so is V. And since A is
continuously differentiable, so is f. Now,

(v, x) €U, G(y,x) =0 .x)el, F(yx)=(0,x)
(0.x) e W, F7'(0,x) = (y.x)
xeV, h(0,x)=y

xeV, f(x)=y.

R

‘Example: Consider the two equations:

0=x>y +ytz+3y* -5
0=2+x*-2.

Does there exist a neighborhood of the point x = y = z = ¢ = 1 where all the

solutions are of the form
z X
([)-C)

where f is a continuously differentiable function R? — R??
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To comply to the structure of the theorem we rewrite this system as

G1(y1,y2, X1, %2) = X{x0)3 + Xoy2y1 +3x5-5=0

GZ(yl’yZaxlaXZ) Zy? +X1y% -2= 0,

where (y1,y,) are the old (z,¢) and (x;, x,) are the old (x,y). Now

alGl 82G1 _ 1 4
(o s arin=(3 3)

and the latter is invertible. AAA

3.7 Lagrange multipliers

In this section we consider the following problem: suppose we have a domain
B c R" and a function f ¢ C'(B;R), and we are looking for local minima or
maxima of f. We have seen that a necessary condition is that Df (the gradient
of f) vanishes as that point. Suppose however that we restrict ourselves to a
subset of B determined by a set of k constraints: g;(x) = 0, where g; € C'(B;R),
i=1,...,k. Thatis, we consider a restricted set:

A={xeB: gi(x)=--=gx)=0}.

(For A not to be a trivial set, we need n > k + 1.) The question is how to find a
local extremum of f within the set A.

‘Example: A probability distribution on the set {1,...,n} isavector p = (pi,..., p,)
of non-negative entries that sum up to one. The entropy of the distribution is a
function H : R" - R:

H(p) = - pilogp.
i=1

We want to find the distribution that maximizes H under the constaint

g(p)=>.pi-1=0.
i=1
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Before formalizing this problem, we can solve it by the following considerations.
Recall that the gradient of f at a points along the direction normal to the (n - 1)-
dimensional hyperplane tangent to the level set of f. That is,

def

(Vf)a L My(a) = {xeR": (Df)a(x) =0} .

For f to be a local extremum in the constrained set A, we need f not to (locally)
vary along directions that are level sets of all the g; at a. That is, we need

yeMé{l(a)ﬁmﬂM;k(a) = yeM}(a),

or.
M (a) n---n Mg (a) € Ms(a).

This can be re-written as follows

{xeR": (Df)q(x)=0}2 {x eR": > A;(Dgj)a(x) = O,V(/l],...,ﬁk)}.

j=1
It follows that for a to be a local extremum of f in the hyperplane tangent to the
level sets of all the g; there must exist k numbers (A1,...,4;) such that

(DF). - ilﬂ,-(Dg»a.

This will be found to be a corollary of the following theorem:

Theoren 3.40 Let BcR", k+1<n,
f.g1,...,8¢ € C'(B:R),

A={xeB: gi(x)=---=gx) =0},

and a € A is a local extremum point of f|a. Then the (k + 1)-by-n matrix

981 981 \
ox;  Ox,
g O
o %);?
0

f ax,

has rank less than k + 1.
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Proof: Suppose, wlog, that a is a local maximum point. That is, there exists an
open neighborhood U c B of a such that

f(a) = max f(x).

xeAnU

Consider now the function F : U — R¥*! defined by

81
ol
f

We need to prove that (DF), has rank less than k + 1. By contradiction, if it had
rank k£ + 1, then by the open mapping theorem

F(a)=(0,...,0, f(a))"

would be an interior point of F(U) in R”, which contradicts the fact that all the
points of the form (0,...,0,¢), > f(a) are not in F(U). [ |

Corollary 3.41 If (Dg1)a, - - -, (Dgk) are linearly independent, then there exist k
numbers A, ..., A, such that

(Df)a= i:ﬂi(Dgl)a.

The A; are called Lagrange multipliers. Thus, to find local extrema of f in A one
needs to solve n + k equations in n + k unknowns:

gi(x)=0
;gk(x) = O

(Df)x = i:/li(Dgl)x-
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Example: Let’s return to the above example: to maximize

f(p) == pilogp
i=1

subject to the constraint
g(p)=>.pi—-1
i=1

we solve the system in n + 1 variables,

n

Ozzpi—l

i=1

-1-logp;=A4,

from which we get that all the p; are equal, i.e., equal to 1/n. This means that the
distribution that maximizes the entropy is the uniform distribution. AAA

‘Example: Find the non-negative vector in R” that maximizes f(x) = xjx2...x,
subject to the constraint that x; + - -- + x,, = n. Here we solve the system

X| 44X, =n
XiX2 o Xj Xj oo Xy = A, j=1,...,n.
Here again, we deduce that all the x; are equal to each other, and given by 1. This

means that for all such x,
X1X...x, < 1.

In particular, for every non-negative vector y the vector

ny

X=——
Vit Y

satisfies the normalization requirement, and therefore

nyiyz...yn <1
CREREAT

or,
1
(}’1}72---)’;1)1/" < ;()’1 +-. +yn),

which is the well-known arithmetic-mean-geometric-mean inequality. A A A



