
Chapter 3

Sequences

3.1 Basic definitions

Definition 3.1 An (infinite) sequence is a function from the naturals to the
real numbers. That is, it is an assignment of a real number to every natural
number.

Comment: This is the first time we meet the notion of a function, which
will be the central concept of the next chapter. As for now, we take this
(very nontrivial) notion as evident.

Notation: Sequences, like any other functions, are labeled by letters. We
may refer, for example, to the sequence a. The value that a returns for, say,
the input 3 is denoted by a3, rather than a(3). More generally, we denote by
an the value that the function a returns for the input n. The subscript n in
an is called the index ( �28$1*!) of that element.

But sequences are very special functions as their domain of definition (.&(;
�%9$#%) is an inductive set. Thus, we can refer to the first element and to a
successor or a predecessor of a certain element.

A more common notation for the sequence a is as follows,

(an)∞n=1.
Note, however, that the index n in this notation is a dummy variable
( �892 %1;:/). We could have as well written

(ak)∞k=1.
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When there is no risk of confusion, we will denote the sequence simply by(an) (which should not be confused with its n-th element an).

Sequences can be defined in various ways. The most common way of defining
a function is by providing a formula for the n-th element of that sequence
(i.e., a rule for calculating an given n). Another way of defining a function
is based on the inductive property of N: the first element is specified along
with the formula for calculating an+1 given an (or, more generally, given
a1, a2, . . . , an). Such a definition is called recursive.

Examples:

(a) The constant sequence: an = 5.
(b) The sequence of naturals: an = n.
(c) An alternating sequence: bn = (−1)n.
(d) The harmonic sequence: cn = 1�n.
(e) The sequence of primes (dn) = (2,3,5,7,11, . . . ). Note that we do not

have an explicit formula for dn.

(f) The sequence of digits of ⇡: (en) = (3,1,4,1,5,9, . . . ).
(g) The Fibonacci sequence: f1 = 1, f2 = 1, fn+1 = fn + fn−1.

Comment: It is very common to refer, say, to the harmonic sequence as “the
sequence 1�n”. While very intuitive, this way of reference is problematic.
How does it di↵er, for example, from the sequence 1�k or the sequence 1�m?
On the other hand, the notation

(1�n)∞n=1
is unambiguous (here n is again a dummy variable).

Comment: We have to distinguish a sequence (an)∞n=1 from the set of values
that the sequence assumes,

{an ∶ n ∈ N}.
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For the example, if

(an)∞n=1 = (0,1,0,0,1,1,0,0,0,1,1,1, . . . ),
then the set of values it assumes is

{an ∶ n ∈ N} = {0,1}.
In a set, every element appears once and there is no order among elements. —

16h(2017)—

3.2 Limits of sequences

Consider the harmonic sequence,

an = 1�n.
Its elements are positive and decreasing (every element is smaller than its
successor). While no element equals zero, we understand on an intuitive level
that “the sequence tends toward zero”. In this section we will define formally
what it means for a sequence to tend to some real number (there is nothing
special about tending to zero).

Let’s start to construct a definition to the statement “the sequence (an)
tends to the real number ↵”. Very informally, we would say that this means
that “when n is very large, an is very close to ↵”. This is, of course, not a
mathematical statement. What does “n very large” mean? And what does
“very close to ↵” mean?

Let’s start by making the “very close to ↵” clause more rigorous. How can
we measure a distance from ↵? The distance of a number x from ↵ is the
absolute value �x−↵�. When we say that the distance of x from ↵ is less than
some r > 0, we mean that �x − ↵� < r.
Definition 3.2 Given ↵ ∈ R and r > 0, we define the open ball (�(&;5 9&$,)
of radius r about ↵ by

B (↵, r) = {x ∈ R ∶ �x − ↵� < r}.
The term “ball” is natural when we think about the same definition in three-
dimensional space.
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Equipped with this new definition, we will try to refine our definition of
a sequence tending to a number. (an) tends to ↵ if for every r > 0 and
su�ciently large n, an ∈ B (↵, r). This is still not good enough. What do
we mean now by su�ciently large n? Think of the harmonic sequence: no
matter how small r is, from some n onwards, all the elements of the sequence
are in B (0, r).
This observation motivates the following definition:

Definition 3.3 Let Pn be a sequence of logical propositions, which can be ei-
ther True or False. We say that the propositions hold for su�ciently large n,
if there exists an index N ∈ N such that for all n > N , Pn = True. In formal
notation, (∃N ∈ N)(∀n > N)(Pn = True).
With that we can finally define what it means for a sequence to tend to a
number:

Definition 3.4 A sequence (an) converges (�;21,;/) to ↵ ∈ R if for every
" > 0, the elements of the sequence are in B (↵, ") for su�ciently large n.
Formally, (∀" > 0)(∃N ∈ N)(∀n > N)(an ∈ B (↵, ")),
or (∀" > 0)(∃N ∈ N)(∀n > N)(�an − ↵� < ").
We call the real number ↵ a limit (�-&"#) of the sequence, and denote the fact
that ↵ is a limit of the sequence (an) by

lim
n→∞an = ↵.

Other popular notation are

an → ↵ or an
n→∞�→ ↵.

Comment: Note the a limit rather than the limit. We don’t yet know that a
limit of a sequence, if it exists, is unique.

Definition 3.5 A sequence is called convergent (�;21,;/) if it has a limit;
otherwise it is called divergent (�;9$";/).
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Example: The simplest example to start with is the constant sequence

an = ↵.
It seems obvious that this sequence tends to ↵. We have to be careful, and
make sure that ↵ is the limit according to the definition.

That is, we have to prove that

(∀" > 0)(∃N ∈ N)(∀n > N)(�an − ↵� < ").
Substituting the value of an, we have to prove that

(∀" > 0)(∃N ∈ N)(∀n > N)(� ↵ − ↵�
0

� < ").
This is trivially true. Given any " > 0 we may take N = 1. Indeed, for every
n > N , �an − ↵� = 0 < ". ▲▲▲
Example: Consider next the harmonic sequence an = 1�n. We want to show
that

lim
n→∞an = 0,

namely that (∀" > 0)(∃N ∈ N)(∀n > N)(1�n < ").
Take for example " = 0.01. All the elements an of the sequence are in
B (0,0.01) from n = 101. More generally, let " > 0 be given. Take N = �1�"�.
Then, for all n > N ,

�an = 0� = 1

n
< 1

N
= 1�1�"� < ",

which completes the proof. ▲▲▲
Example: Let an =√n + 1 −√n, or

(an) = (√2 −√1,√3 −√2,√4 −√3, . . . ).
If you evaluate the elements of this sequence you’ll quickly guess that

lim
n→∞an = 0.
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The question is whether we can prove that

(∀" > 0)(∃N ∈ N)(∀n > N)(√n + 1 −√n < ") ?
We will use the following algebraic trick,

an = (
√
n + 1 −√n)(√n + 1 +√n)√

n + 1 +√n = 1√
n + 1 +√n <

1

2
√
n
.

In order to have �an − 0� < " we can take n to be greater than (1�2")2.
Therefore, given " > 0, we take

N = �� 1
2"
�2� .

Then for all n > N ,

�an − 0� < 1

2
√
n
< 2"

2
= ",

which completes the proof. ▲▲▲
Example: Consider next the sequence

an = 3n3 + 7n2 + 1
4n3 − 8n + 63 .

Start with intuition. As n becomes very large, the numerator is dominated
by the 3n3 term, whereas the denominator is dominated by the 4n3 term.
It makes sense to guess that as n becomes larger and larger, the sequence
approaches a constant,

lim
n→∞an = 3

4
.

To prove it we need to show that

(∀" > 0)(∃N ∈ N)(∀n > N)(�an − 3�4� < ").
This requires some work. Consider the di↵erence,

an − 3

4
= 4(3n3 + 7n2 + 1) − 3(4n3 − 8n + 63)

4(4n3 − 8n + 63)
= 28n2 − 24n − 185
4(4n3 − 8n + 63) < 28n2

16n3 − 32n = 7n

7n2 − 8 .
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For n > 3, n2 > 8, which implies that 7n2 − 8 > 6n2, hence for all n > 3,
�an − 3

4
� < 7n

6n2
= 7

6n
.

We can now close the proof. Given " > 0, let
N =max(3,6"�7).

Then, for every n > N ,

�an − 3

4
� < 7

6n
< ".

▲▲▲
Example: Let ↵ ∈ R. We will show that there exists a sequence (rn) of
rational numbers that converges to ↵. The idea is very simple. For every
n consider the open ball B (↵,1�n). By the density of the rationals, there
exists a rational number rn ∈ B (↵,1�n). Pick one. This constructs a sequence
(which we don’t care to know explicitly).

This sequence converges to ↵, because given " > 0, let N = �1�"�. Then, for
every n > N ,

rn ∈ B (↵,1�n) ⊂ B (↵, ") .
▲▲▲

3.3 Uniqueness of the limit

A converging sequence has a limit. The question is whether it is possible to
converge to two di↵erent limits. We will show that the limit is unique, thus
justifying the reference to the limit of a converging sequence. The rationale
behind the proof is very simple. If a sequence (an) converges to ↵, then for
any (small) interval around ↵, the sequence must eventually be within this
interval. If the sequence also converges to �, then for any (small) interval
around �, the sequence must eventually be within this interval. We can take
those intervals su�ciently small so that they are disjoint ( �.*9'), leading to a
contradiction.

Let’s proceed step by step:
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Lemma 3.6 Let ↵,� ∈ R, ↵ ≠ �. Then there exists an " > 0 such that B (↵, ")
and B (�, ") are disjoint.

Proof : Suppose, without loss of generality (a notion we have to discuss),
that ↵ < �. Let " = (� − ↵)�2. Then,

B (↵, ") = �32↵ − 1
2�,

1
2(↵ + �)�

and

B (�, ") = �12(↵ + �), 32� − 1
2↵� ,

and these two open segments are indeed disjoint. n

Lemma 3.7 Let Pn and Qn be two sequences of propositions (assuming values
True and False). If Pn holds for large enough n and Qn holds for large enough
n, then Pn ∧Qn holds for large enough n.

Proof : It is given that

(∃N1)(∀n > N1)(Pn = True),
and (∃N2)(∀n > N2)(Qn = True).
Let N =max(N1,N2). Then, for all n > N , both n > N1 and n > N2, hence

Pn = True and Qn = True.
n

Theorem 3.8 [Uniqueness of the limit] Let (an) be a convergent sequence. If
↵ ∈ R and � ∈ R are limits of (an), then ↵ = �.
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Proof : Assume, by contradiction that ↵ ≠ �. By Lemma 3.6 there exists an
" > 0 such that

B (↵, ") ∩B (�, ") = �.
By the definition of the limit, an ∈ B (↵, ") for large enough n and an ∈ B (�, ")
for large enough n. It follows from Lemma 3.7 that an ∈ B (↵, ") ∩B (�, ")
for large enough n, which is impossible. n

We conclude this section by discussing divergent sequences. A sequence is
divergent if it does not have a limit. In other words,

∀↵ ∈ R ↵ is not a limit of (an).
This requires some elaboration. Since

↵ is a limit of (an) ⇐⇒ (∀" > 0)(∃N ∈ N)(∀n > N)(�an − ↵� < "),
it follows that

↵ is a not limit of (an) ⇐⇒ (∃" > 0)(∀N ∈ N)(∃n > N)(�an − ↵� ≥ ").
Thus,

(an) is divergent ⇐⇒ (∀↵ ∈ R)(∃" > 0)(∀N ∈ N)(∃n > N)(�an − ↵� ≥ ").
Example: Consider the sequence of natural, an = n. This sequence is diver-
gent, for let ↵ ∈ R. Take " = 1. For all N ∈ N, there exists an n > N such
that

an − ↵ ≥ 1.
▲▲▲ —
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Example: Consider the alternating sequence an = (−1)n. We first claim that
1 is not a limit is this sequence, take " = 2. For every N ∈ N there exists an
n > N , such that an = (−1), i.e.,

�an − 1� ≥ 2 or an �∈ B (2,1) .
We next claim that no ↵ ≠ 1 can be a limit of (an), for let " > 0 be such that

B (↵, ") ∩B (1, ") = �.
For every N ∈ N there exists an n > N such that an = 1, namely, an �∈ B (↵, ").▲▲▲
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3.4 Bounds and order

Definition 3.9 A sequence (an) is said to be upper bounded (�-*3-/ %/&2()
if there exists an M ∈ R such that

(∀n ∈ N)(an ≤M).
If is said to be lower bounded (�39-/ %/&2() if there exists an m ∈ R such
that (∀n ∈ N)(m ≤ an).
It is said to be bounded if it is both upper bounded and lower bounded.

Comment: The sequence (an) is upper (resp. lower) bounded if and only if
the set of values it assumes,

{an ∶ n ∈ N}
is upper (resp. lower) bounded. The property of being bounded does not
“see” the order within the sequence.

Example:

1. The sequence of naturals, an = n, is lower bounded by not upper
bounded.

2. The harmonic sequence is bounded.

3. The sequence an = (−1)nn is neither upper nor lower bounded.

▲▲▲
Theorem 3.10 A convergent sequence is bounded.

Proof : Let (an) be a sequence that converges to a limit ↵. We need to show
that there exist L1, L2 such that

L1 ≤ an ≤ L2 ∀n ∈ N.



Sequences 65

By definition, setting " = 1,
(∃N ∈ N)(∀n > N)(an ∈ B (↵,1)),

or, (∃N ∈ N)(∀n > N)(↵ − 1 < an < ↵ + 1).
Since {an ∶ 1 ≤ n ≤ N}
is a finite set, there exist

M =max{an ∶ 1 ≤ n ≤ N}
m =min{an ∶ 1 ≤ n ≤ N}.

Then for all n,
min(m,↵ − 1) ≤ an ≤max(M,↵ + 1).

n

Proposition 3.11 Suppose that (an) and (bn) are convergent sequences,

lim
n→∞an = ↵ and lim

n→∞ bn = �.
Suppose that ↵ > �. Then there exists an N ∈ N, such that

bn > an for all n > N,

i.e., the sequence (bn) is eventually greater (term-by-term) than the sequence(an).

Proof : By Lemma 3.6, there exists an " > 0 such that

A = B (↵, ") and B = B (�, ")
are disjoint. In fact, every element in A is smaller than every element in B.
By Lemma 3.7 there exists an N ∈ N such that for all n > N , an ∈ A and
bn ∈ B, which implies that an < bn. n
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Corollary 3.12 Let ↵,� ∈ R with ↵ < �. Let (an) be a convergent sequence
with limit ↵. Then, an < � for large enough n.

Proof : Apply the previous proposition with the constant sequence bn = �. n

Proposition 3.13 Suppose that (an) and (bn) are convergent sequences,

lim
n→∞an = ↵ and lim

n→∞ bn = �,
and there exists an N ∈ N, such that an ≤ bn for all n > N . Then ↵ ≤ �.

Proof : This is an immediate corollary of the previous proposition (reverse
implication of the negations). n

Comment: If instead, an < bn for all n > N , then we still only have ↵ ≤ �.
Take for example the sequences an = 1�n and bn = 2�n. Even though an < bn
for all n, both converge to the same limit.

Theorem 3.14 [Sandwich] Suppose that (an) and (bn) are sequences that con-
verge to the same limit `. Let (cn) be a sequence for which there exists an
N ∈ N such that

an ≤ cn ≤ bn for all n > N.

Then
lim
n→∞ cn = `.

Proof : By the given assumptions and Lemma 3.7,

(∀" > 0)(∃N ∈ N)(∀n > N)(−" < an−` and bn−` < " and an ≤ cn ≤ bn).
Since,

−" < an − ` and bn − ` < " and an ≤ cn ≤ bn �⇒ −" < cn − ` < "
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It follows that

(∀" > 0)(∃N ∈ N)(∀n > N)(�cn − `� < ").
n

Example: Since for all n,

1 <�1 + 1�n <�1 + 2�n + 1�n2 = 1 + 1�n,
it follows that

lim
n→∞
�
1 + 1�n = 1.

▲▲▲

3.5 Limit arithmetic

Suppose we have two sequences (an) and (bn). We can form new sequences,
such as (cn) given by

cn = an + bn,
a (dn) given by

dn = anbn.
If the elements of bn are non-zero, then we can also form a sequence (en),
given by

en = 1

bn
.

Suppose that (an) and (bn) are both convergent sequences with limits ↵ and
�. Can we infer the convergence and limits of the sequences (an+bn), (anbn)
and (1�bn)?
Lemma 3.15 Let (an) be a sequence. Then the following statements are equiv-
alent:

1. (an) converges to ↵.

2. (an − ↵) converges to zero.

3. (�an − ↵�) converges to zero.
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Proof : Since �an − ↵� = �(an − ↵) − 0� = ��an − ↵� − 0�,
it follows that

(∀" > 0)(∃N ∈ N)(∀n > N)(�an − ↵� < ")(∀" > 0)(∃N ∈ N)(∀n > N)(�(an − ↵) − 0� < ")(∀" > 0)(∃N ∈ N)(∀n > N)(��an − ↵� − 0� < ")
are equivalent statements. n

Proposition 3.16 If (an) converge to ↵, then (�an�) converges to �↵�.

Proof : From the reverse triangle inequality,

0 ≤ ��an� − �↵�� ≤ �an − ↵�.
Since (�an − ↵�) converges to zero, we can invoke the sandwich theorem. n

Comment: Note that the converse is not true. Set an = (−1)n, then (�an�)
converges to 1, but (an) is divergent.
Lemma 3.17 If x ∈ B (↵, r) and y ∈ B (�, r) then x + y ∈ B (↵ + �,2r).

Proof : This is immediate. We know that

↵ − r < x < ↵ + r
� − r < y < � + r.

It only remain to “add” the two inequalities. n

Theorem 3.18 [Limits of sums of sequences] Let (an) and (bn) be convergent
sequences. Then the sequence cn = an + bn is also convergent, and

lim
n→∞ cn = lim

n→∞an + lim
n→∞ bn.
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Proof : Denote the limits of (an) and (bn) by ↵ and �. Let " > 0 be given.
From the definition of the limit and Lemma 3.7,

an ∈ B (↵, "�2) and bn ∈ B (�, "�2)
for n large enough. Invoking Lemma 3.17, we obtain that

cn ∈ B (↵ + �, ")
for n large enough, which implies that

lim
n→∞ cn = ↵ + �.

n

Comment: Note that the converse is not true. (an + bn) may be convergent,
whereas (an) and (bn) are not. —
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Comment: The theorem about the limit of a sum of two sequences can be
readily extended to any finite sum of sequences.

Comment: By a similar argument we may show that

lim
n→∞(an − bn) = lim

n→∞an − lim
n→∞ bn,

provided that the right-hand side exists.

Lemma 3.19 Let " > 0 and let ↵,� ∈ R. If
x ∈ B �↵,min �1, "

2(���+1)�� and y ∈ B ��,min �1, "
2(�↵�+1)�� ,

then
xy ∈ B (↵�, ") .

Proof : Start with
xy − ↵� = (x − ↵)y + ↵(y − �).
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Using the triangle inequality,

�xy − ↵�� ≤ �x − ↵��y� + �↵��y − ��.
Since �y� < ���+1. �x−↵� < "�2(���+1) and �y −�� < "�2(�↵�+1), it follows that

�xy − ↵�� < (��� + 1) "

2(��� + 1) + �↵� "

2(�↵� + 1) < ",
which concludes the proof. n

Theorem 3.20 [Limits of products of sequences] Let (an) and (bn) be conver-
gent sequences. Then the sequence cn = anbn is also convergent, and

lim
n→∞ cn = lim

n→∞an ⋅ lim
n→∞ bn.

Proof : Denote the limits of (an) and (bn) by ↵ and �. Let " > 0 be given.
From the definition of the limit and Lemma 3.7,

an ∈ B �↵,min �1, "
2(���+1)�� and bn ∈ B ��,min �1, "

2(�↵�+1)��
for n large enough. Invoking Lemma 3.19, we obtain that

cn ∈ B (↵�, ")
for n large enough, which implies that

lim
n→∞ cn = ↵�.

n

Corollary 3.21 Let (an) be a convergence sequence and let b ∈ R. Then, the
sequence (b an) is convergent with

lim
n→∞(ban) = b lim

n→∞an.
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Proof : Apply Theorem 3.20 with the constant sequence bn = b. n

In remains to prove a sequence arithmetic theorem regarding the ratio of
sequences.

Lemma 3.22 Let � ≠ 0 and

y ∈ B ��,min � ���2 , ���2"2 �� .
Then, y ≠ 0 and

1

y
∈ B � 1

�
, "� .

Proof : It is given that

�y − �� < ���
2
.

Since y = � − (� − y), it follows from the triangle inequality that

�y� ≥ ��� − �� − y� > ���
2
,

which proves that y ≠ 0. Then,
�1
y
− 1

�
� = �� − y��y���� < ���

2"�2����2 ��� = ",
which concludes the proof. n

Theorem 3.23 Let (bn) be a convergent sequence whose limit is not zero.
Then, the sequence cn = 1�bn is well-defined for n large enough. Further-
more, it is convergent, and

lim
n→∞ cn = 1

limn→∞ bn
.



72 Chapter 3

Proof : Denote the limit of bn by �. Let " > 0 be given. From the definition
of the limit

bn ∈ B ��,min � ���2 , ���2"2 ��
for n large enough. It follows from Lemma 3.22 that bn ≠ 0 and

cn ∈ B � 1
�
, "�

for n large enough, which concludes the proof. n

Corollary 3.24 Let (an) be a convergent sequence, and let (bn) be a conver-
gent sequence whose limit is not zero. Then, the sequence cn = an�bn is
well-defined for n large enough. Furthermore, it is convergent, and

lim
n→∞ cn = limn→∞ an

limn→∞ bn
.

Example: Use limit arithmetic to calculate the limit of

an = n3 + 6n2 − 6
3n3 + 5n + 10 . ▲▲▲

Theorem 3.25 Let (an) be a bounded sequence and let (bn) be a sequence that
converges to zero. Then

lim
n→∞anbn = 0.

Proof : Let M be a bound for (an), namely,

(∀n ∈ N)(�an� ≤M).
Since (bn) converges to zero,

(∀" > 0)(∃N ∈ N)(∀n > N)��bn� < "

M
� .

Thus, (∀" > 0)(∃N ∈ N)(∀n > N) (�anbn� ≤M �bn� < ") ,
which implies that the sequence (anbn) converges to zero. n
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Example: The sequence

an = sinn

n
converges to zero. ▲▲▲

3.6 Convergence of means

Let (an) be a sequence. We define a new sequence (sn) as follows,
s1 = a1
s2 = 1

2(a1 + a2)
s3 = 1

3(a1 + a2 + a3)
etc.

For the general term,

sn = 1

n

n�
k=1

ak.

Theorem 3.26 [Cezaro] If (an) is convergent, then so is (sn) and
lim
n→∞ sn = lim

n→∞an.

Proof : Denote by ↵ the limit of (an). Note that

sn − ↵ = 1

n

n�
k=0
(ak − ↵),

and by the triangle inequality,

�sn − ↵� ≤ 1

n

n�
k=0
�ak − ↵�.

Recall that a convergent sequence is bounded, let M be a bound for {an ∶ n ∈
N}. By the triangle inequality, for all n ∈ N,

�an − ↵� ≤ �an� + �↵� ≤M + �↵�.
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Given " > 0, there exists an N ∈ N, such that for every n > N ,

�an − ↵� < "

2
.

Then, for every n > N ,

�sn − ↵� ≤ 1

n

N�
k=0
�ak − ↵� + 1

n

n�
k=N+1

�ak − ↵�
< N

n
(M + �↵�) + n −N

n

"

2

≤ N

n
(M + �↵�) + "

2
.

Let

N ′ =max�N,
"

2N(M + �↵�)� .
Then for every n > N ′,

�sn − ↵� < "

2
+ "

2
= ".

n—
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3.7 Generalized limits

A sequence is divergent if it does not have a limit. There are two types of
divergent sequences: some “just don’t have a limit”, whereas other “grow
indefinitely without bounds”, or “decrease indefinitely without bounds”.

Definition 3.27 Let (an) be a sequence. We say that it tends to infinity
(�4&21*!- ;5!&:) if

(∀M ∈ R)(∃N ∈ N)(∀n > N)(an >M).
We write

lim
n→∞an =∞.

Comment: Recall that infinity is not a real number.

Likewise:
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Definition 3.28 Let (an) be a sequence. We say that it tends to minus
infinity if (∀M ∈ R)(∃N ∈ N)(∀n > N)(an <M).
We write

lim
n→∞an = −∞.

Comment: If a sequence tends to plus or minus infinity we say that it con-
verges in a wide sense ( �"(9% 0"&/"). A sequence that tends to plus or
minus infinity is still divergent.

We now start to investigate properties of sequences that converge in a wide
sense.

Proposition 3.29 A sequence that tends to infinity is not bounded from above.
Similarly, a sequence that tends to minus infinity is not bounded from below.

Proof : If (an) is bounded from above,

(∃M ∈ R)(∀n ∈ N)(an <M).
It is then not true that

(∀M ∈ R)(∃n ∈ N)(an ≥M).
A fortiori, it is not true that

(∀M ∈ R)(∃N ∈ N)(∀n > N)(an >M).
n

Proposition 3.30 Let (an) and (bn) be sequences satisfying

an ≤ bn
for su�ciently large n. If

lim
n→∞an =∞,

then
lim
n→∞ bn =∞.
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Proof : Let M > 0 be given. By definition, and using Lemma 3.7, there exists
an N ∈ N, such that for all n > N ,

an >M and an ≤ bn.
If follows that for all n > N ,

bn >M,

which concludes the proof. n

Proposition 3.31 Let (an) be a sequence of non-zero elements, satisfying

lim
n→∞an = 0.

Then

lim
n→∞

1�an� =∞.

Proof : By definition,

(∀M > 0)(∃N ∈ N)(∀n > N)(0 < �an� < 1�M),
hence (∀M > 0)(∃N ∈ N)(∀n > N)(1��an� >M),
which concludes the proof. n

Comment: Note that
lim
n→∞an = 0.

does not implies that (1�an) converges a wide sense.

Proposition 3.32 Let (an) be a sequence satisfying

lim
n→∞ �an� =∞.

Then

lim
n→∞

1

an
= 0.
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Proof : By definition,

(∀" > 0)(∃N ∈ N)(∀n > N)(�an� > 1�"),
hence (∀" > 0)(∃N ∈ N)(∀n > N)(0 < 1��an� < "),
which concludes the proof. n

3.8 Monotone sequences

Definition 3.33 A sequence a is called increasing (�%-&3) if an+1 ≥ an for all
n. It is called strictly increasing (�:// %-&3) if an+1 > an for all n. We
define similarly decreasing (�;$9&*) and strictly decreasing (�:// ;$9&*)
sequences. Any one of those sequences is called monotone.

Example:

1. The sequence (an) = n is strictly increasing.

2. The sequence (bn) = 1�n is strictly decreasing.

3. The sequence (cn) = (−1)n is not monotone.

4. The sequence (dn) = ↵ is both increasing and decreasing.

▲▲▲
Theorem 3.34 Let (an) be an increasing sequence. If it is bounded from above,
then it is convergent. Otherwise, it tends to infinity.

Proof : The second statement is easier to prove. Suppose that (an) is in-
creasing and not bounded from above. Then, for every M ∈ R there exists
an N ∈ N such that

aN >M.

Since the sequence is increasing,

(∀n > N)(an >M),



78 Chapter 3

which proves that the sequence tends to infinity.

Suppose now that (an) is bounded from above. This implies the existence of
a least upper bound. Set

↵ = sup{an ∶ n ∈ N}.
(Note that a supremum is a property of a set, i.e., the order in the set does
not matter.) By the definition of the supremum,

(∀" > 0)(∃N ∈ N)(↵ − " < aN ≤ ↵).
Since the sequence is non-decreasing,

(∀" > 0)(∃N ∈ N)(∀n > N)(↵ − " < aN ≤ an ≤ ↵),
and in particular,

(∀" > 0)(∃N ∈ N)(∀n > N)(�an − ↵� < ").
n

Similarly,

Theorem 3.35 Let (an) be a decreasing sequence. If it is bounded from below,
then it is convergent. Otherwise, it tends to minus infinity.

Corollary 3.36 Every monotone sequence converges in a wide sense.

Example: Consider the sequence

an = �1 + 1

n
�n .

We will first show that an < 3 for all n. From the binomial formula,

(a + b)n = n�
k=0
�n
k
�akbn−k,
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follows that

�1 + 1

n
�n = n�

k=0
�n
k
��1

n
�k = n�

k=0
1

k!
�1
n
�k k−1�

j=0
(n − j) = n�

k=0
1

k!

k−1�
j=0
�1 − j

n
� .

This sequence is increasing as the larger n, the more terms there are, and
each grows. Moreover,

�1 + 1

n
�n ≤ n�

k=0
1

k!
= 1 + 1 + 1

2
+ n�

k=3
1

k!
≤ 1 + 1 + 1

2
+ n�

k=3
1

2k
< 3.

It follows that

lim
n→∞�1 + 1

n
�n exists

(and equals to 2.718 ⋅ ⋅ ⋅ ≡ e). ▲▲▲

3.9 Cantor’s lemma

Consider the sequence of segments,

In = [0,1�n].
For every n ∈ N, In+1 ⊂ In. Moreover, the length of the segments tends to
zero. If we look at the intersection of all the In’s, we find out that it contains
a single point, ∞�

n=1 In = {0}.
If we rather used open, or semi-open segments,

Jn = (0,1�n],
It still holds that Jn+1 ⊂ Jn, and that the length of the segments tends to
zero. Yet, ∞�

n=1Jn = �.
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Theorem 3.37 [Cantor’s lemma] Let (In) be a sequence of closed segments
satisfying

In+1 ⊂ In and lim
n→∞ �In� = 0,

where �In� denotes the segment’s length. Then there exists a unique real num-
ber c such that

A = ∞�
n=1 In = {c}.

Proof : Let In = [an, bn]. Since In+1 ⊂ In, it follows that (an) is increasing and(bn) is decreasing. Since a1 ≤ an < bn ≤ b1, it follows that (an) is bounded from
above and (bn) is bounded from below. By Theorem 3.34, both sequences
are convergent. Denote,

↵ = lim
n→∞an and � = lim

n→∞ bn.

Recall that for monotone sequence,

↵ = sup{an ∶ n ∈ N} and � = inf{bn ∶ n ∈ N}.
Since the length of the segments tends to zero, if follows from limit arithmetic
that

0 = lim
n→∞ �In� = lim

n→∞(bn − an) = � − ↵,
hence ↵ = �. Furthermore, since

↵ = sup{an ∶ n ∈ N} = inf{bn ∶ n ∈ N},
it follows that ↵ ∈ In for all n, namely ↵ ∈ A.
It remains to prove that A contains a unique point. Let � ∈ A. Then, for
every n,

0 ≤ �� − ↵� ≤ (bn − an),
and by the sandwich theorem, � = ↵. n—

24h(2017)—
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3.10 Subsequences and partial limits

Definition 3.38 Let (an) be a sequence. A subsequence (�%9$2 ;;) of (an)
is any sequence

an1 , an2 , . . . ,

such that
n1 < n2 < �.

More formally, (bn) is a subsequence of (an) if there exists a strictly increas-
ing sequence of natural numbers (nk)∞k=1, such that

bk = ank
.

Comment: Every sequence is its own subsequence for nk = k.
Comment: The sequence (an)∞n=1 is the same as (ak)∞k=1, but unless nk = k, it
is not the same as the sequence (ank

)∞k=1.
Example: The sequence bn = 1�2n is a subsequence of the harmonic sequence
an = 1�n, for the choice nk = 2k. Indeed,

bk = 1

2k
= a2k.

▲▲▲
Example: Let (an) be the sequence of natural numbers, namely an = n. The
subsequence (bn) of all even numbers is

bk = a2k,
i.e., nk = 2k. ▲▲▲
The following lemma makes a number of obvious statements:

Lemma 3.39

1. If (nk) is an increasing sequence of indexes then nk ≥ k.
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2. Let (nk) be an increasing sequence of integers. Let (Pn) be a sequence
of propositions. If Pn holds for su�ciently large n, i.e.,

(∃N ∈ N)(∀n > N)(Pn = True),
then (Pnk

) holds for su�ciently large k. i.e.,

(∃K ∈ N)(∀k >K)(Pnk
= True).

3. Let (nk) be an increasing sequence of integers. Let (Pn) be a sequence
of propositions. If (Pnk

) holds for su�ciently large k, i.e.,

(∃K ∈ N)(∀k >K)(Pnk
= True).

then (Pn) holds for infinitely many n’s, i.e.,

(∀N ∈ N)(∃n > N)(Pn = True).
4. Every sub-subsequence is a subsequence.

5. If A ⊂ N is an infinite set, then there exists a sequence (nk) of indexes
such that nk ∈ A for all k.

Definition 3.40 Let (an) be a sequence. A real number ↵ is called a partial
limit (�*8-( -&"#) of (an) if it is the limit of a subsequence of (an). That is,
if there exists a strictly increasing sequence of integers (nk), such that

↵ = lim
k→∞ank

.

Similarly, we define partial limits in the wide sense.

Example: A constant sequence an = c only has one subsequence, and only
one partial limit, c. More generally, every limit is also a partial limit. ▲▲▲
Example: The sequence an = (−1)n has two partial limits, 1 and −1. It is
easy to show that these are its only partial limits. ▲▲▲
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Example: Every natural number is a partial limit of the sequence,

(1,1,2,1,2,3,1,2,3,4,1,2,3,4,5, . . . ).
▲▲▲

Proposition 3.41 If (an) is convergent with limit ↵, then every subsequence
of (an) converges to ↵, and in particular, ↵ is the only partial limit.

Proof : Let (nk) be an increasing sequence of indexes. Given " > 0, let
Pn = (�an − ↵� < ").

This clause holds for su�ciently large n, hence by Lemma 3.39(2),

Pnk
= (�ank

− ↵� < ").
holds for su�ciently large k. n

Corollary 3.42 If a sequence has two partial limits then it is not convergent.

Partial limits can be characterized with no reference to a particular subse-
quence:

Proposition 3.43 A real number ↵ is a partial limit of a sequence (an) if
and only if every neighborhood of ↵ contains infinitely many elements of that
sequence.

Proof : Suppose first that ↵ is a partial limit of (an). If follows that there
exists an increasing sequence of indexes (nk) such that

lim
k→∞ank

= ↵.
Let " > 0 be given, and let

Pn = (an ∈ B (↵, ")).
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Then, Pnk
holds for su�ciently large k, and by Lemma 3.39(3), Pn holds for

infinitely many n’s.

Suppose next that every neighborhood of ↵ contains infinitely many elements
of (an). Consider the set

I1 = {n ∈ N ∶ an ∈ B (↵,1)}
Since this set is not empty, there exists an n1 ∈ I1, i.e., an1 ∈ B (↵,1).
Consider next the set

I2 = {n ∈ N ∶ an ∈ B (↵,1�2)} � {n ∈ N � n ≤ n1}.
This set is not empty, hence it contains an element n2, which, by definition,
satisfies

n2 > n1 and an1 ∈ B (↵,1�2) .
We proceed inductively, setting

Ik+1 = {n ∈ N ∶ an ∈ B (↵,1�(k + 1))} � {n ∈ N � n ≤ nk}.
This set is not empty, hence it contains an element nk+1, which, by definition,
satisfies

nk+1 > nk and ank+1 ∈ B (↵,1�(k + 1)) .
We have thus constructed a subsequence ank

. Since

0 ≤ �ank
− ↵� < 1

k
,

it follows from the “sandwich theorem” that (ank
) converges to ↵. n

Proposition 3.44 ∞ is a partial limit of (an) if and only if (an) is not bounded
from above. Similarly, −∞ is a partial limit of (an) if and only if (an) is not
bounded from below.

Proof : The proof is essentially the same. n—

26h(2017)— We next prove this very important theorem:
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Theorem 3.45 [Bolzano-Weierstrass] Every bounded sequence has a converg-
ing subsequence.

Proof : Suppose that M > 0 is a bound for the sequence, namely,

(∀n ∈ N)(an ∈ [−M,M]).
We construct recursively a sequence of segments (In) satisfying:

1. In+1 ⊂ In.
2. �In+1� = 1

2 �In�.
3. In contains infinitely many elements of (an).

This sequence is constructed using bisection ( �%**7().
Specifically, let In contain infinitely many elements of (an), which means that

An = {k ∈ N ∶ an ∈ In}
is an infinite set of indexes. Partition In into two closed segments of equal
size, which only intersect at one point,

In = IRn ∪ ILn ,
and define

AR
n = {k ∈ N ∶ an ∈ IRn } and AL

n = {k ∈ N ∶ an ∈ ILn }.
Since An = AR

n ∪AL
n is an infinite set, either AR

n or AL
n must be infinite. Then,

set

In+1 =
�������
IRn �IRn � =∞
ILn otherwise.

By Cantor’s lemma, there exists a unique number ↵ in the intersection of all
the In. We will prove that ↵ is a partial limit of (an). Indeed, given " > 0,
let n be large enough such that �In� < ". Then,

B (↵, ") ⊃ In.
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Since In contains infinitely many elements of (an) so does B (↵, "), and by
Proposition 3.43, ↵ is a partial limit of (an). n

The Bolzano-Weierestrass can be proved in a completely di↵erent way: it is
an immediate corollary of the following lemma:

Lemma 3.46 Any sequence contains a subsequence which is either decreasing
or increasing.

Proof : Let (an) be a sequence. Let’s call a number n a peak point (;$&81
�!*:) of the sequence a if am < an for all m > n.

a peak poin!

a peak poin!

There are now two possibilities.

There are infinitely many peak points : If n1 < n2 < � are a sequence of peak
points, then the subsequence ank

is decreasing.

There are finitely many peak points : Then let n1 be greater than all the peak
points. Since it is not a peak point, there exists an n2, such that an2 ≥ an1 .
Continuing this way, we obtain a non-decreasing subsequence. n

Comment: There is a fundamental di↵erence between the two proofs. The
first proof can be generalized with little modification to bounded sequences
in Rn. The second proof relies on the fact that R is an ordered set, hence
the possiblity to define monotone sequences.

Corollary 3.47 Every sequence has a subsequence that converges in the wide
sense.
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Proof : Either the sequence of bounded, in which case this is a consequence
of the Bolzano-Weierstrass theorem, or it is not bounded, and this is a con-
sequence of Proposition 3.44. n

Proposition 3.48 Let (an) be a sequence that does not converge in the wide
sense. Then, it has at least two partial limits (in the wide sense).

Proof : Let ↵ be a partial limit of (an) in the wide sense. Suppose first that
↵ ∈ R. Since, by assumption, ↵ is not a limit of (an) there exists an " > 0
such that

an �∈ B (↵, ")
for infinitely many n’s. Thus, we can construct a subsequence ank

such that

(∀k ∈ N)(ank
�∈ B (↵, ")).

By Corollary 3.47, this subsequence has a partial limit (in the wide sense) �.
Since � �∈ B (↵, "), it di↵ers from ↵. The proof is similar if ↵ = ±∞. n

Corollary 3.49 A sequence (an) converges in the wide sense to ↵ if and only
if ↵ is its only partial limit.

3.11 The exponential function

We have seen that the sequence

an = �1 + 1

n
�n

is bounded and monotonically increasing, hence converging. The limit, which
we denoted by

e = lim
n→∞�1 + 1

n
�n .

is a number between 2 and 3.
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Likewise, for every x ∈ R we may define the sequence

an = �1 + x

n
�n .

As for the case x = 1,
an = n�

k=0
�n
k
�xk

nk
= n�

k=0
1

k!

xk

nk

k−1�
j=1
(n − j) = n�

k=0
xk

k!

k−1�
j=1
�1 − j

n
� .

This sequence is increasing as the larger n the more terms there are, and the
k-th term is larger. Also,

an ≤ n�
k=0

xk

k!
.

Let N = �2x�, i.e., x�N < 1�2. Then, for n > N ,

an ≤ N�
k=0

xk

k!
+ n�

k=N+1
xk

k!

= N�
k=0

xk

k!
+ n�

k=N+1
xN

N !

xn−N
(N + 1) . . . n

= N�
k=0

xk

k!
+ xN

N !

n�
k=N+1

xn−N
(N + 1) . . . n

≤ N�
k=0

xk

k!
+ xN

N !

n�
k=N+1

1

2n−N

≤ N�
k=0

xk

k!
+ xN

2N !
.

The right-hand side is independent of n, which means that (an) is a bounded
sequence, hence converges. Since the sequence depends on x, so does the
limit. We define

exp(x) = lim
n→∞�1 + x

n
�n .

In particular,
exp(1) = e.

In the previous chapter, we define the notion of powers with real-valued ex-
ponents. Thus, for every x ∈ R, we can define a number ex, whose definition,
we recall, is

ex = sup{er � Q ∋ r ≤ x}.
We now claim that
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Theorem 3.50 For every x ∈ R,
exp(x) = ex.

That is,

lim
n→∞�1 + x

n
�n = sup{er � Q ∋ r ≤ x},

where

e = lim
n→∞�1 + 1

n
�n .

Proof : We will first show that this identity holds for every x ∈ N. Set
x =m ∈ N, and consider the sequence

an = �1 + m

n
�n .

Since it converges to exp(m), every subsequence converges to exp(m) as well.
Set nk =mk. Then,

ank
= �1 + m

mk
�mk = ��1 + 1

k
�k�m .

Since

lim
k→∞�1 + 1

k
�k = e,

it follows from limit arithmetic that

lim
k→∞ank

= � lim
k→∞�1 + 1

k
�k�m = em,

i.e.,

lim
n→∞�1 + m

n
�n = em.

Next suppose that x = p�q, p, q ∈ N, and consider the sequence

an = �1 + p

qn
�n .
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Then, consider the sequence

aqn = �1 + p

qn
�qn .

This sequence is a subsequence (every q-th term) of a sequence that converges
to ep, i.e.,

lim
n→∞aqn = ep.

Again, by limit arithmetic,

lim
n→∞aqn = � limn→∞an�q ,

which implies that (exp(p�q))q = ep,
or equivalently,

exp(p�q) = ep�q.
It remains to deal with the case x ∈ R. Note that both ex and exp(x) are
increasing functions of x. Consider the sets,

A = {exp(r) � Q ∋ r ≤ x} and B = {exp(r) � Q ∋ r ≥ x}.
We already know that

A = {er � Q ∋ r ≤ x} and B = {er � Q ∋ r ≥ x}.
For the latter case, we know that ex is the unique number separating the sets
A and B. Since exp(x) also separates A and B, it follows that

exp(x) = ex.
n—

28h(2017)—

3.12 Limit inferior and limit superior

Not taught this year.
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3.13 Cauchy sequences

In many cases, we would like to know whether a sequence is convergent even
if we do not know what the limit is. We will now provide such a convergence
criterion.

Definition 3.51 A sequence (an) is called a Cauchy sequence if

(∀" > 0)(∃N ∈ N)(∀m,n > N)(�an − am� < ").
Comment: A common notation for the condition satisfied by a Cauchy se-
quence is

lim
n,m→∞ �an − am� = 0.

Theorem 3.52 A sequence converges if and only if it is a Cauchy sequence.

Proof : One direction is easy1. If a sequence (an) converges to a limit ↵, then

(∀" > 0)(∃N ∈ N)(∀n > N)(�an − ↵� < "�2).
By the triangle inequality,

(∀" > 0)(∃N ∈ N)(∀m,n > N)(�an − am� ≤ �an − ↵� + �am − ↵� < "),
i.e., the sequence is a Cauchy sequence.

Suppose next that (an) is a Cauchy sequence. We first show that the sequence
is bounded. Taking " = 1,

(∃N ∈ N)(∀n > N)(�an − aN+1� < 1).
Then, for every n > N , �an� < �aN+1� + 1,

1
There is something amusing about calling sequences satisfying this property a Cauchy

sequence. Cauchy assumed that sequences that get eventually arbitrarily close converge,

without being aware that this is something that ought to be proved.
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whereas for n ≤ N , �an� ≤max
k≤N �ak�,

which proves that the sequence is bounded.

By the Bolzano-Weierstrass theorem, it follows that (an) has a converging
subsequence. Denote this subsequence by bk = ank

and its limit by �. We
will show that the whole sequence converges to �.

By the Cauchy property

(∀" > 0)(∃N ∈ N)(∀m,n > N)(�an − am� < "�2),
whereas by the convergence of the sequence (ank

),
(∀N ∈ N)(∃K ∈ N)(∀k >K)(�bk − �� < "�2).

Combining the two,

(∀" > 0)(∃N ∈ N)(∃k ∈ N ∶ nk > N)(∀n > N)(�an −�� ≤ �an − bk�+ �bk −�� < ").
This concludes the proof. n

Comment: Limits of sequences can be defined for only for sequences in R.
Limits can be defined for sequences in any metric space, which is a set S
on which a distance function d is defined. A sequence (an) in S converges
to ↵ ∈ S if (∀" > 0)(∃N ∈ N)(∀n > N)(d(an,↵) < ").
In any metric space we can define a Cauchy sequence: (an) is a Cauchy
sequence if (∀" > 0)(∃N ∈ N)(∀n,m > N)(d(an, am) < ").
It is not generally true that a Cauchy sequence in a metric space converges.
Metric spaces in which every cauchy sequence converges are called complete.
This is the fact the more general definition of completeness for an ordered
field.


