
Chapter 1

Fields

1.1 Motivation

Recall the times when you learned to solve a linear equation is one unknown,
say,

3X + 6 = 18. (1.1)

An equation “asks a question”: which number x yields an equality between
both sides of the equation when substituted for the unknown X. What did
you do? As a first step, you determined that if “something” plus 6 equals
18, then that “something” had to be equal 12, namely, that every solution
of (1.1) is also a solution of the equation

3X = 12.
Stated di↵erently, you used the fact that since the two sides of an equation are
by definition equal, then the equation will remain true if you subtract 6 from
both sides. As a second step, you determined that if 3 times “something”
equals 12, then by solving an unknown-factor problem, that “something” has
to be equal 4, finally, leading to the solution

x = 4.
In fact, 4 is the unique solution to (1.1).

Note that there are quite a few underlying assumptions in this way of solving
an equation. First, there is a notion of the two sides of an equation being
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in some sense “the same”. Second, this notion of equality justifies the fact
that if the same operation is applied on both sides, then the results of this
operation preserve the sameness of the two sides. Third, we assume the
existence of the operations of addition and multiplication, and their inverses,
subtraction and division. We used the fact if “unknown + number = number”
then “unknown” can be determined uniquely, and similarly for “unknown ×
number = number” (unless if the first number is zero).

But even before that, what are numbers? In the above example, we make do
with the natural numbers,

N = {1,2,3, . . .},
with which we are acquainted since early childhood.

Does every linear equation with coe�cients in N have a solution in N? No.
Consider the equation

X + 6 = 6.
It does not have solutions in N. If we want this equation to be solvable, we
must add to the natural numbers a new element, which we call zero, forming
now a set of numbers N ∪ {0}.
Does every linear equation with coe�cients in N ∪ {0} have a solution in
N ∪ {0}? No. Consider the equation

X + 8 = 6.
It does not have solutions in N∪{0}. If we want this equation to be solvable,
we must introduce the negative integers, which together with the natural
numbers and zero form the set of integers ( �.*/-:% .*952/%),

Z = {�,−2,−1,0,1,2, . . .}.
(The letter “Z” stands for the German word zahl, which means number.)

Does every equation with coe�cients in Z have a solution in Z? No. The
equations

4X = 3 and 4X = (−3)
do not have solutions in Z. Requiring these equation to be solvable requires
the introduction of the rational numbers ( �.**-1&*79% .*952/%), which are
denoted by Q (for quotients).
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The set of rational numbers gives us already the ability to solve any equation
of the form

aX + c = b,
where a, b, c ∈ Q as long as a ≠ 0 (we will discuss the case of a = 0 later). Thus,
the rational numbers are “complete” in the sense that any linear equation
with coe�cients in that set has a solution within that set.

The rational numbers are however not “complete” in other respects. More
than two millennia ago, it was discovered that the quadratic equation X2 = 2
does not have a solution within the set of rational numbers, leading eventually
to the definition of the set of real numbers ( �.**://% .*952/%), which we
denote by R. The set of real numbers extends the set of rational numbers in
a sense described in your Calculus class. And yet, even with this extension,
there still exist “simple” equations that are not solvable, such as

X
2 = (−1).

This observation has eventually led to the further extension of the set of
real numbers into the set of complex numbers ( �.*",&9/% .*952/%), which
we denote by C. The complex numbers are defined by introducing a new
“number” ı, satisfying ı2 = (−1), and then considering all combinations a+b ı,
with a, b ∈ R.
It should be noted that in the context of linear equations, denoting either Q,
R or C by the generic notation F, every equation of the form

aX + c = b,
where a, b, c ∈ F has a unique solution in F, provided that a ≠ 0.

1.2 Definition of a field

This course starts with the problem of solving systems of linear equations; as
we progress to higher levels of mathematics, we tend to abstract out concepts
that were formerly used without a formal definition. By the end of the day,
we want to do mathematics in a way that is independent of meaning. Thus,
we ask ourselves what is it that we want “numbers” to satisfy in order to be
able to solve linear equations featuring those numbers as coe�cients. The
answer is partly given above: whatever those numbers are, we want to be able
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to perform on them all the operations we would do with “school numbers”
to solve linear systems of equations.

This brings us to defining an algebraic structure called a field ( �%$:):
A field F is a set containing at least two di↵erent elements, which we call
zero and one, and denote by 0F and 1F. These elements are endowed with
two binary operations ( �;&*/&8/ &$ ;&-&35), which we call addition ( �9&"*()
and multiplication ( �-5,).
A binary operation on a set can be viewed as a “machine” taking for input
two elements in the set (in a prescribed order!), and returning for output
an element in that set, such that the output is uniquely determined by the
input. In the case where a ∈ F and b ∈ F are inputs for the addition operation,
we denote the output by a+b. The statement that the output be determined
by the input can be formalized into stating that to every a, b ∈ F there
corresponds a unique c ∈ F, such that c = a + b1. Likewise, if a ∈ F and b ∈ F
are inputs for the multiplication operation, we denote the output by a ⋅ b; to
every a, b ∈ F there corresponds a unique c ∈ F, such that c = a ⋅ b.
For F to be a field, more structure has a to be incorporated: addition and
multiplication have to satisfy nine properties, called the axioms of field
( �%$:% ;&/&*28!). Before stating the axioms, we should note that both addi-
tion and multiplication only act, by definition, on pairs of elements. Thus,
there is no meaning at this point to adding or multiplying three or more el-
ements. A binary operation can be extended to an operation on any (finite)
number of elements in a recursive way. Let a, b, c ∈ F. Their sum can be de-
fined by taking the sum of a+b and adding it to c. This repeated application
of the binary operation of addition is denoted using parentheses,

(a + b) + c.
This is however not the only alternative: we could have also added a to the
sum of b and c, the result of this compound action being denoted by

a + (b + c).
With that, we spell out the first four axioms, which are pertinent to addition:

1Throughout this text we will use the standard notation of set theory: if A is a set,
then a ∈ A means that a is an element in A, or that a belongs to A. For two sets A and
B, the relation A ⊆ B means that A is a subset of B, implying that every element in A
is also an element in B; note that this relation holds also if A = B. In fact A = B means
that both A ⊆ B and B ⊆ A.
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1. Addition is associative ( �*7&"*8): for all a, b, c ∈ F,
(a + b) + c = a + (b + c). (A1)

2. Addition is commutative ( �*5&-*(): for all a, b ∈ F,
a + b = b + a. (A2)

3. Zero is neutral to addition: for all a ∈ F,
a + 0F = a. (A3)

4. Every element a ∈ F has an additive inverse ( �*$#1 9"*!), which we
denote by (−a) ∈ F, satisfying

a + (−a) = 0F. (A4)

The next four axioms are analogous (with one big di↵erence!) and pertinent
to multiplication:

5. Multiplication is associative: for all a, b, c ∈ F,
(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c). (M1)

6. Multiplication is commutative: for all a, b ∈ F,
a ⋅ b = b ⋅ a. (M2)

7. One is neutral to multiplication: for all a ∈ F,
a ⋅ 1F = a. (M3)

8. Every non-zero (!!!) element 0F ≠ a ∈ F has a multiplicative inverse
( �*,5% 9"*!), which we denote by a−1 ∈ F, satisfying

a ⋅ a−1 = 1F. (M4)

Finally, the ninth axiom links between addition and multiplication:
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9. Multiplication is distributive ( �*#&-*5) over addition: for all a, b, c ∈ F,
a ⋅ (b + c) = a ⋅ b + a ⋅ c. (D)

Comments:

(a) Elements of a field are called scalars ( �.*9-82) (rather than numbers).

(b) When no ambiguity occurs, we may denote the product of two elements
by ab rather than by a ⋅ b.

(c) We denoted the elements zero and one by 0F and 1F to emphasize that
they may di↵er from the numbers zero and one. Nevertheless, when no
confusion arises, we may revert to the more standard notation 0 and 1.

(d) A priori, a scalar may be its own additive and/or multiplicative inverse.
In fact, 0F is always its own additive inverse and 1F is always its own
multiplicative inverse. We will shortly see an example in which 1F is
also its own additive inverse.

(e) Subtraction ( �9&2*() is defined as the addition of the additive inverse,

a − b = a + (−b),
whereas division ( �8&-*() (by a nonzero divisor) is defined as the mul-
tiplication by the multiplicative inverse,

a ÷ b = ab−1.
Exercises

(easy) 1.1 S is a set. S claims to be a field. List all the properties you
should check in order to verify whether S’s claim is correct.

(easy) 1.2 Draw an “addition machine”, which is a box having two input
ports (labeled Input 1 and Input 2) and one output port. Combine two such
machines to generate the output (a + b) + c. Combine two such machines to
generate the output a + (b + c).
(easy) 1.3 Let F be a field. Prove that for every a ∈ F,

0F − a = (−a).
Likewise, prove that for every F ∋ a ≠ 0F,

1F ÷ a = a−1.
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1.3 Examples

Example: We are already acquainted with three fields, Q, R and C. Since

Q ⊂ R ⊂ C,
this may give the impression that all the fields in the world form a hierarchy
of inclusions. This is not the case, as the next example shows. ▲▲▲
Example: A field is fully determined by its elements, and its tables of
addition and multiplication. The smallest possible field is one consisting of
just two elements, zero and one, along with the addition and multiplication
tables:

+ 0 1
0 0 1
1 1 0

⋅ 0 1
0 0 0
1 0 1

It takes some explicit verification to check that this is indeed a field (do you
recognize it?). This field is commonly denoted by F2. That addition and
multiplication are commutative is apparent by the symmetry of the tables.
The neutrality of zero and one is also apparent. For associativity and dis-
tributivity we actually have to examine all the cases. Finally, 0 is its own
additive inverse and 1 is both its own additive and multiplicative inverses.▲▲▲
Exercises

(intermediate) 1.4 Consider a set consisting of three elements {0,1,2}
along with two binary operations defined by

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⋅ 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

How many verifications need to be done to determine whether it is a field
(without taking shortcuts)? Verify that this is indeed a field (and you may
take shortcuts). This field is commonly denoted by F3.
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(harder) 1.5 Construct a field having four elements. Hint: construct first
the multiplication table. Then, construct addition tables and show that only
one of them is consistent with all axioms.

(easy) 1.6 Consider the following set

S = ��1, a� ∶ a ∈ R� ,
along with two binary operations,

�1, a�⊕ �1, b� = �1, a + b� and �1, a�⊙ �1, b� = �1, ab� ,
where the addition and the multiplication on the right-hand sides are the
standard addition and multiplication in R.

(a) Does S have an element neutral to ⊕?
(b) Does S have an element neutral to ⊙?
(c) Is S with ⊕ and ⊙ a field.

(intermediate) 1.7 Consider the following set

T = ��a, b� ∶ a, b ∈ R� ,
along with two binary operations,

�a, b�⊕ �c, d� = �a + c, b + d� and �a, b�⊙ �c, d� = �ac, bd� ,
where the addition and the multiplication on the right-hand sides are the
standard addition and multiplication in R.

(a) Does T have an element neutral to ⊕?
(b) Does T have an element neutral to ⊙?
(c) Is T with ⊕ and ⊙ a field.

1.4 Solvability of linear equations

We next show that every linear equation in one unknown with parameters in
a field has a unique solution within that field:
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Theorem 1.1 Let F be a field and let a, b, c ∈ F with a ≠ 0F. Then, the linear
equation

aX + c = b
has a solution and this solution is unique.

Proof : There are two claims to be proved: first, that there exists an x ∈ F
such that

ax + c = b,
and second, that if x, y ∈ F both satisfy

ax + c = b and ay + c = b,
then x = y.
For existence, x = a−1(b + (−c)) is a solution, as

a �a−1(b + (−c))� + c (M1)= (aa−1)(b + (−c)) + c
(M4)= 1F ⋅ (b + (−c)) + c
(M3)= (b + (−c)) + c
(A1)= b + (c + (−c))
(A4)= b + 0F
(A3)= b.

(Be sure to understand the justification of each passage.)

To prove uniqueness, suppose that

ax + c = b and ay + c = b.
Since both left-hand sides equal to b, they are equal, i.e.,

ax + c = ay + c.
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We now proceed with the following deductions:

(ax + c) + (−c) = (ay + c) + (−c)
ax + (c + (−c)) = ay + (c + (−c))

ax + 0F = ay + 0F
ax = ay

a
−1(ax) = a−1(ay)
(a−1a)x = (a−1a)y

1F ⋅ x = 1F ⋅ y
x = y.

(Be sure you understand why we had to assume that a ≠ 0F both for the
existence and the uniqueness.) n

The above proposition has a number of implications pertinent to any field:

Corollary 1.2 (Uniqueness of zero) If there exist b, x ∈ F such that

x + b = b,
then x = 0F.
Proof : Consider the linear equation

X + b = b.
Since x = 0F is a solution of this equation, it follows from the uniqueness
property that x + b = b implies that x = 0F. n

Corollary 1.3 (Uniqueness of the additive inverse) If there exist

b, x ∈ F such that

x + b = 0F,
then x = (−b) (in other words, the additive inverse is unique).

Proof : Consider the linear equation

X + b = 0F.
Since x = (−b) is a solution of this equation, it follows from the uniqueness
property that x + b = 0F implies that x = (−b). n
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Exercises

(easy) 1.8 Prove that if there exist a, x ∈ F, a ≠ 0, such that

x ⋅ a = a,
then x = 1F.
(easy) 1.9 Prove that if there exist a, x ∈ F such that

x ⋅ a = 1F,
then x = a−1 (in other words, the multiplicative inverse is unique).

(harder) 1.10 Let F be a field. Prove that for every a ∈ F,
a ⋅ 0F = 0F.

Hint: consider the equation X+a⋅0F = a⋅0F and show that x = 0F and x = 0F ⋅a
are both solutions, hence must be equal.

(harder) 1.11 Let F be a field. Prove that for every a, b ∈ F,
ab = 0F if and only if a = 0F or b = 0F.

Comment: the word or has a di↵erent meaning in mathematics than in our
daily language. The “mathematical” or is inclusive: in this case, either
a = 0F, or b = 0F or both a = b = 0F. Hint: there are two separate claims to
prove; formulate each claim separately.

(intermediate) 1.12 Let F be a field. Prove that for every a, b, c, d ∈ F
(a) −(−a) = a.
(b) (a−1)−1 = a.
(c) (−1)a = (−a).
(d) (−0) = 0.
(e) a ≠ 0 if and only if (−a) ≠ 0.
(f) a = b if and only if a − b = 0.
(g) −(a + b) = −a − b.
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(h) −(a − b) = b − a.
(i) (−a)b = a(−b) = −(ab).
(j) (−a)(−b) = ab.
(k) a ⋅ a = 1 if and only if a = 1 or a = −1.
(l) a ⋅ a = b ⋅ b if and only if a = b or a = −b.

(m) If a, b ≠ 0 then (ab)−1 = a−1b−1.
(n) If a ≠ 0 then 0�a = 0.
(o) a�1 = a.
(p) If b, d ≠ 0 then a�b = c�d if and only if ad = bc.
(q) If b, d ≠ 0 then (b�d)−1 = d−1�b−1.
(r) If b, d ≠ 0 then (a�b)(c�d) = (ac)�(bd).
(s) If b, d ≠ 0 then a�b + c�d = (ad + bc)�(bd).

1.5 Equality as an equivalence relation

One of the hidden assumptions throughout this section is the properties of
the equality sign, and its consistency with the operations of addition and
multiplication. Equality is an instance of an equivalence relation (2(*
�;&-*8:). By that we mean the following:

(a) Every element in a set is equal to itself, i.e., for every a ∈ F,
a = a.

(This property of being equivalent to oneself called reflexivity.)

(b) Equality is symmetric: for all a, b ∈ F,
a = b implies b = a.

(c) Equality is transitive: for every a, b, c ∈ F,
a = b and b = c imply a = c.
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You will encounter many equivalence relations throughout your studies, in-
cluding in this course.

Moreover, we assume that addition and multiplication are consistent with
this notion of equivalence, namely, for all a, b, c ∈ F,

a = b implies a + c = b + c,
and

a = b implies a ⋅ c = b ⋅ c.
This assumption is the basis for the practice of adding the same term to both
sides of an equation.

Exercises

(easy) 1.13 Show that

a = b and c = d implies a + c = b + d,
and

a = b and c = d implies a ⋅ c = b ⋅ d.

1.6 Extended associativity and commutativ-
ity

Associativity for finite sums The associativity of addition (and similarly
of multiplication) assert that for every three scalars a, b, c ∈ F

(a + b) + c = a + (b + c).
What about the addition of four scalars. Without switching the order of the
addends, we have the following alternative ways of adding up four addends
a, b, c, d ∈ F,

((a + b) + c) + d (a + (b + c)) + d (a + b) + (c + d)
a + ((b + c) + d) a + (b + (c + d)) (1.2)

The associativity of addition generalizes to any number of addends. If there
are n addends, then n−2 pairs of parentheses are needed in order to prescribe
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the order of summation. The generalized law of associativity (which follows
from the associativity for 3 addends) asserts that addends may be grouped
in any order, always yielding the same sum.

The summation sign Let a1, . . . , an ∈ F, where n may be any natural
number. We may denote their sum by

a1 + a2 + ⋅ ⋅ ⋅ + an.
While this notation may be self-explanatory. there may be cases where the
use of an ellipsis (three dots) is ambiguous. The more formal way or writing
this sum is

n�
i=1

ai or �
1≤i≤n

ai,

which we read as “the sum of all ai’s where i ranges from one to n”. Formally,
this sum is defined inductively ( �;*"*)8&$1*! %9$#%) as follows:

1�
i=1

ai = a1,
and for all n > 1,

n�
i=1

ai = n−1�
i=1

ai + an.
Note that such a definition is meaningful even if the operation is nor asso-
ciative nor commutative.

Example: Let’s follow the inductive definition for

x = 4�
i=1

i(i + 1).
Unfolding the recursion we obtain

4�
i=1

i(i + 1) = 3�
i=1

i(i + 1) + 4 ⋅ 5
= � 2�

i=1
i(i + 1) + 3 ⋅ 4� + 4 ⋅ 5

= �� 1�
i=1

i(i + 1) + 2 ⋅ 3� + 3 ⋅ 4� + 4 ⋅ 5
= ((1 ⋅ 2 + 2 ⋅ 3) + 3 ⋅ 4) + 4 ⋅ 5.
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▲▲▲
Commutativity for finite sums Commutativity is inherently a binary
property. As such it can only be generalized to multiple addends (or factors)
when combined with associativity. The generalized law of commutativity and
associativity can be formalized as follows: let a1, . . . , an ∈ F be a collection
of scalars. Let � be a permutation ( �%9&/;): � is a function taking for
input an index {1, . . . , n} and returning an index is that same set, such that
every index is mapped to a distinct index. That is, a�(1), a�(2), . . . , a�(n) is
a reordering of a1, . . . , an ∈ F. The generalized law of commutativity asserts
that

n�
i=1

ai = n�
i=1

a�(i).

Example: Let n = 5 and let �(1) = 3, �(2) = 1, �(3) = 4, �(4) = 2 and
�(5) = 5. Then,

5�
i=1

a�(i) = a3 + a1 + a4 + a2 + a5.
▲▲▲

Let a1, a2, . . . , an ∈ F and b1, b2, . . . , bn ∈ F. It can be shown inductively on n

that
n�
i=1

ai + n�
i=1

bi = n�
i=1
(ai + bi).

Likewise, for c ∈ F,
c� n�

i=1
ai� = n�

i=1
(c ai).

n-tuples of field elements We consider the set of all ordered n-tuples of
element of a field, i.e., elements of the form

(a1, . . . , an),
where ai ∈ F for all i = 1, . . . , n. We denote this set by

Fn = {(a1, . . . , an) ∶ ai ∈ F, i = 1, . . . , n} .
More generally, let S be a set, then

S
n = {(s1, . . . , sn) ∶ si ∈ S, i = 1, . . . , n}.
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For reasons that will become apparent later in this course, we will sometimes
write n-tuples of scalars as columns delimited by square brackets; we denote
this set by

Fn

col
=
���������
�������
x1

⋮
xn

�������
∶ xi ∈ F, i = 1, . . . , n

���������
.

At other times, the scalars will be arrange in a row delimited by square
brackets, and we denote this set by

Fn

row
= ��a1 . . . an� ∶ ai ∈ F, i = 1, . . . , n� .

At times, when writing columns is calligraphically annoying we will write

�x1 . . . xn�T =
�������
a1⋮
an

�������
.

The reasons for this apparent nonsense (who cares about the form of paren-
theses and why write scalars in columns?) will be clarified later on.

Exercises

(easy) 1.14 Let S be a set. Describe the sets (S2)3 and (S3)2.
(easy) 1.15 Prove that all five ways of adding four addends in (1.2) yield
the same sum.

(intermediate) 1.16 Prove using an inductive argument that

n�
i=1

ai + n�
i=1

bi = n�
i=1
(ai + bi).

(intermediate) 1.17 Prove that for every 1 < k < n.
n�
i=1

ai = k�
i=1

ai + n�
i=k+1

ai.

Hint: use an inductive argument on k.

(intermediate) 1.18 Calculate the following sums
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(a) ∑20

n=3 (k ⋅ k − (k − 1) ⋅ (k − 1)).
(b) ∑99

n=1 1

n(n+1) .

Hint: you’re not supposed to carry out tedious calculations.

(intermediate) 1.19 Unfold and evaluate the following sum,

S = 3�
i=1
� i�
j=1
(i + 2j)� .

(harder) 1.20 Let

{aij ∈ F ∶ 1 ≤ i ≤ n, 1 ≤ j ≤m}
be a set of mn scalars. Show that

n�
i=1
� m�
j=1

aij� = m�
j=1
� n�
i=1

aij� .
(This equality is an instance of Fubini’s theorem which you will encounter
later in your studies in di↵erent contexts.)

(harder) 1.21 Let

{aij ∈ F ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ n}
be a set of n2 scalars. Show that

n�
i=1
� i�
j=1

aij� = n�
j=1
� n�
i=j

aij� .
(harder) 1.22 True or false? For every n ∈ N and sequences a1, . . . , an,
b1, . . . , bn,

� n�
i=1

an�� n�
i=1

bn� = n�
i=1

anbn.
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