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We study equilibrium configurations of thin and elongated non-Euclidean elastic strips with hyperbolic two-
dimensional reference metrics ā which are invariant along the strip. In the vanishing thickness limit energy minima
are obtained by minimizing the integral of the mean curvature squared among all isometric embeddings of ā.
For narrow strips these minima are very close to minimal surfaces regardless of the specific form of the metric.
We study the properties of these “almost minimal” surfaces and find a rich range of three-dimensional stable
configurations. We provide some explicit solutions as well as a framework for the incorporation of additional
forces and constraints.
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I. INTRODUCTION

In many naturally forming systems simple local growth
rules result in complex shapes (see, e.g., Sharon et al. [1]).
Often the complexity of the shapes is due to geometrical
constraints, namely the unavailability of configurations that
preserve the symmetries of the underlying growth rule. For
example, in Ref. [1] a featureless constant growth enhancement
along the perimeter of an eggplant leaf results in a wavy
pattern, generated in order to accommodate the excess in area.

Unlike standard buckling and crumpling mechanisms (of
stress-free bodies) that are associated with external forces or
confinement, in the case described above the confinement is
imposed by the ambient Euclidean space which precludes the
existence of stress-free configurations. We refer to the latter
case as shaping through geometric frustration.

In the mechanical context geometric frustration is mani-
fested as residual stress (the presence of stress in the absence
of external forces). The identifying characteristic of residually
stressed bodies is that their configuration changes significantly
if their integrity is compromised. For example, Vandivier and
Goriely [2] showed by dissecting a residually stressed rhubarb
stalk how the various peels undergo a significant change in
length once disconnected one from the other. Conversely, if
the dissection of a growing tissue causes a change in shape of
its constituents, then the mechanical description of the tissue
must take into account residual stress.

A hyperelastic theory that connects residual stress to
geometric frustration has been available for several decades
(see, for example, Wang [3] and Kröner [4]). For homogeneous
and isotropic (amorphous) materials the only local property
characterizing the body is a reference metric (rest distances
between material elements). The energy density within a body
of a given configuration is a function of the metric discrepancy
between the reference metric and the actual metric associated
with the configuration. Geometric frustration occurs when
the reference metric cannot be embedded in the ambient
three-dimensional Euclidean space (i.e., the reference metric
is nonflat).

Thin elastic bodies are often described by reduced
2D theories [5] in which the thin body is modeled as

a two-dimensional surface embedded in three-dimensional
space. Such a surface is uniquely determined (modulo rigid
motion) by its two fundamental forms which must satisfy com-
patibility conditions. The prescription of a three-dimensional
reference metric on a thin body is modeled by the prescription
of reference first and second fundamental forms. Geometric
frustration corresponds to incompatible first and second
fundamental forms [6].

A subclass of incompatible thin bodies, named non-
Euclidean plates, corresponds to the case where the reference
second fundamental form vanishes identically, but the refer-
ence first fundamental form (the two-dimensional metric) is
nonflat, that is, has a nonvanishing Gaussian curvature. In such
bodies the only shaping mechanism is the two-dimensional
reference metric [7]. The elastic energy of such plates can be
decomposed into a stretching term which measures strains
along the midsurface and a bending term. The stretching
vanishes for isometric embeddings of the two-dimensional
reference metric, whereas the bending term vanishes only for
planar configurations.

Non-Euclidean plates can be viewed as composed of
identical surfaces stacked one on top of the other, each of
the surfaces being nonplanar. Whenever a thin sheet bends,
the outer layer (with respect to the curvature of the sheet)
elongates compared to the inner layer. It is the invariance of the
geometry of the layers that renders these sheets “plate-like”,
such that they assume a vanishing bending energy only for
flat configurations. For further discussion about the properties
of non-Euclidean plates and naturally occurring examples the
reader is referred to the review [8].

Finding the elastic equilibrium configuration of extremely
thin non-Euclidean plates amounts to finding the bending-
minimizing isometry of their two-dimensional reference met-
ric [9,10]. In general, finding a bending-minimizing isometry
of a given two-dimensional metric is a formidable task which
can be solved explicitly only in very particular cases. Naively,
one would attempt to minimize the bending energy density
locally, however, the compatibility conditions preclude the
existence of such solutions [6]. In the present work we identify
one particular scenario in which local bending minimization
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FIG. 1. (Color online) An illustration of Euclidean and non-
Euclidean strips. Three types of unit cells are depicted, and above
each such unit cell we display strips obtained by stacking multiple
copies of them one on top of the other. (a) A rectangular block:
the side length along the v direction is constant. (b) When multiple
blocks are stacked one on top of the other along the v direction a
straight thin and narrow strip is obtained. (c) A block whose length
along the v direction varies linearly with the u coordinate. (d) When
multiple blocks are stacked the resulting strip remains planar, yet
curves in the plane to accommodate the length variation. (e) A block
displaying a nonlinear length variation. When such blocks are stacked
along the v direction the resulting strip must curve out of plane in
order to accommodate the nonlinear length variation. There are many
different configurations compatible with the prescribed lengths. Two
such configurations are depicted: (f) a catenoid-like configuration
and (g) a helicoidal configuration. In the limit of vanishing unit cell
length, the length variation within the unit cell maps onto a metric for
the strip. A nonlinear length variation along the v direction yields a
non-Euclidean metric.

can approximate the sought isometry: narrow strips, that is,
plates in which an additional dimension is relatively small.

In the schematic illustration in Fig. 1, Euclidean and
non-Euclidean strips are composed of “unit cells”. The length
variation of the unit cells effectively endows the sheets with a
metric. Since a unit cell is flat and contains no structure across
it thickness, the resulting strip will have no tendency to bend,
hence will have a vanishing second fundamental form. While
no strain needs to be introduced to stack the compatible cells
[1(a), 1(c)], there is a need to deform at least one of of the
blocks in the incompatible case [1(e)].

The unit cells in Fig. 1 can be interpreted as arbitrary
sections of a continuous growing tissue, such as that of a
plant leaf. For example, inhomogenous differential growth
can transform the unit cell depicted in Fig. 1(a) into the
unit cell depicted in Fig. 1(e). The corresponding equilibrium
configuration appearing in Fig. 1(b) will transform into a
buckled configuration similar to that in Fig. 1(f). In this sketch,
the unit cells are discrete realizations of a spatially varying
metric. For examples of such strips, the reader is referred
to [12,13] where the nonuniform growth of an algae blade
(as well as the nonuniform irreversible deformation of a thin
sheet) is shown to result in configurations similar to those in
Figs. 1(f) and 1(g). The growth (or irreversible deformation) in
these systems induces the non-Euclidean metric. As the growth
(or irreversible deformation) profile does not significantly vary

L0L1

(a) (b)

FIG. 2. (Color online) An illustration of a nanometric non-
Euclidean strip. Silicon doped carbon nanoribbon. (a) A single carbon
base unit cell in which the right-most and left-most atoms were
replaced by silicon atoms. The silicon-carbon bond length (L1) is
roughly 15% longer than the carbon-carbon bond length (L0). When
a single unit cell is considered, its equilibrium configuration lays in
the plane. (b) When six such unit blocks are connected, the resulting
ribbon will bend out of plane to accommodate the length variation
across its width, similarly to the strip in Fig. 1(f). The length scale
of the Gaussian curvature associated with the silicon doping-induced
elongation is of the order of the width of the strip. Therefore, while the
strip depicted in (b) is a non-Euclidean plate, it cannot be considered
narrow. The figures above are only illustrations; for further details
see [11].

across the thickness, no reference curvatures are prescribed and
the resulting strips are plate-like.

An alternative interpretation of the unit cells depicted
in Fig. 1 is as molecular building blocks. These building
blocks can be composed of large molecules that self-assemble
to form ribbon-like macromolecular structures of a micron
scale [14], or contain just a few atoms and form structures
of nanometric scale (as described in Fig. 2). In both cases,
whenever the building blocks are symmetric (about their
midsurface), the resulting macromolecule possess no reference
curvature. While nanometric structures cannot be considered
narrow, macromolecules of micrometric dimensions [14], as
well as elongated leaves [12] and some algae blades [13],
exhibit large aspect ratios in all three dimensions, that is,
they are both thin and narrow. Thus, studying equilibrium
configurations of hyperbolic non-Euclidean strips is important
for our understanding of both macroscale and microscale
chemical and biological structures.

Finding a bending energy minimizing isometry of a narrow
and long flat strip has been addressed more than 80 years
ago by Sadowsky [15]. Mansfield [16] accounted for the finite
width perturbatively, and more recently Starostin and van der
Heijden [17] carried out an exact analysis of wide strips to
find the bending minimizing conformation of a developable
möbius strip (which is topologically constrained). Recently
Marder and Papanicolaou [18] considered flat strips with linear
metric gradients, and showed that under suitable boundary
conditions elastic equilibria assume helical shapes. While for
a flat strip the unconstrained problem yields only a trivial
solution, when considering a hyperbolic metric even very
narrow unconstrained strips give rise to nontrivial bending
minimizing embeddings.
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Here we study in detail non-Euclidean strips whose intrinsic
geometry is translationally invariant along their longitudinal
direction. We construct approximate elastic equilibria which
we term “almost minimal”, as their mean curvature is
uniformly small. These surfaces have, in the general case,
a discrete symmetry. The fundamental forms are periodic,
however the resulting surfaces are not necessarily closed. We
show that in order to characterize these solutions it is sufficient
to predict the shape of a single curve along the strip, which we
take to be the midcurve. This procedure yields a unique energy
minimizer (for an infinite strip) whose bending energy scales
like w5.

As long as the width of the strip is immaterial to the
configuration, we can identify all the properties of the surface
with the shape of the midcurve and express the bending energy
of the strip as a functional of the configuration of the midcurve.
The latter is fully determined by the local curvature κ and
torsion τ . Such an elastic energy depending only on κ and τ

and not on the twist field is typical for anisotropic rods having
an infinite bending stiffness in one direction. As a result of
the anisotropy the relative orientation of the material frame
of the rod and the Serret-Frenet frame of its centerline is
prescribed [19]. While the rod-like energy density given by
the square of (C5) may seem artificial in the context of rods,
it arises naturally in the context of thin narrow non-Euclidean
strips.

The bending energy minimizer, whose energy is of order
w5, resides in a shallow “energy well” comprised of a
continuum of configurations with energies of order w3. This
implies the existence of a “soft” deformation mode along
which the energy gradient is very weak. By characterizing this
family of low-energy configurations, we are able to include in
our treatment unconstrained strips of finite length as well as
additional boundary conditions and external potentials.

II. NON-EUCLIDEAN PLATES

The intrinsic geometry of a residually stressed amorphous
body is characterized by a three-dimensional reference metric
ḡ that cannot be immersed isometrically in the ambient
three-dimensional Euclidean space (e.g., [20] and references
therein). Thus, every immersion (i.e., physical configuration)
necessarily involves a metric discrepancy—a strain—with
respect to the reference metric ḡ, and the equilibrium is
postulated to be the configuration that minimizes the elastic
energy associated with this metric discrepancy. In Ref. [6]
the elastic energy was taken to be a mean square difference
between the actual metric and the reference metric, but
other energy functions can be considered readily within this
formalism.

A reduced two-dimensional theory was derived (using a
formal asymptotic expansion) for the case where the elastic
body is thin, that is, when the (finite) thickness t of the body
is smaller than all other length scales [21]. The reduced model
was given the name of either non-Euclidean plate or non-
Euclidean shell, depending on whether the reference metric
varies along the thin dimension (shells) or not (plates). A
non-Euclidean plate is modeled as a surface immersed in R3,
that is, as a mapping f : S → R3, whereS ⊂ R2 is the domain
of parametrization; points in S are denoted by x = (x1,x2).

Recall that the first and second fundamental forms of a surface
in R3 are given by (e.g., [22])

aαβ = ∂α f · ∂β f and bαβ = ∂α∂β f · N , (1)

where ∂α = ∂/∂xα and N is the unit vector normal to the
surface; here and below we use Greek characters to denote
the indices 1,2. (The surface is assumed to be orientable, not,
for example, a Möbius strip, in which case a continuous unit
normal can be defined unambiguously.) The (dimensionless)
elastic energy per unit thickness associated with a non-
Euclidean plate is

E[ f ] = ES[ f ] + t2 EB[ f ], (2)

where

ES =
∫

S
Aαβγ δ(aαβ − āαβ)(aγ δ − āγ δ) dS

and

EB = 1

3

∫
S
Aαβγ δbαβbγ δ dS

are the stretching and bending contents, respectively, āαβ is
a two-dimensional reference metric, dS = √|ā|dx1dx2 is the
surface element, and

Aαβγ δ = ν

1 − ν
āαβ āγ δ + 1

2
(āαγ āβδ + āαδāβγ )

is the elastic tensor. Here ν is the Poisson ratio and āαβ is the
tensor reciprocal to āαβ . We use Einstein’s summation rule,
whereby repeated indices imply a summation.

The two-dimensional reference metric ā is induced by a
three-dimensional reference metric ḡ, which does not vary
across the thin dimension (ā is the projection of ḡ onto the
manifold tangent to the midsurface). The nonimmersibility
of a three-dimensional plate metric ḡ reflects in the two-
dimensional metric ā being nonflat, that is, having a nonzero
Gaussian curvature [6]. In such case, the energy is necessarily
positive as the stretching term is zero if and only if aαβ = āαβ ,
whereas the bending term is zero if and only if the surface
is flat, namely bαβ = 0. Since the Gaussian curvature is an
isometric invariant this cannot occur if ā is nonflat [23].

The first and second fundamental forms of a surface (1) are
not independent. They are constrained by a set of algebraic-
differential equations, the Gauss–Mainardi–Peterson–Codazzi
(GMPC) equations,

∂2b11 − ∂1b12 = b11

1
12 + b12

(

2

12 − 
1
11

) − b22

2
11,

∂2b12 − ∂1b22 = b11

1
22 + b12

(

2

22 − 
1
12

) − b22

2
12, (3)

b11b22 − b2
12 = K

(
a11a22 − a2

12

)
,

where 
α
βγ are the Chistoffel symbols associated with the

Riemannian connection,


α
βγ = 1

2aαη(∂βaηγ + ∂γ aηβ − ∂ηaβγ ) (4)

and K is the Gaussian curvature, which by Gauss’ theorem
only depends on the first fundamental form and its derivatives.
The two-dimensional elastic problem thus consists of finding
the immersion f that minimizes the elastic energy (2). Equiv-
alently, it consists of finding first and second fundamental
forms a,b that minimize the energy (2) under the constraints
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of the GMPC equations (3). It should be noted that in the latter
case the space of admissible metrics consists of continuous,
nonsingular metrics, which ensures that the immersion is
orientation preserving. This local condition does not prevent
the surface from intersecting itself in the large. Models
that take into account nonlocal interactions are notoriously
harder to work with. On the other hand, if the optimal immer-
sion turns out to be an embedding, then it is automatically also
the optimal embedding.

The thickness of the plate t plays a fundamental role
as a parameter that determines the relative weight of
the stretching and the bending. Very thin plates tend to
minimize the stretching, that is, to be close to isometric
immersions of the reference metric āαβ , whereas thicker plates
tend to minimize the bending, that is, assume flat, or nearly flat
configurations. Analyses of the thin-plate limit were presented
in [9,10] with the following outcomes.

(1) Assuming that the metric ā admits an isometric im-
mersion with finite bending content, any sequence of (ap-
proximate) minimizers converges as t → 0 to an isometric
immersion of ā that minimizes the bending content. (More
precisely, there is a subsequence that converges to a minimizer
of the bending content; if such a minimizer is unique then the
whole sequence converges.). This result was proved in [10]
using 
-convergence techniques starting from a model of
three-dimensional incompatible elasticity. It is not hard to see
that this implies convergence to the same limit if one departs
from the two-dimensional model of non-Euclidean plates.

(2) Under the same assumptions the deviation from the
vanishing thickness limit (for finite but small thickness) is
localized in a narrow layer at the boundary of the domain. The
width of this boundary layer scales like (t/κ‖)1/2, where κ‖ is
the normal curvature of the surface along the boundary (in the
unperturbed bending-minimizing isometry).

For an isometric immersion, that is, a = ā, the bending
content is equal to

EB = 1

3

∫
S

[
ν

1 − ν
(k1 + k2)2 + k2

1 + k2
2

]
dS

= 1

3

∫
S

(
4H 2

1 − ν
− 2K

)
dS, (5)

where k1 and k2 are the principal curvatures and H =
1
2 tr(a−1b) = 1

2 (k1 + k2) is the mean curvature. Since K is
a metric invariant, the minimum bending is obtained by
minimizing the so-called Willmore energy ( [24], p. 106)

EW =
∫

S
H 2 dS (6)

with respect to all isometric immersions of the given metric ā.

III. HYPERBOLIC SURFACES

Considering the second fundamental form b as the unknown
and the first fundamental form a = ā as given, the type of
the GMPC equations (3) depends on the type of the surface.
Elliptic surfaces K > 0 give rise to an elliptic system of
equations, whereas hyperbolic surfaces K < 0 give rise to a
hyperbolic system of equations. We focus on the second case.
For hyperbolic surfaces a useful change of variables reduces

the system of three algebraic-differential equations (3) into a
system of two quasilinear differential equations which can be
attributed a natural geometric interpretation. Define

k = (−K)1/2 and q = |a|1/2,

where |a| = det(a). A hyperbolic surface has at every point a
pair of asymptotic directions along which the normal curvature
vanishes. The tangents of the angles that the asymptotic curves
form with respect to the x1 direction, denoted by r and s, are
given by

r = −b12 − qk

b22
and s = −b12 + qk

b22
. (7)

The inverse transformation from r,s to the second fundamental
form is

b11 = 2rsqk

s − r
, b12 = − (r + s)qk

s − r
, and b22 = 2qk

s − r
.

(8)

As derived by Rozhdestvenskii [25] and Shikin and Poznyak
[26], substituting (8) into the GMPC equations (3) yields

∂1r + s ∂2r = F (r,s,x),
(9)

∂1s + r ∂2s = F (s,r,x),

where

F (r,s,x) = A0 + A1r + A2s + A3r
2 + A4rs + A5r

2s,

and the coefficients Ai = Ai(x) are metric invariants

A0 = −
2
11, A1 = −
2

12 + 
1
11 + ∂1k

2k
,

A2 = −
2
12 − ∂1k

2k
, A3 = 
1

12 + ∂2k

2k
, (10)

A4 = 
1
12 − 
2

22 − ∂2k

2k
, A5 = 
1

22.

The system (9), viewed as a differential system for r,s with
aαβ given, has a number of remarkable properties.

(1) It is symmetric with respect to the transformation r ↔
s, which simply reflects the fact that there is nothing that
distinguishes one family of asymptotic curves from the other.

(2) The variables r and s are Riemann invariants, namely
their value along characteristic curves is only affected by lower
order terms (e.g., [27] p. 593). Moreover, r is the slope (or
speed) of the characteristic curve that carries s and vice versa.
That is, (∂1 + r∂2)s is the rate-of-change of the slope s of
an asymptotic curve along the other asymptotic curve whose
slope is r .

(3) The system (9) does not exclude situations where r = s,
yet it loses then its geometrical meaning. When r = s not
only do the two characteristic curves locally coincide, but also
the transformation (8) inverse to (7) shows that the second
fundamental form diverges.

(4) In the context of a hyperbolic system we may view x1

as a “time coordinate” and x2 as a “space coordinate”. This
distinction is of course artificial, and sensible only if “initial
data” are provided along a constant-x1 parametric curve (which
may be the case, for example, if the shape of the surface is
imposed along a boundary).
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(5) While as a differential system (9) requires r and s

to be real valued, situations where r,s = ±∞ make perfect
geometric sense, as they only mean that the asymptotic curves
are tangent to constant-x1 parametric curves. The question of
how to cope with the tangency of the initial data curve and
characteristics is briefly addressed in the Appendix A, but to a
large extent remains open.

(6) The low-order source terms on the right-hand side,
F (r,s,x) and F (s,r,x), are cubic polynomials, and therefore
may lead to finite-“time” blowup. This blowup is sometimes
related to the “finite horizon” of hyperbolic surfaces which
occurs when r = s or 1/r = 1/s = 0.

The knowledge of r and s, along with the first fundamental
form, is equivalent to the knowledge of the two fundamental
forms and by the fundamental theorem of surface geometry
uniquely determines the surface up to rigid transformations.
The fact that the two variables r,s (given the first fundamental
form) embody the same information as the three variables
b11,b12,b22 results from Gauss’s theorema egregium, whereby
the Gaussian curvature is a metric invariant. In particular, the
mean curvature H can be expressed in terms of the variables
r,s,

H = 1

2
aαβbβα = k

q

a11 + a12(r + s) + a22rs

s − r
. (11)

IV. NON-EUCLIDEAN STRIPS

We now turn our attention to a subclass of non-Euclidean
plates, which we name non-Euclidean strips. The domain of
parametrization is assumed to be of the form

S = [−w/2,w/2] × [0,L], (12)

where w and L stand for “width” and “length”, with a two-
dimensional reference metric (in semigeodesic form) that is
independent of x2,

āαβ =
(

1 0

0 ϕ2(x1)

)
, (13)

that is, the intrinsic geometry of the body is invariant along
the strip. Since ā11 = 1 it follows that this surface is a strip of
constant width w. Our working hypothesis is that t � w � L,
that is, we are in a regime of thin and narrow strips. Without
loss of generality we may also assume that ϕ(0) = 1, that
is, the x1 = 0 parametric curve (the midcurve) has arclength
parametrization, and that the Gaussian curvature along the
midcurve has absolute value |K| = 1 (which amounts to a
choice of unit length scale).

Example. As a canonical example consider the case where
the Gaussian curvature is constant and equal to K = −1,
that is, k = (−K)1/2 = 1. The family of functions ϕ that
corresponds to this choice is

ϕ(x1) = cosh x1 − κg sinh x1, (14)

where κg is the geodesic curvature of the midcurve. The
particular choice κg = 0 corresponds to the case where
midcurve is a geodesic, in which case the geometry of the strip
is symmetric with respect to reflections about the midcurve.

We require the width w of the strip to be large not only
compared to its thickness but also compared to the width
of the bending-dominated boundary layer. Assuming that the

magnitudes of the two principal curvatures are comparable,
|k1| ∼ |k2| ∼ k = |K|1/2, then the width of the boundary layer
is of order t1/2k−1/2. Thus, our scaling assumption amounts to

t � t1/2|K|−1/4 � w � K−1/2 � L. (15)

Under these scaling assumptions we may consider the surface
as an isometric immersion of the reference metric a = ā, hence
from now on we no longer distinguish between the reference
metric ā and the actual metric a; finding a configuration
amounts to solving (9).

The special form (13) of the reference metric slightly
simplifies the system (9). The Christoffel symbols (4) are given
by


1 =
(

0 0

0 −ϕϕ′

)
and 
2 =

(
0 ϕ′/ϕ

ϕ′/ϕ 0

)
, (16)

whereas the Gaussian curvature is given by

−K = k2 = ϕ′′

ϕ
,

with primes denoting derivatives with respect to x1. We also
note that the geodesic curvature of the midcurve (which is an
isometric invariant) is given by

κg = |a(0)|1/2
1
22(0) = −ϕ′(0).

Substituting the metric (13) into the coefficients Ai(x) given
by (10), the hyperbolic system (9) reduces to

∂1r + s ∂2r = A1r + A2s + A5r
2s,

(17)
∂1s + r ∂2s = A1s + A2r + A5s

2r,

where

A1 = −ϕ′

ϕ
+ k′

2k
, A2 = −ϕ′

ϕ
− k′

2k
, and A5 = −ϕϕ′.

(18)

Finally, the mean curvature (11) reduces to

H = k(1 + ϕ2rs)

ϕ(s − r)
,

so that the Willmore energy (6) (which is proportional to the
total energy in the case of an isometry) is

EW [r,s] =
∫ L

0

∫ w/2

−w/2

k2(1 + ϕ2rs)2

ϕ(r − s)2
dx1dx2. (19)

The theorem in [10] (adapted to the two-dimensional
setting) states that as t → 0 the surface approaches an
isometric immersion, with (r,s) being the solution of the
hyperbolic system (17) that minimizes the Willmore energy
(19). This alternative point of view, even though formulated
using variables that are natural when dealing with hyperbolic
surfaces, retains the main difficulty of the original problem.
The variational functions r and s are not independent, and
the Euler-Lagrange equations arising from this constrained
optimization problem form a nonlinear second-order system.
In the next section we present an approximation method for
solving this constrained optimization problem.
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V. ALMOST-MINIMAL STRIPS

Minimal surfaces are surfaces whose mean curvature is
identically zero. Such surfaces appear naturally in problems
governed by surface tension, as they minimize the area of the
surface given the shape of its boundary, hence their name (e.g.,
Struik [22], p. 182). Since minimal surfaces trivially minimize
the Willmore energy (6), then if we could find an isometric
immersion of the reference metric ā that is also a minimal
surface, it would automatically be the solution to our problem,
that is, the t → 0 limiting configuration. Thus, one may be
tempted to look for isometric immersions that are minimal
surfaces. It is well known, however, that not every hyperbolic
metric admits immersions that are minimal surfaces. A
hyperbolic metric aαβ can be immersed as a minimal surface if
and only if it satisfies the condition (due to Ricci) that k aαβ is
a flat metric (of vanishing Gaussian curvature), where as above
k = (−K)1/2 [28]. When applied to a metric of the form (13),
the Ricci condition takes the explicit form

3ϕ′′3 − ϕϕ′′′2 + ϕ′ϕ′′ϕ′′′ + ϕϕ′′ϕ′′′′ = 0. (20)

Thus, energy minimizing isometries are minimal surfaces
only in the case of a strip geometry with ϕ(x1) satisfying (20).

The fourth-order ordinary differential equation (20) defines
a family of metrics parametrized by four constants which could
be taken to be the values of ϕ and its first three derivative
at x1 = 0. Given a hyperbolic metric of the form (13) with
prescribed ϕ(x1), there exists a solution ϕM of (20) that matches
ϕ and its first three derivatives at x1 = 0. The difference
between ϕ and ϕM satisfies the uniform bound

ϕ − ϕM = O(w4).

Denote by rM and sM solutions of (17) with ϕ replaced by ϕM

that give rise to minimal surfaces. Since the right-hand side of
(17) depends explicitly on the third derivative of ϕ (via k′), a
straightforward estimate shows that a solution r,s, of (17) with
initial conditions r(0) = rM (0) and s(0) = sM (0) satisfies

r − rM = O(w2) and s − sM = O(w2),

which in turn implies a Willmore energy of order w5. The
conclusion of these considerations is that given a narrow
hyperbolic strip we may find an immersion that approximates
a minimal surface and whose Willmore energy scales like
the fifth power of the strip’s width. We call such immersions
almost minimal.

The existence of minimal solutions rM and sM for metrics
ϕM satisfying Ricci’s condition is shown explicitly in the next
subsection. These solutions involve a divergence of rM and
sM at a periodic array of points. While not problematic by
its own, this divergence poses a problem when considering
perturbations. We address this delicate issue in Appendix A.

To find such an almost-minimal solution, we formally
expand the Riemann invariants r,s in powers of x1,

r(x) = r0(x2) + r1(x2) x1 + O
(
x2

1

)
,

(21)
s(x) = s0(x2) + s1(x2) x1 + O

(
x2

1

)
,

which substituted into (17) yields a hierarchy of ordinary
differential systems, the first of which being

r1 = −s0r
′
0 + A1(0)r0 + A2(0)s0 + A5(0)r2

0 s0,
(22)

s1 = −r0s
′
0 + A1(0)s0 + A2(0)r0 + A5(0)s2

0r0,

where

A1(0) = κg + k′

2
, A2(0) = κg − k′

2
, A5(0) = κg,

and the right-hand sides are evaluated at x1 = 0.
We seek to eliminate as many terms as possible in the

expansion of the Willmore energy in powers of the width w.
The above considerations imply we can achieve H = O(x2

1 ).
Eliminating the zeroth and first-order terms

H (x2,0) = 0 and ∂1H (x2,0) = 0,

we need the following relations to hold:

r0s0 = −1 and r1s0 + s1r0 = −2κg.

Substituting these two relations into (22) we obtain

r ′
0 = β

2

(
1 + r2

0

)
, (23)

where β = 2A2(0) = 2κg − k′. Solving (23),

r0 = tan

(
β

2
x2 + θ

)
and s0 = − cot

(
β

2
x2 + θ

)
.

The phase θ is a constant of integration, which generates a
one-dimensional family of minimal embeddings. For β �= 0
variations in θ correspond to a “sliding mode” along the strip
and can be ignored for a sufficiently long strip. For β = 0
the solutions are translationally invariant (helices) and various
choices of θ correspond to distinct solutions (differing in the
pitch). The latter case is treated in Sec. VI.

Having found the leading order solutions r0 and s0 of
(17) (i.e., r and s on the midcurve), we should in principle
proceed to solve the hierarchy of equations term-by-term. As
argued above, this construction ensures a Willmore energy of
order w5.

The second fundamental form along the midcurve is
obtained through the inverse transformation (8):

b11 = 2

s0 − r0
= sin βx2,

b12 = − s0 + r0

s0 − r0
= − cos βx2,

b22 = − 2

s0 − r0
= − sin βx2.

The second fundamental form is periodic, with period 2π/β,
whereas the first fundamental form is translationally invariant.
Since the configuration is determined, up to rigid transfor-
mations, by the two fundamental forms it follows that the
configuration is a concatenation of geometrically identical
segments of length 2π/β.
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To retrieve the configuration of the midcurve we solve the
Gauss-Weingarten equations

∂

∂x2

⎛
⎝∂1 f

∂2 f
N

⎞
⎠ =

⎛
⎝ 0 −κg b12

κg 0 b22

−b12 −b22 0

⎞
⎠

⎛
⎝∂1 f

∂2 f
N

⎞
⎠

which are in fact three sets of decoupled systems, one for each
of the three component of ∂1 f , ∂2 f , and N . This system can
be solved analytically:

∂1 f (0,x2) = −γ cos βx2 (b sin γ x2 − c cos γ x2)

− sin βx2
a + (1 − γ 2)(b cos γ x2 + c sin γ x2)

(β − κg)
,

∂2 f (0,x2) = −γ sin βx2 (b sin γ x2 − c cos γ x2) (24)

+ cos βx2
a + (1 − γ 2)(b cos γ x2 + c sin γ x2)

(β − κg)
,

N (0,x2) = a + b cos γ x2 + c sin γ x2,

where γ 2 = 1 + (β − kg)2. The vectors a, b, and c are nine
constants of integration determined by the initial orientation
of the curve which we set to be

∂1 f (0,0) = (1,0,0),

∂2 f (0,0) = (0,1,0),

N (0,0) = (0,0,1),

yielding

a = γ −2(0,β − κg,γ
2 − 1),

b = γ −2(0,κg − β,1), (25)

c = γ −1(1,0,0).

Having an analytical expression for the vector ∂2 f (0,x2), the
midcurve f (0,x2) is retrieved by one more integration with
respect to x2, which can also be performed analytically, with
suitable initial conditions for f (0,0) (see Appendix B). In
Fig. 3 we demonstrate how f (0,x2) and ∂1 f (0,x2) capture
most of the morphological traits of a narrow strip.

Example. Consider once again the metric

ϕ(x1) = cosh x1 − κg sinh x1.

This corresponds to the choice k′ = 0 which leaves us with
a single parameter κg (the fact that this metric has a constant
Gaussian curvature is immaterial here). In Fig. 4 we show the
shape of the midcurve for values of κg of 0.1, 0.4, 0.7, and 1.0.
Each of these curves is a concatenation of identical segments
of length 2π/β; each such segment is plotted in a different
color.

Comments.
(1) As explained above, the midcurve is a concatenation of

curves of length 2π/β that are geometrically identical. Yet,
since each period involves a translation, a rotation, and a twist
the concatenated curve may not seem “geometrically” periodic
at first glance.

(2) Consider the location of the midcurve f (0,x2) at the
end points of each period, x2 = 2πn/β ≡ tn, n = 0,1,2, . . . .

(a) (b) (c)

FIG. 3. (Color online) Skeletonization of a strip. An illustration
of a single period of a minimal surface. Along the midcurve of
the strip K = −1 and kg = 0.75. (a) The full surface obtained
by the explicit solutions (27) and (28). (b) The “skeleton” of the
surface composed from the midcurve (blue) solid curve and tangent
vectors ∂1 f (black) arrows using the explicit formulas (B1) and (24).
(c) When studying long and narrow surfaces it is convenient to display
only the midcurve and the end points of each period.

A direct integration of ∂2 f yields, after straightforward
algebra,

f (0,tn) = f (0,0) + γ (2β − κg)

β2 − γ 2

× [c (cos γ tn − 1) − b sin γ tn].

Setting f (0,0) = γ (2β − κg)/(β2 − γ 2)c, we obtain at once
that all the points f (0,tn) lie on the plane spanned by the
vectors b and c along a circle of radius γ (2β − κg)/(β2 − γ 2).
Furthermore, considering the tangent vector ∂1 f at the points
(0,tn) we find that it is parallel to the b,c plane as well, and
perpendicular to the tangent vector ∂2 f (see Fig. 5).

(a)

(c)

(b)

(d)

FIG. 4. (Color online) Four periods of the midcurve of four almost
minimal surfaces. Along the midcurve of the strips K = −1 and the
geodesic curvature is (a) kg = 0.1, (b) kg = 0.4, (c) kg = 0.7, and
(d) kg = 1. Each period is plotted in a different color and is separated
from the next period by a filled (black) circle. The four curves are not
to scale.
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(a)

(c)

(b)

(d)

FIG. 5. (Color online) Twenty periods of the midcurve for the
same parameter as in Fig. 4. Plotting many periods exemplifies not
only that the midcurves are bounded in space, but also that they lie on
a surface of revolution. The midcurve is plotted as a solid (blue) line,
(black) filled circles locate the periods end points, and the bolded
(red) line corresponds to a single period. Note also that all period end
points lie on a circle. For graphical reasons the curves are not to scale.

(3) From the previous comments we conclude that f (0,x2 +
2πn/β) = On f (0,x2), whereO is some proper orthogonal ro-
tation. Moreover, the midcurve lies on a surface of revolution.
If κg �= β it is also bounded.

(4) The midcurve is closed if and only if γ /β is rational.
(5) The case β = 0 deserves special attention, as in this case

the phase θ cannot be eliminated by a resetting of the origin
of the x2 coordinate. It follows that there exists a continuous
family of distinct solutions, parametrized by the phase θ . This
family of solution is further studied in Sec. VI B.

A. Minimal surfaces: Exact solutions

In Figs. 2 and 3 we have only reconstructed the midcurves.
Reconstructing the entire surface requires the solution of the
hyperbolic system (17). Rather than testing how close are these
immersions to being minimal, we may adopt a technically
simpler approach. We construct (exact) minimal surfaces and
show how close they are to being isometries of the metrics
considered above. To do so we solve again the r,s equations
(17), assuming this time that the surface is minimal, that is,

1 + ϕ2rs = 0, everywhere,

however with the metric function ϕ being yet unknown.
Substitution of the minimality condition into (17) gives

∂1r + s ∂2r = k′

2k
r +

(
− ϕ′

ϕ
− k′

2k

)
s,

(26)

∂1s + r ∂2s = k′

2k
s +

(
− ϕ′

ϕ
− k′

2k

)
r.

Adding the two equations and using the fact that rs does not
depend on x2 we get

∂1(r + s) = −ϕ′

ϕ
(r + s),

from which we deduce that

r(x1,x2) = C(x2)

ϕ(x1)
and s(x1,x2) = − 1

C(x2)ϕ(x1)
(27)

for some function C = C(x2). The knowledge of C(x2)
determines the second fundamental form everywhere, thus
determines the immersion.

Substitution of (27) into (26) gives

C ′

C2 + 1
= −

(
ϕ′

ϕ
+ k′

2k

)
ϕ.

Since the left-hand side only depends on x2 and the right-hand
side only depends on x1, there exists a constant α such that

C ′

C2 + 1
= α and

(
ϕ′

ϕ
+ k′

2k

)
ϕ = −α,

which gives right away the following x2 dependence,

C(x2) = tan(αx2 + θ ), (28)

where θ is a phase (which we take again to be zero). It remains
to solve the equation for ϕ. Since the Gaussian curvature is
given by

K = −k2 = −ϕ′′

ϕ
,

it follows that

k′

k
= 1

2

(
ϕ′′′

ϕ′′ − ϕ′

ϕ

)
,

so that

3ϕ′ϕ′′ + ϕϕ′′′ = −4αϕ′′.

After two more integrations we obtain the nonlinear first-order
equation

ϕϕ′ + 4αϕ = βx1 + γ. (29)

Equation (29), which was derived from a fourth-order equa-
tion, involves three integration constants. Given a metric, we
choose the four integration constants such that ϕ matches the
given metric to maximal order. For our running example,

ϕ(x1) = cosh x1 − κg sinh x1,

we have

ϕ(0) = 1, ϕ′(0) = −κg, ϕ′′(0) = 1, ϕ′′′(0) = −κg,

which yields

α = κg, β = 1 − 3κ2
g , and γ = 3κg.

We then integrate (29) numerically with initial data ϕ(0) = 1.
We proceed to reconstruct this family of minimal surfaces

which depend on the unique parameter κg (in general there is a
second parameter k′ which is zero in this particular example).
With ϕ(x1) given by the solution to (29), C(x2) given by (28),
r(x1,x2) and s(x1,x2) given by (27), the Christoffel symbols
given by (16), and the second fundamental form related to
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r,s,ϕ through (8), we solve the Gauss-Weingarten equations

∂2

⎛
⎝ ∂1 f

ϕ−1∂2 f
N

⎞
⎠ =

⎛
⎝ 0 ϕ′ b12

−ϕ′ 0 b22/ϕ

−b12 −b22/ϕ 0

⎞
⎠

⎛
⎝ ∂1 f

ϕ−1∂2 f
N

⎞
⎠

(30)

and

∂1

⎛
⎜⎝

∂1 f

ϕ−1∂2 f

N

⎞
⎟⎠ =

⎛
⎜⎝

0 0 b11

0 0 b12/ϕ

−b11 −b12/ϕ 0

⎞
⎟⎠

⎛
⎜⎝

∂1 f

ϕ−1∂2 f

N

⎞
⎟⎠.

(31)

These equations are easily integrated numerically; it takes then
one more integration to retrieve the configuration f .

In Fig. 6 we show four minimal strips for a fixed width
w = 0.2 and four values of the geodesic curvature κg = 0.1,
0.4, 0.7, and 1.0. The length of the strip is four periods. By
construction the midcurves coincide with the curves in Fig. 4.
Even though the width of the strip is a fifth of the characteristic
length scale (i.e., the strip is not extremely narrow), the
metric discrepancy between these minimal surfaces and the
almost-minimal surfaces having the pseudospherical metric
(14) is of the order of 10−4. This result is consistent with
the estimate of O(w4) coming from the Ricci minimality
condition (20). The corresponding discrepancy between an
isometric configuration of any given hyperbolic metric and its
minimal strip approximation is therefore expected to be hardly
discernible.

The strips depicted in Figs. 6(a) and 6(d) show very different
solution strategies, which is to be expected as their geodesic
curvatures along the midcurve differ by an order of magnitude.

(a)

(c)

(b)

(d)

FIG. 6. (Color online) Minimal surfaces. The surfaces were
obtained by explicit integration of the Gauss-Weingarten equations
(30) and (31). The parameters of the strips are the same as for the
previous figures; along the midcurve of the strips K = −1 and the
geodesic curvature is (a) kg = 0.1, (b) kg = 0.4, (c) kg = 0.7, and
(d) kg = 1. Strips colors correspond to longitudinal strain relative to
the pseudospherical metric (14), where dark (blue) corresponds to
no strain and the lighter (red) colors near the edge correspond to the
maximal strain magnitude of 5 × 10−4.

kg=0.2kg=0.19 kg=0.21

FIG. 7. (Color online) Sensitivity to metric variations. A variation
of 1/20 in the geodesic curvature of the midcurve kg yields very
strong morphological changes. All three strips are minimal surfaces
calculated as described in (26) and have Gaussian curvature K = −1
along their midcurve. One period is plotted for each strip. Colors
(same as in Fig. 6) are given for visual purposes.

However, the diversity in solutions does not require, in general,
large parametric changes. The high sensitivity to metric
variations is exemplified in Fig. 7. One period of three minimal
strips whose value of the geodesic curvature along the mid
curve differ only by 5 percent show very large morphological
differences.

VI. CONSTRAINED MINIMIZATION

In the previous section we showed how to approximate
a bending-minimizing isometry of a given metric (i.e., the
equilibrium configuration when the strip’s thickness is very
small) by an almost minimal surface. This approach results
in a unique equilibrium configuration whose Willmore energy
scales as the fifth power of the width of the strip, namely
EW = O(w5). This solution is however not applicable if the
setting is supplemented with boundary conditions that are
not compatible with the Willmore minimizer, or if other
types of constraints are imposed. Specifically, we expect these
almost-minimal strips to be relevant only for very long and
unconstrained strips. Free strips of finite length, strips of finite
length with prescribed edge displacements, and strips whose
midcurve is confined to a plane are examples of constrained
strips which may not be compatible with the solution presented
above. A natural question therefore arises: To what extent can
the methodology of the previous section be exploited in these
nonideal settings?

When the unique EW = O(w5) solution is not admissible,
one expects the equilibrium solution to be selected among the
many configurations whose energies have the “second best”
scaling in powers of w. By requiring the mean curvature (but
not its first derivative) to vanish along the midcurve, it is
possible to obtain a very large family of configurations with
EW = O(w3). We postulate that these configurations are the
natural ones to optimize upon in the presence of nontrivial
boundary conditions, or additional admissible constraints.
Note, however, that as we treat only isometries of the metric
prescribed on the strips, not all constraints or potentials
may be treated within the present framework. For example,
the prescription of edge displacements may be treated only
within a certain range of values that does not necessitate
the introduction of in-plane strains. Also, potentials such as
surface energy are outside the present scope.
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In this section we consider two settings in which minor
adaptations of the methodology derived in the previous
section enable us to obtain solutions for constrained strips.
(A) Unconstrained strips of finite length; the finiteness of the
strip imposes boundary conditions at its ends. (B) Configura-
tions constrained to satisfy additional symmetries.

A. Unconstrained strips of finite length

Consider the strip geometry (13) with a finite domain (12).
Like in the previous section we expand the Willmore energy in
powers of the width w and attempt to eliminate as many terms
as possible, eventually minimizing the first term that cannot be
eliminated. The terms that scale like the first power of w can
be eliminated by setting H = 0 along the midcurve. In terms
of the formal asymptotic expansion of the Riemann invariants
(21), the condition that H = 0 along the midcurve implies that

1 + r0s0 = 0, (32)

thus the next-order contribution to the Willmore energy scales
like w3 and is given by

w3
∫ L/2

−L/2

(r0s1 + r1s0 − 2κgr0s0)2

(r0 − s0)2
dx2.

Substituting r1 and s1 given by (22), and using the relation (32)
between r0 and s0, we obtain an energy that only depends on
r0,

w3
∫ L/2

−L/2

[ − r ′
0 + β

2

(
1 + r2

0

)]2

r2
0

dx2. (33)

It is the cancellation of this term that gave rise to the unique
solution in the previous section.

Expression (33) can be viewed as a reduced bending energy
functional for a thin and narrow strip in which r0(x1) is
the unique variational function. The corresponding Euler-
Lagrange equation yields

r ′2
0 − [

β

2

(
1 + r2

0

)]2

r2
0

= C, (34)

where C is a constant of integration. If the strip is uncon-
strained, the following zero-torque boundary conditions

β

2

(
1 + r2

0

) − r ′
0

∣∣∣∣
x2=−L/2

= β

2

(
1 + r2

0

) − r ′
0

∣∣∣∣
x2=L/2

= 0

yield C = 0, which in turn results in the solution obtained in
the previous section, r0 = tan( β

2 x2 + θ ). In the case of a finite
strip we may not set the phase θ arbitrarily to zero, but need to
minimize the energy with respect to all possible choices of the
phase. As the O(w3) term vanishes, the selection of the phase
θ is governed by the O(w5) term. It is a simple exercise to
show that the latter is minimized by setting θ = π/2 − βL/4.

B. Translationally invariant configurations

The minimizers of the Willmore energy, with the exception
of the case β = 0, do not preserve the translational symmetry
of the metric (they are periodic rather than continuously

symmetric). Imposing translational symmetry amounts to
setting r ′

0 = 0 and by (34)

−[
β

2

(
1 + r2

0

)]2

r2
0

= C.

The interest in this particular family of solutions is due to two
reasons: (i) as argued in the next subsection such a solution
is obtained when β = 2κg − k′(0) = 0 and (ii) the problem
is then analytically solvable since all continuously symmetric
embeddings can be written explicitly. As shown in Appendix C
the assumption of continuous symmetry gives that all second
fundamental forms compatible with the metric ds2 = dx2

1 +
ϕ2(x1) dx2

2 form a two-parameter family of solutions,

b11 = k

κ
(τ 2ϕ−2 − κ2ϕ2)η, b12 = − τk

κϕ
, b22 = k

κη
,

where η = η(x1) is given by

η = [κ2ϕ2 + τ 2(ϕ2 − 1) − ϕ2ϕ′2]−1/2.

The two parameters are κ and τ which we identify as
the (constant) curvature and torsion of the midcurve. No
assumptions are made about ϕ other than inducing a negative
Gaussian curvature. Note that the above solution may exhibit
a finite horizon in the form of a diverging curvature. Such
divergence occur if there exists a point where η → ∞ or
κ2 + τ 2 − τ 2ϕ−2 = ϕ′2; whether this happens or not depends
on the metric.

To minimize the Willmore energy with respect to the free
parameters κ and τ , we set H = 0 along the midcurve which
corresponds to setting κ2 + τ 2 = 1 + κ2

g . The remaining free-
dom in the choice of, say, τ does not generally enable the
cancellation of the derivative of the mean curvature, hence
EW = O(w3).

We have now explicitly constructed a family of solutions
whose associated energies are of the same order as the
equilibrium energy in the presence of constraints, obtained
by minimizing the reduced energy (33). It can be shown (see
Appendix C) that regardless of the metric ϕ, and in the absence
of constraints, the minimal energy is always obtained for τ = 0
(see, e.g., Fig. 8).

C. The β → 0 singular limit

For every metric for which β = 2κg − k′(0) = 0 the op-
timal EW = O(w5) solution is continuously symmetry (the
second fundamental form is independent of x2). In view of
the results of the previous section, the midline of the optimal
solution has zero torsion, hence it lies in a plane. However,
considering the β → 0 limit, we encounter solutions that not
only do not lie on a plane but even become exceedingly
convoluted as β → 0.

This seeming contradiction is due to the presence of two
limiting processes; the limit L → ∞ cannot be interchanged
with the limit β → 0. For β �= 0 the solutions have period
2π/β, which implies that every strip of finite length is short
for sufficiently small β. Our above solution for strips of finite
length yield that as β → 0 the optimal phase is obtained at
θ → π/4, placing the finite strip in a region in which the
midcurve is almost planar.
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-0.2 -0.1 0 0.1 0.2
0

0.1

0.2

H
2

x1
x1

FIG. 8. (Color online) Translationally invariant configurations of
various pitch. H 2 as function of x1 for four different embeddings
of the pseudospherical metric (14) (K = −1 everywhere) for the
parameters κg = 0.4, w = 0.4, and L = 4π . In all cases H = 0 along
the midcurve and the configurations differ by the value of τ . The inset
shows the solutions to τ = 0, − 7/25, − 3/5, − 15/17 (left-to-right)
next to their corresponding curves.

Example. For the pseudospherical metric (14), the O(w5)
contribution to the Willmore energy is

w5 9

2105

∫ L/2

−L/2

(
1 + r2

0

)2

r2
0

dx2 = −w5

β

9

285
cot(βx2 + 2θ )

∣∣∣∣
L/2

−L/2

,

which is minimized at the phase value of θ = π/4 for all choice
of β. Fig. 9 illustrates how this choice of phase places the

FIG. 9. (Color online) The β = 0 limit for finite strips.
As β → 0 we expect the solutions obtained to converge
to the β = 0 solution. Optimizing for the location within
the midcurve of a β �= 0 solution (the phase θ ) yields
a strip segment very similar to that obtained for β = 0.
(a) One period (of length λ = 2π/β) of the midcurve for a strip with
metric (14) and κg = 0.1 along with a strip segment of length λ/10.
Optimization with respect to the phase finds which segment along
the period has the smallest Willmore energy. (b) The strip segment
enlarged. (c) The τ = 0 continuously symmetric strip for the same
values of length and width.

finite strip in a region that resembles the β = 0 continuously
symmetric solutions.

VII. DISCUSSION

In this paper we presented a general approach to a
class of elastic problems that arise in shape selection of
naturally forming thin and elongated strips. Specifically,
we consider strips that have a plate-like structure (i.e., no
structural variation across the thin dimension), whose intrinsic
two-dimensional geometry is hyperbolic. The first step is
the reduction of the three-dimensional elastic problem into
the purely geometric problem of isometrically embedding a
surface with given metric in three-dimensional space. This
reduction is justified in the limit of vanishing thickness [10].
In this limit the equilibrium configuration corresponds to
the bending-minimizing isometry. In a second step, we take
advantage of (i) the hyperbolic nature of the embedding
problem which enables the determination of the surface by
solving an “evolution equation” so that embedding a single
curve determines the shape of the whole surface and (ii) the
existence of a second small scale, the width of the strip.
Combining these two properties we construct approximate
minimizers of the bending energy in which the mean curvature
and its normal derivative vanish along the midcurve of the
strip.

While embedding problems and minimal surfaces are
classical fields of study in geometry, the present work offers a
different perspective on both problems, interconnecting them.
Our task consists of minimizing the Willmore functional
given a metric (rather than given a topology [29]). This leads
us to consider minimal embeddings of certain metrics. In
this context we recover the continuous family of minimal
isometric of the catenoidal metric ( [22], p. 121). For general
metrics satisfying the Ricci condition minimal embeddings of
infinitely long strips are unique.

The reduced one-dimensional problem obtained in the
thin-and-narrow limit yields an elastic energy that only
depends on the embedding of a curve, that is, on curvature
and torsion functions. In the context of rod theory, in the
appropriate limit [19], the twist of the rod (the third degree
of freedom in rod theory, e.g., [5], p. 61) is determined
in our case by Gauss’ equation. In particular, the various
families of solutions obtained in this paper are a subclass
of solutions arising in nonlinear rod theory under the choice
of an appropriate energy density. As a consequence, some
results from rod theory apply verbatim in our case. For
example, the incorporation of periodic structural variations
along the strip may induce chaotic configurations in certain
cases [30].

The present work is formulated in a way that refers
to the continuum limit of amorphous solids. However, we
expect its applicability in a much larger context, for example,
as discussed in the Introduction, in the conformation of
some particular macromolecules. While in some cases it
suffices to consider macromolecules as elastic rods [31], we
show here how the introduction of nontrivial surface geom-
etry may result in very intricate equilibrium configurations,
even for very simple intrinsic geometries of unconstrained
molecules.
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APPENDIX A: EXISTENCE OF ALMOST-MINIMAL STRIPS

In Sec. V we constructed midcurves [the explicit formula
is given by (B1)] of surfaces with prescribed (hyperbolic)
metrics, subject to the condition that both the mean curvature
and its first derivative vanish on the midcurve. In this Appendix
we raise the question of whether such surfaces actually exist,
namely does one have indeed the freedom to impose the
shape of the midcurve. This question turns out to be highly
nontrivial, for reasons we will explain, yet we argue that
almost-minimal solutions can always be constructed, possibly
requiring a slight modification of the procedure introduced in
Sec. V.

By the fundamental theorem of surface geometry, given
first and second fundamental forms that satisfy the GMPC
equations (3), these forms are realizable by a surface (unique
up to rigid transformations). For hyperbolic surfaces the
GMPC equations may take the form (17). The question of
existence then reduces to finding a solution to (17). The setting
in Sec. V is such that initial data are prescribed along the x1 = 0
parametric curve so that a solution has to be continued from
this initial data curve on both sides.

Explicit solutions of the GMPC equations were found
for metrics that admit minimal surfaces, but not for almost-
minimal surfaces. The system (17) is hyperbolic, implying
that solutions are propagating along characteristics, the latter
coinciding with the asymptotic curves. To better understand
the nature of the problem, we display in Fig. 10 the asymptotic
curves that correspond to a minimal surface. The solid
black line is the midcurve. From every point on the surface
emerge two asymptotic curves (the two families of curves
are represented by blue and red curves, respectively). The
topological structure of the asymptotic curves determines
the domain of influence of the initial data. At every point
that can be connected to the initial data curve by a pair
of characteristics, the solution is uniquely determined by
the initial data. However, if a characteristic curve intersects
the initial data curve twice, it may be prescribed with two
contradicting initial values in which case no smooth solution
exists. Such a situation arises when asymptotic curves are
tangent to the initial data curve.

Examining Fig. 10 we see that it is possible to integrate
the GMPC equation only on one side of the initial data curve
unless the initial data satisfy precise compatibly conditions
which cannot be expected in general. This apparent difficulty
can be easily circumvented by prescribing the shape of
the boundary curve x1 = −w/2 rather than the midcurve.
It is easy to see that imposing the vanishing of H and
its first derivative on the boundary curve still guarantees a

(a)

(b)

FIG. 10. (Color online) Typical topology of the two families of
asymptotic curves for a minimal surface of the type described in
Sec. V. At every point two characteristic curves from distinct families
intersect. (a) The straight bold (black) line is the midcurve along
which initial data values are prescribed. One characteristic curve that
is tangent to the midcurve is also bolded (blue). All characteristic
curves from the same family which lay to the left of this curve do not
intersect the midcurve, and therefore are uninfluenced by the initial
data. Characteristic curves of the same family which lay to the right
of this curve intersect the midcurve twice and may generate a conflict
of initial data. (b) A blowup of a section of the strip. The shaded
region marks the domain of influence of initial data given along the
midcurve. Prescribing additional partial data along the bolded dashed
(blue) line is needed in order to determine the solution uniquely in
the unshaded region.

Willmore energy of order w5, while resolving the problem of
existence.

APPENDIX B: FORMULA FOR THE MIDCURVE OF AN
ALMOST-MINIMAL STRIP

The tangent vector ∂2 f along the midcurve of an almost-
minimal strip is given by the explicit expression (24), with
the integration constants a, b, and c given by (25). Integrating
once more with respect to x2 we obtain the midcurve

f (0,x2)

= f (0,0) + a
β(β − κg)

sin βx2

− γ b
β2 − γ 2

(γ sin βx2 cos γ x2 − β cos βx2 sin γ x2)
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− γ c
β2 − γ 2

(β cos βx2 cos γ x2 + γ sin βx2 sin γ x2)

− (β − κg)b
β2 − γ 2

(β sin βx2 cos γ x2 − γ cos βx2 sin γ x2)

− (β − κg)c
β2 − γ 2

(γ cos βx2 cos γ x2 + β sin βx2 sin γ x2).

(B1)

APPENDIX C: TRANSLATIONALLY INVARIANT
SOLUTIONS

In this Appendix we focus our attention on configurations
that are translationally invariant, that is, both fundamental
forms do not depend on x2, and find the energy minimizer
within this family of configurations. This is an ansatz that
restricts the set of admissible functions in the variational
problem. Note also that this symmetry assumption ignores end
effects, so we are considering in practice an infinite strip, and
energies will be computed per-unit-length (of the midcurve
x1 = 0). The fact that the shape of the strip is invariant under
shifts in x2 has two immediate consequences.

(1) Every two constant-x2 curves differ by a rigid motion.
(2) Every constant-x1 curve is a helix.

The first consequence is due to the fact that the Weingarten
equations do not depend explicitly on x2. The second conse-
quence follows from the fact that the curvature and torsion
(as a curve in R3) of constant-x1 curves are determined by
the first and second fundamental forms, hence independent
of x2. Lancret’s theorem states that a necessary and sufficient
condition for a curve to be a helix is that the ratio of curvature
to torsion be constant.

To fully characterize the midcurve it remains to determine
its curvature and torsion which can be obtained through the
Weingarten equations

τ = b12 and κ =
√

κ2
g + κ2

n =
√

ϕ′2 + b2
22, (C1)

where κn is the normal curvature of the midcurve and all terms
on the right-hand sides are estimated at x1 = 0. Thus we may
write the midcurve in explicit form

f (0,x2) = 1

μ
[sin(ψ) cos(μx2), sin(ψ) sin(μx2), cos(ψ)μx2],

where we have defined μ and ψ via μ2 = κ2 + τ 2 and
τ = μ cos(ψ). We now consider again the GMPC equations
in Riemann invariant form (17) imposing the translational
symmetry condition. Since the variables r and s are expressible
in terms of the first and second fundamental forms, they are
independent of x2 in which case (17) reduces to a pair of
ordinary differential equations for r = r(x1) and s = s(x1),

r ′ = A1r + A2s + A5r
2s,

(C2)
s ′ = A1s + A2r + A5s

2r,

where the coefficients Ai are given by (18). We solve this
system on the interval [−w/2,w/2]. Initial data r0,s0 are
assumed to be prescribed on the midcurve. The system (C2)

can be integrated analytically. Direct substitution shows that

η = ϕ2k
r + s

r − s
,

(C3)

ξ = k2ϕ2 + (ϕ′)2

4
+ k2 1 + ϕ2rs

(r − s)2

are constant under the dynamics (C2), that is, are independent
of x1. This implies at once that

η = r0 + s0

r0 − s0
and ξ = 1 + κ2

g

4
+ 1 + r0s0

(r0 − s0)2
,

where we have used our normalization whereby ϕ(0) = k(0) =
1 and the fact that −ϕ′(0) = κg . The initial data r0 and s0 can
be directly linked to the curvature and torsion of the midcurve
by using relations (C1) and (7),

r0 = −τ − 1

κn

and s0 = −τ + 1

κn

.

Substituting into (C3) the constants of motion are given by

η = τ = μ cos(ψ) and ξ = κ2 + τ 2

4
= μ2

4
.

Thus, the solution r(x1) and s(x1) of (C2) is given by the
implicit relations

μ cos(ψ) = ϕ2k
r + s

r − s
,

μ2 = k2ϕ2 + (ϕ′)2 + 4k2 1 + ϕ2rs

(r − s)2
.

Straightforward algebraic manipulations lead to

(r − s)2 = 4k2ϕ2

μ2ϕ2 − μ2 cos2(ψ) − ϕ2(ϕ′)2
,

rs = τ 2/ϕ2 − k2ϕ2

μ2ϕ2 − μ2 cos2(ψ) − ϕ2(ϕ′)2
, (C4)

(r + s)2 = 4τ 2/ϕ2

μ2ϕ2 − μ2 cos2(ψ) − ϕ2(ϕ′)2
,

and the mean curvature is given by

H = k(1 + ϕ2rs)

ϕ(r − s)
= μ2 − (ϕ′)2 − ϕ2k2

2
√

μ2ϕ2 − μ2 cos(ψ)2 − ϕ2(ϕ′)2
.

(C5)

We have obtained an explicit expression for the mean curvature
as function of x1 in terms of the “initial data parameters” κ and
τ (or equivalently, μ and ψ) and the metric function ϕ(x1). A
first observation is that the solution has a “finite horizon”; the
domain of integration is limited by the requirement that
the denominators in (C4) remain positive. For fixed κ and
τ the width of the strip w has to be small enough such that

κ2ϕ2 + τ 2(ϕ2 − 1) − ϕ2(ϕ′)2 > 0,
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where ϕ and ϕ′ are evaluated at ±w/2. Alternatively, fixing
w, the range of admissible κ and τ lies outside an ellipse.
Referring to the family of immersions introduced in [26],
characterized by a small parameter which corresponds to how
tight the initial curve is wound up, it is no surprise that by
setting κ high enough we may avoid the finite horizon for
a given width. Such tightly wound configurations, however,
have a high cost in terms of bending. Limiting our attention
to low-energy configurations, we use the above inequality
as a restriction on the width w. Setting κ2 and τ 2 to their
lowest possible values (κ2

n + κ2
g and 0, respectively) and

approximating ϕ′ ≈ κg + κ2x1 we obtain for almost minimal
strips

κgw + 1
4κ2w2 < 1,

implying that the width must be smaller than each of the
two local geometric length scales of the problem κ−1

g and
κ−1, which, no surprise, coincides with the previous definition
of parameter regime. A second observation is that the mean
curvature (C5) is minimized at ψ = π/2 regardless of μ

and ϕ. This corresponds to zero torsion, that is, planar
midcurves.
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