
Chapter 5

Linear Transformations

5.1 Definition and examples

Mathematics features all kind of “categories”, which are sets endowed with
a structure. This course is concerned with the category of vector spaces over
a field F, which are sets endowed with a notion of linear combinations. A
major reason for defining vector spaces is that they are abundant—there are
many vector spaces of interest in mathematics and its applications; indeed,
it wouldn’t make sense to define a class of objects if there was only one such
object in this class. Thus, we often encounter situations in which there are
multiple vector spaces (over the same field). In such cases, we might be
interested in looking at functions between two such objects.

Let (V,+,F, ⋅) and (W,+,F, ⋅) be two vector spaces over the same field. The
set

Func(V,W ) = {f ∶ V →W}
is the space of functions with domain (�.&(;) V and codomain ( �(&&)) W . But
just as with the linear forms on V , which are functions FV , we delineate a
subset of all functions that “respect” the vector space stucture:

Definition 5.1 Let (V,+,F, ⋅) and (W,+,F, ⋅) be vector spaces. A linear
transformation (�;*9!1*- %8;3%) from V to W is a function f ∶ V → W ,

satisfying

f(u + v) = f(u) + f(v)
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and

f(av) = af(v)
for all u,v ∈ V and a ∈ F. The set of all linear transformations from V to

W is denoted by HomF(V,W ).
Comments:

(a) Note once again how addition and scalar multiplication on both sides
of an equations are operations on di↵erent spaces.

(b) Setting W = F, HomF(V,F) = V ∨.
The following properties of linear transformation are easy to prove (cf. with
their analogs for linear forms):

Proposition 5.2 Let (V,+,F, ⋅) and (W,+,F, ⋅) be vector spaces and let f ∈
HomF(V,W ). Then,
(a) f(0V ) = 0W .

(b) For every v ∈ V , f(−v) = −f(v).
(c) For every v1, . . . ,vn ∈ V and a1, . . . , an ∈ F,

f(a1v1 + ⋅ ⋅ ⋅ + anvn) = a1 f(v1) + ⋅ ⋅ ⋅ + an f(vn).

Proof : For the first item, for every v ∈ V ,

f(0V ) = f(0Fv) = 0F f(v) = 0W .

For the second item,

f(−v) = f((−1F)v) = (−1F)f(v) = −f(v).
The third item follows by induction. Note that we can write it in matrix
form,

f

����v1 . . . vn�
�������
a1⋮
an

�������
��� = �f(v1) . . . f(vn)�

�������
a1⋮
an

�������
.

n
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Example: The zero transformation f ∶ V →W defined by

f(v) = 0W for all v ∈ V
is a linear transformation. ▲▲▲
Example: The identity map ( �;&%'% ;8;3%) f ∶ V → V defined by

f(v) = v for all v ∈ V
is a linear transformation. ▲▲▲
Example: The inverse map f ∶ V → V defined by

f(v) = −v for all v ∈ V
is a linear transformation. ▲▲▲
Example: Linear forms are linear transformations HomF(V,F). ▲▲▲
Example: Maps f ∶ V → V defined by

f(v) = av for all v ∈ V
for some a ∈ F are linear transformations. They are called homotheties
( �;&*);&/&%). ▲▲▲
Example: Let V be a finitely-generated vector space and letB = �v1 . . . vn�
be an ordered basis. The coordinate map

f ∶ V → Fn

col

defined by
f(v) = [v]B

is a linear transformation. This was in fact proved in Proposition 3.46. ▲▲▲
Example: Let A ∈Mm×n(F). Consider the transformations

f ∶ Fn

col
→ Fm

col
and g ∶ Fm

row
→ Fn

row

defined by
f(v) = Av and g(w) =wA.

Both are linear transformations. ▲▲▲
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5.2 Properties of linear transformations

Like for linear forms, we consider the case where V is finitely-generated.
The following two propositions are analogous to Proposition 4.4 and Propo-
sition 4.5

Proposition 5.3 Let V be a finitely-generated vector space and let W be a

vector space over the same field. Let

B = �v1 . . . vn�
be an ordered basis for V . Then, for every sequence w1, . . . ,wn ∈ W there

exists a linear transformation f ∈ HomF(V,W ), such that

f(vi) =wi for every i = 1, . . . , n.

Proof : There really is only one way to define such a transformation. Since
every v ∈ V has a unique representation as

v = a1v1 + ⋅ ⋅ ⋅ + anvn,

then f(v) must be given by

f(v) = a1 f(v1) + ⋅ ⋅ ⋅ + an f(vn) = a1w1 + ⋅ ⋅ ⋅ + anwn.

To complete the proof, we have to verify that f is a linear transformation.
Let u,v ∈ V be given by

u = a1v1 + ⋅ ⋅ ⋅ + anvn

v = b1v1 + ⋅ ⋅ ⋅ + bnvn.

Then,
u + v = (a1 + b1)v1 + ⋅ ⋅ ⋅ + (an + bn)vn.

By the way we defined f ,

f(u) = a1w1 + ⋅ ⋅ ⋅ + anwn

f(v) = b1w1 + ⋅ ⋅ ⋅ + bnwn,
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and
f(u + v) = (a1 + b1)w1 + ⋅ ⋅ ⋅ + (an + bn)wn,

so that indeed f(u + v) = f(u) + f(v). We proceed similarly to show that
f(k v) = k f(v) for k ∈ F. n

The following complementing proposition asserts that there really was no
other way to define f :

Proposition 5.4 Let V be a finitely-generated vector space and let W be a

vector space over the same field. Let

B = �v1 . . . vn�
be an ordered basis for V . If two linear transformations g, f ∈ HomF(V,W )
satisfy

g(vi) = f(vi) for all i = 1, . . . , n,
then g = f .

Proof : By the property of a basis in a finitely-generated vector space, every
v ∈ V can be represented uniquely as

v = a1v1 + ⋅ ⋅ ⋅ + anvn

for some scalars a1, . . . , an. Then, by the linearity of g, f ,

g(v) = a1g(v1) + ⋅ ⋅ ⋅ + ang(vn) = a1f(v1) + ⋅ ⋅ ⋅ + anf(vn) = f(v).
n

Example: Let V be a finitely-generated vector space. Let

B = �v1 . . . vn�
be an ordered basis for V . Let �1, . . . ,�n ∈ F. Then the linear transformation
f ∈ HomF(V,V ) satisfying

f(vi) = �ivi

is defined uniquely. ▲▲▲
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Example: Let V = Fn

col
and W = Fm

col
. We will show that to every f ∈

HomF(V,W ) corresponds a A ∈Mm×n(F) such that

f(v) = Av.
Take the standard basis E = �e1 . . . en�. Every v ∈ Fn

col
has a unique

representation
v = v1e1 + ⋅ ⋅ ⋅ + vnen,

hence
f(v) = v1 f(e1) + ⋅ ⋅ ⋅ + vn f(en) = Av,

where for every i = 1, . . . , n,
Coli(A) = f(ei).

▲▲▲
Example: Let V = R2 and W = R3. Consider the basis for R2, B = (v1,v2),
where

v1 = (1,2) and v2 = (3,4).
By the above propositions, there exists a unique linear transformations f ∶
R2 → R3 satisfying

f(v1) = (3,2,1) and f(v2) = (6,5,4).
How do we find it. A direct calculation shows that

[(x, y)]B = �12(3y − 4x)1

2
(2x − y) � .

Hence,

f(x, y) = 1

2
(3y − 4x)f(v1) + 1

2
(2x − y)f(v2)

= 1

2
(3y − 4x)(3,2,1) + 1

2
(2x − y)(6,5,4).

For example,
f(1,0) = −2(3,2,1) + (6,5,4) = (0,1,2).

▲▲▲
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Exercises

(easy) 5.1 Which of the following functions f ∶ R2 → R2 is a linear trans-
formation?

(a) f(x, y) = (1 + x, y).
(b) f(x, y) = (y, x).
(c) f(x, y) = (x2, y).
(d) f(x, y) = (sinx, y).
(e) f(x, y) = (y − x,0).

(easy) 5.2 Let V = R2 and W = R3. Write in explicit form the linear
transformation f ∈ HomR(V,W ) satisfying

f(1,2) = (3,2,1) and f(3,4) = (6,5,4).
(easy) 5.3 Let

V = R<2[X] = {p ∈ R[X] ∶ deg p < 2},
and let W =M3(R). Define the function f ∶ V →W ,

f(a + bX) =
�������
a

a + b
b

�������
.

(a) Show that f is a linear transformation.

(b) Does there exist a p ∈ V such that

f(p) =
�������
1

0
1

�������
?

(c) Does there exist a non-zero p ∈ V such that f(p) = 0W ?

(intermediate) 5.4 Let f ∶ C2 → C be defined by

f(z,w) = z + w̄,
where w̄ is the complex-conjugate of w. Is f a linear transformation when
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(a) C2 and C are vector spaces over C?
(b) C2 and C are vector spaces over R?

(intermediate) 5.5 Does there exists a linear transformation f ∶ R3 → R3,
which is not the zero transformation satisfying

f(v1) = f(v2) = f(v3) = f(v4),
where

v1 = (1,0,1) v2 = (1,2,1) v3 = (0,1,1) v4 = (2,3,3) ?
If it does, write it explicitly; otherwise explain why not.

(intermediate) 5.6 Consider a linear transformation f ∶ R3 → R2 satisfying

f(0,1,2) = (1,0) and f(0,0,1) = (1,1).
Based on this, it is possible to find

f(0,2,3) and f(1,2,3) ?
(intermediate) 5.7 Let V,W be vector spaces and let U ≤W . Let f ∶ V →
W be a linear transformation. Show that

S = {v ∈ V ∶ f(v) ∈ U} ≤ V.
(easy) 5.8 Let V be a vector space over F and let `1, . . . , `n ∈ V ∨. Define
f ∶ V → Fn

col
by

f(v) =
�������
`1(v)⋮
`n(v)

�������
.

Show that f is a linear transformation.

(harder) 5.9 Consider V = Func(R,R) as a vector space over R. Show
that a function h ∶ V → V (it is a function mapping functions to functions!)
defined for every f ∈ V by

(h(f))(x) = f(x + 1)
is a linear transformation.
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5.3 The space HomF(V,W )
Given what we learned about linear forms, you will not be surprised to know
that the set of linear transformations HomF(V,W ) can be given a structure of
a vector space. After all, it is a subset of the space of functions Func(V,W ),
which are a vector space with respect to the addition of functions,

(f + g)(v) = f(v) + g(v),
and scalar multiplication,

(af)(v) = af(v).
Proposition 5.5 Let V and W be vector spaces over a field F. The set

HomF(V,W ) is a linear subspace of Func(V,W ).

Proof : The set HomF(V,W ) is non-empty because it contains the zero map.
Let f, g ∈ HomF(V,W ) and b ∈ F; we need to show that f + g ∈ HomF(V,W )
and that b f ∈ HomF(V,W ). For all u,v ∈ V ,

(f + g)(u + v) = f(u + v) + g(u + v) = (f(u) + f(v)) + (g(u) + g(v))
= (f(u) + g(u)) + (f(v) + g(v)) = (f + g)(u) + (f + g)(v),

and for every v ∈ V and a ∈ F,
(f + g)(av) = f(av) + g(av) = af(v) + ag(v)

= a (f(v) + g(v)) = a((f + g)(v)),
proving that f + g ∈ HomF(V,W ).
Likewise, for all u,v ∈ V ,

(b f)(u + v) = b (f(u + v)) = b (f(u) + f(v))
= b (f(u)) + b (f(v)) = (b f)(u) + (b f)(v),

and for every v ∈ V and a ∈ F,
(b f)(av) = b (f(av)) = b (af(v)) = a (b f(v)) = a((b f)(v)),

proving that b f ∈ HomF(V,W ). n
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Example: Let V = Fn

col
and W = Fm

col
. For A,B ∈ Mm×n(F), we define

fA, fB ∈ HomF(V,W ) by
fA(v) = Av and fB(v) = Bv.

Then, fA + fB ∈ HomF(V.W ) is given by

(fA + fB)(v) = fA(v) + fB(v) = Av +Bv = (A +B)v,
where in the last equality we used the distributivity of matrix multiplication.
Thus, fA+fB = fA+B. We conclude that the addition of matrices of the same
dimensions is really the addition of two linear transformations. ▲▲▲

5.4 Projections and reflections

In this section we will see two interesting examples of linear transformations.

Definition 5.6 Let V be a vector space over F and let U,W ≤ V . We say

that U and W are complementary (�.*/*-:/) if

(a) U +W = V .

(b) To every v ∈ V correspond unique u ∈ U and w ∈W , such that

v = u +w.

In such case we write

V = U ⊕W,

and such a sum is called a direct sum (�9:* .&,2).

We have already seen earlier in this course that these two conditions are
equivalent to the conditions that U +W = V and U ∩W = {0V }.
Example: Let V = R3, then

U = {(v1, v2, v3) ∈ R3 ∶ v3 = 0} and W = {(v1, v2, v3) ∈ R3 ∶ v1 = v2 = 0}
are complementary, because every v ∈ R3 is a sum of a vector in U and a
vector in W , and this decomposition,

(v1, v2, v3) = (v1, v2,0) + (0,0, v3),
is unique. ▲▲▲
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Example: Let V = R[X] be the space of polynomials in X with real-valued
coe�cients. Then, V = U ⊕W , where

U = {p ∈ R[X] ∶ p =�
i=0

piX
2i}

W = {p ∈ R[X] ∶ p =�
i=0

piX
2i+1}.

I.e., the polynomials of odd and even powers are complementary in the space
of all polynomials. ▲▲▲
Definition 5.7 Let V be a vector space over F such that V = U1 ⊕U2. We

define two projection operators (�%-)% *9&)95&!)

p1 ∶ V → V and p2 ∶ V → V,

by

p1(v) = u1 and p2(v) = u2,

where v = u1 + u2 is the unique decomposition of v as a sum of elements in

U1, U2. The operator p1 is called the projection on U1 parallel to U2; the

operator p2 is called the projection on U2 parallel to U1.

Comments:

(a) We could have defined p1 ∶ V → U1 and p2 ∶ V → U2.

(b) For every v ∈ V ,

(p1 + p2)(v) = p1(v) + p2(v) = u1 + u2 = v,
so that p1 + p2 is the identity V → V .

Example: Let V = R3,

U1 = Span{(1,0,0), (0,1,0)} and U2 = Span{(1,1,1)}.
Then, every (x, y, z) ∈ R3 has a unique decomposition

(x, y, x) = (x − z, y − z,0) + (z, z, z),
so that

p1(x, y, z) = (x − z, y − z,0) and p2(x, y, z) = (z, z, z).
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U1

U2

v

p1(v)−p1(v)

p2(v)S2(v)

▲▲▲
Definition 5.8 Let V be a vector space over F such that V = U1 ⊕U2. We

define two reflection operators ( �4&8*: *9&)95&!)

S1 ∶ V → V and S2 ∶ V → V,

by

S1(v) = u1 − u2 and S2(v) = u2 − u1,

where v = u1 + u2 is the unique decomposition of v as a sum of elements in

U1, U2.

Proposition 5.9 Let V be a vector space over F such that V = U1 ⊕ U2.

Then the projection and the reflection operators are linear transformations.

Proof : The key is to observe that if u = u1 + u2 and v = v1 + v2, where
u1,v1 ∈ U1 and u2,v2 ∈ U2, then

u + v = u1 + v1�������������������∈U1

+u2 + v2�������������������∈U2

and av = av1�∈U1

+av2�∈U2

,

hence by definition

p1(u + v) = u1 + v1 = p1(u) + p1(v) and p1(av) = av1 = ap1(v),
and similarly for the three other operators. n
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Exercises

(easy) 5.10 Prove (possibly for the second time) that V = U ⊕W if and
only if V = U +W and U ∩W = {0V }.
(easy) 5.11 Let V = R2 and consider the linear subspaces

U = Span{(1,0)} and W = Span{(0,1)}.
(a) Show that V = U ⊕W .

(b) Write explicitly the linear transformations pi and Si.

(easy) 5.12 Let V = R2 and consider the linear subspaces

U = Span{(1,2)} and W = Span{(1,1)}.
(a) Show that V = U ⊕W .

(b) Write explicitly the linear transformations pi and Si.

(intermediate) 5.13 Let V = R3 and consider the linear subspaces

U = Span{(1,0,0), (1,1,0)} and W = Span{(1,1,1)}.
(a) Show that V = U ⊕W .

(b) Write explicitly the linear transformations pi and Si.

(intermediate) 5.14 Let f ∈ HomR(R3,R3) be the linear transformation
defined by

f(x, y, z) = (x, y,−z).
Show that

(a) f(u) = u if and only if u ∈ Span(e1,e2) = U .

(b) f(w) = −w if and only if w ∈ Span(e3) =W .

(c) f is the reflection through U parallel to W .

(intermediate) 5.15 Let V =M2(R),
U = ��a b

0 0
� ∶ a, b ∈ R� and W = ��−c 0

c d
� ∶ c, d ∈ R� .
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(a) Show that U,W ≤ V and V = U ⊕W .

(b) Write explicitly the projection and reflection operators.

(harder) 5.16 Let V = Func(R,R) and consider the linear subspaces

U = {f ∈ Func(R,R) ∶ f(x) = f(−x) for all x ∈ R}
and

W = {f ∈ Func(R,R) ∶ f(x) = −f(−x) for all x ∈ R}.
(a) Show that V = U ⊕W .

(b) Write explicitly the linear transformations pi and Si.

(harder) 5.17 Let V be a vector space over Q. Let B = (v1,v2,v3) be
an ordered basis for V . Let f ∈ HomQ(V,V ) be the linear transformation
satisfying

f(v1) = 5

6
v1 − 1

3
v2 − 1

2
v3

f(v2) = −1

6
v1 + 2

3
v2 − 1

2
v3

f(v3) = −1

6
v1 − 1

3
v2 + 1

2
v3.

Find subspaces U,W ≤ V such that f is the projection on U parallel to W .

5.5 Kernel and image

Definition 5.10 Let V and W be vector spaces over a field F. Let f ∈
HomF(V,W ). The kernel (�0*39#) of f is the set of vectors in V that are

mapped by f to the zero vector in W ,

ker f = {v ∈ V ∶ f(v) = 0W}.
The image (�%1&/;) of f is those vectors in w ∈ W for which there exists a

vectors in v ∈W , such that w = f(v),
Image f = {f(v) ∶ v ∈ V } = {w ∈W ∶ ∃v ∈ V, w = f(v)}.

Note that ker f is a subset of V whereas Image f is a subset of W . The
following proposition asserts that they are more than just subsets—they are
linear subspaces. Furthermore, for the case where W = F and HomF(V,W ) =
V ∨, then ker f = {f}0 (the null space of f).
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Proposition 5.11 Let V and W be vector spaces over a field F. Let f ∈
HomF(V,W ). Then,

ker f ≤ V and Image f ≤W.

Proof : The set ker f is not empty, because it contains 0V . Let u,v ∈ ker f
and a ∈ F, i.e.,

f(u) = f(v) = 0W .

Then,

f(u + v) = f(u) + f(v) = 0W and f(av) = af(v) = 0W ,

i.e., u+v ∈ ker f and av ∈ ker f , proving that kerf is a linear subspace of V .

Likewise, Image f is not empty because it contains 0W . Let w1.w2 ∈ Image f
and let a ∈ F. By definition of the image, there exist v1,v2 ∈ V such that

w1 = f(v1) and w2 = f(v2).
By the linearity of f ,

f(v1 + v2) = f(v1) + f(v2) =w1 +w2,

i.e., w1 +w2 ∈ Image f , and

f(av1) = af(v1) = aw1,

i.e., aw1 ∈ Image f , thus proving that Image f is a linear subspace of W . n

Example: Let f ∈ HomF(V,W ) be the zero transformation. Then

ker f = V and Image f = {0W}.
▲▲▲

Example: Let V = U1 ⊕U2 and let p1, p2 ∶ V → V be the projections on the
components of the direct sum. Then,

Imagep1 = U1,
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as, by definition, for every v ∈ V , p1(v) = u1 where v = u1 + u2 for u1 ∈ U1

and u2 ∈ U2. This shows that

Imagep1 ≤ U1.

On the other hand, for every u1 ∈ U1, p1(u1) = u1, proving that

U1 ≤ Imagep1.

Likewise,

kerp1 = U2,

because if u2 ∈ U2, then p1(u2) = 0V , proving that

U2 ≤ kerp1.
Conversely, if u ∈ kerp1, then p1(u) = 0V , proving that u ∈ U2, i.e.,

kerp1 ≤ U2.

▲▲▲
Recall that a function f ∶ V → W is called one-to-one ( �;*,93 $( $() (or
injective), if f(u) = f(v) implies that u = v. The following proposition
relates the kernel of a linear transformation to its injectivity.

Proposition 5.12 Let f ∈ HomF(V,W ). Then, f is one-to-one if and only

if ker f = {0V }.

Proof : Let f be one-to-one. Since f(0V ) = 0W , it follows that f(v) = 0W only
if v = 0V , proving that kerf = {0V }. Conversely, suppose that ker f = {0V }.
Let u,v ∈ V satisfy f(u) = f(v). Then,

f(u − v) = f(u) − f(v) = 0W ,

i.e., u − v ∈ ker f , and by assumption u − v = 0V , namely, u = v. n
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Exercises

(easy) 5.18 Let A ∈M2×2(R) be given by

A = �1 2
3 6
� ,

and consider the linear transformation f ∶ R2

col
→ R2

col
,

f(v) = Av.
Find ker f and Image f .

(easy) 5.19 Let

V = R<3[X] = {p ∈ R[X] ∶ deg p < 3},
and let W =M2×2(R). Consider the linear transformation f ∈ HomR(V,W ),

f(a + bX + cX2) = �a + b 0
b + c c − a� .

Find ker f and Image f .

5.6 linear transformations and subspaces

The content of the previous section is in fact particular cases to the more
general interaction between linear transformations and subspaces. Since lin-
ear transformations “communicate” with the linear structure of vector spaces
and so do linear subspaces, it turns out that linear transformations map sub-
spaces of V into subspaces of W , and conversely, the set of vectors whose
image under f lie in a subspace of W constitute a subspace of V .

We give here two useful definitions pertinent to functions between any pair
of sets:

Definition 5.13 Let f ∈ Func(D,C) be a function with domain ( �.&(;) D

and codomain (�(&&)) C (note that D and C need not have any algebraic

structure). Let S ⊆ D. The image ( �%1&/;) of S under f is the subset of

C,

f(S) = {f(x) ∶ x ∈ S}.
That is, y ∈ f(S) if and only if there exists an x ∈ S such that y = f(x).
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In the particular case where S =D, f(D) is the image of f ,

f(D) = Image f.

Definition 5.14 Let f ∈ Func(D,C). Let T ⊆ C. The pre-image (%1&/;
�%,&5%) of T under f is the subset of D,

f
−1(T ) = {x ∈D ∶ f(x) ∈ T}.

That is, x ∈ f−1(T ) if and only if f(x) ∈ T .
It is important to emphasize that the pre-image is always well-defined, re-
gardless of whether f is invertible! For invertible functions, the pre-image of
every singleton in C is a singleton in D. In the particular case where T = C,

f
−1(C) = {x ∈D ∶ f(x) ∈ C} =D.

Indeed, by definition, every element in D is mapped by f into an element in
C.

Thus far, we dealt with general functions between sets. Next, these sets will
be vector spaces, or linear subspaces (which by definitions are vector spaces
on their own).

Proposition 5.15 Let V and W be vector spaces over a field F. Let f ∈
HomF(V,W ). For every U ≤ V ,

f(U) ≤W,

and for every Z ≤W ,

f
−1(Z) ≤ V.

Comment: For U = V this proposition asserts that the image of f ,

Image f = f(V )
is a linear subspace of W ; for Z = {0W}, this proposition asserts that kerf ,

ker f = f−1({0W})
is a linear subspace of V .
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Proof : The proof follows the same lines as the proof of Proposition 5.11. The
set f(U) is not empty because 0V ∈ U , hence 0W ∈ f(U). Let w1.w2 ∈ f(U)
and let a ∈ F. By definition, there exist u1,u2 ∈ U such that

w1 = f(u1) and w2 = f(u2).
By the linearity of f ,

f(u1 + u2) = f(u1) + f(u2) =w1 +w2,

and since u1 + u2 ∈ U , it follows that w1 +w2 ∈ f(U). Similarly,

f(au1) = af(u1) = aw1,

and since au1 ∈ U , it follows that aw1 ∈ f(U), thus proving that f(U) is a
linear subspace of W .

Conversely, The set f−1(Z) is not empty, because 0W ∈ Z hence 0V ∈ f−1(Z).
Let u,v ∈ f−1(Z) and a ∈ F. By definition,

f(u) ∈ Z and f(v) ∈ Z.
Since Z is a linear subspace of W ,

f(u + v) = f(u) + f(v) ∈ Z and f(av) = af(v) ∈ Z,
i.e.,

u + v ∈ f−1(Z) and av ∈ f−1(Z).
proving that f−1(Z) is a linear subspace of V . n

Exercises

(easy) 5.20 Let f ∶ R3 → R3 be the linear transformation given by

f(x, y, z) = (x + 2y, y − z, x + 2z).
Let

U = Span{(1,1,1)} and W = Span{(1,0,1), (0,1,0)}.
Find (a) ker f , (b) Imagef , (c) f(U), (d) f(W ), (e) f−1(U), (f) f−1(W ).
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5.7 Nullity and Rank

The kernel and the image of a linear transformation are defined for transfor-
mations between any pair of vector spaces. We now examine the case where
V is finitely-generated. First a lemma:

Lemma 5.16 Let V and W be vector spaces over a field F, with V finitely-

generated. Let f ∈ HomF(V,W ). Then, both ker f and Image f are finitely-

generated.

Proof : Since ker f ≤ V and V is finitely-generated, then ker f is also finitely-
generated. More surprising perhaps is the fact that Image f is finitely-
generated, even though W may not be. Let

B = �v1 . . . vn�
be a generating set for V . We will show that

C = �f(v1) . . . f(vn)�
is a generating set for Imagef , hence Image f is of dimension at most n.

Let w ∈ Image f . By definition, there exists a v ∈ V , such that f(v) = w.
Since B is a generating set for V , there exist n scalars a1, . . . , an ∈ F, such
that

v = a1v1 + ⋅ ⋅ ⋅ + anvn.

By the linearity of f ,

w = f(v) = a1 f(v1) + ⋅ ⋅ ⋅ + an f(vn),
proving that w ∈ SpanC, i.e.,

Image f ≤ SpanC.
n
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Definition 5.17 Let V and W be vector spaces over a field F, with V

finitely-generated. Let f ∈ HomF(V,W ). The nullity (�;A25!) of f is

⌫(f) = dimF ker f.

The rank (�%#9$) of f is

%(f) = dimF Image f.

Intuitively, the larger the nullity of a linear transformation, the more vectors
in V are mapped to the zero vector in W . The larger the range of f , the
more vectors in W are obtained by applying f on vectors in V .

Example: Let f ∈ HomF(V,W ) be the zero transformation. Then

⌫(f) = dimF V and %(f) = 0.
▲▲▲

Theorem 5.18 (Rank-nullity theorem ( �.*$//% )5:/)) Let V and W

be vector spaces over a field F, with V finitely-generated. Let f ∈
HomF(V,W ). Then,

⌫(f) + %(f) = dimF V.

(In other words, there is a “tradeo↵” between “how many” vectors in V are

mapped to the zero vector and “how many” vector in W can be obtained as

the output of f .)

Proof : The idea of the proof is quite similar in essence to the proof of the
theorems relating the annihilators of subspaces for linear forms. Denote by
n the dimension of V . Let �u1 . . . uk�
be a basis for ker f (which is of dimension at most n) and let

B = �u1, . . . ,uk,v1, . . . ,vn−k�
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be its completion to a basis for V (recall that a basis for any subspace can be
completed into a basis for the entire space). Since, by definition, ⌫(f) = k,
it remains to prove that %(f) = n − k. Consider the set

C = �f(v1) . . . f(vn−k)� .
If we show that C is a basis for Image f , then we are done.

Let w ∈ Image f . By definition there exists a v ∈ V such that w = f(v).
Since B is a basis for V ,

v = a1u1 + ⋅ ⋅ ⋅ + akuk + b1v1 + ⋅ ⋅ ⋅ + bn−kvn−k
for some scalars a1, . . . , ak, b1, . . . , bn−k ∈ F. Applying f on both sides, using
its lineartiy

w = f(v) = a1 f(u1) + ⋅ ⋅ ⋅ + ak f(uk) + b1 f(v1) + ⋅ ⋅ ⋅ + bn−k f(vn−k).
However, ui ∈ ker f , namely, f(ui) = 0, from which we obtain that

w = b1 f(v1) + ⋅ ⋅ ⋅ + bn−k f(vn−k),
i.e., w ∈ SpanC, hence the latter is a generating set for Imagef .

It remains to show that the sequence C is independent. Suppose that

b
1
f(v1) + ⋅ ⋅ ⋅ + bn−k f(vn−k) = 0W

for some scalars b1, . . . , bn−k ∈ F. We need to show that bi = 0 for all i =
1, . . . , n − k.
Using the linearity of f in the “reverse direction”,

f(b1v1 + ⋅ ⋅ ⋅ + bn−kvn−k) = 0W .

This implies that
b
1v1 + ⋅ ⋅ ⋅ + bn−kvn−k ∈ ker f.

Since the ui’s form a basis for kerf , there exist scalars a1, . . . , ak ∈ F, such
that

b
1v1 + ⋅ ⋅ ⋅ + bn−kvn−k = a1u1 + ⋅ ⋅ ⋅ + akuk.

However, B is a basis for V (i.e., the set comprising both ui’s and vi’s is
linearly-independent). It follows that ai = 0 and bj = 0 for all i and j, proving
that the sequence C is linearly-independent. This completes the proof. n
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Comment: An implication of the rank-nullity theorem is that the dimension
of the image of a linear transformation cannot exceed the dimension of it
domain. For example, if V = R and W = R27, then the image of a linear
transformation f ∈ HomF(V,W ) is at most one-dimensional. In a sense, a
linear transformation cannot “create a space from nothing”.

Example: Let A ∈Mm×n(F) and consider the linear map f ∈ HomF(Fn

col
,Fm

col
)

given by
f(v) = Av.

In this case, the image of f is the column space of A,

ImageA = C (A),
whereas the kernel of f is the set of zeros of the rows of A, viewed as linear
forms, i.e.,

kerA = (R(A))0.
Then, by the rank-nullity theorem,

dimF C (A) + dimF(R(A))0 = dimF Fn

col
= n.

Recall that dimF C (A) is the column-rank of A, whereas n−dimF(R(A))0 is
the row-rank of A (the number of non-zero rows in the reduced form). Thus,
we have discovered once again that the row-rank of a matrix equals to its
column-rank. ▲▲▲
Exercises

(intermediate) 5.21 Let V be a vector space and let

B = {v1,v2,v3,v4}
be a basis for V . Let f ∈ HomF(V,V ) such that {v1,v2} is a basis for ker f .
Show that the set {f(v3), f(v4)} is linearly-independent.
(harder) 5.22 Find a linear transformation f ∶ R<4[X] → M2×3(R), such
that

ker f = Span{X3 − 2X + 1,X3 +X2 −X + 3}
and

Span��−1 2 1
3 −1 0

�� ⊆ Image f.
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(intermediate) 5.23 Consider a linear transformation g ∈ HomR(R4,R3)
satisfying

g(1,3,−1,0) = (1,0,−4) and g(2,1,2,1) = (2,0,−8).
(a) Can g be one-to-one? Find an example or argue why not.

(b) Can g be onto? Find an example or argue why not.

(intermediate) 5.24 Let f ∈ HomR(R4,R3). Let v1,v2 ∈ R4 be indepen-
dent vectors satisfying f(v1) = f(v2) = 0R3 . Show that f is not onto.

(intermediate) 5.25 Which of the following assertions is true? Provide an
example or disprove:

(a) There exists a linear transformation f ∈ HomR(R2,R2) satisfying ker f =
Image f .

(b) There exists a linear transformation f ∈ HomR(R3,R3) satisfying ker f =
Image f .

(intermediate) 5.26 Let V and W be vector spaces over F. Let f ∈
HomF(V,W ) and let

(v1, . . . ,vn)
be a sequence of vectors in V .

(a) Suppose that f is one-to-one. Show that (v1, . . . ,vn) are linearly-
independent if and only if (f(v1), . . . , f(vn)) are linearly-independent.

(b) Suppose that f is onto. Show that if (v1, . . . ,vn) is a generating set
for V , then (f(v1), . . . , f(vn)) is a generating set for W .

(c) Show that it is not generally true that if (f(v1), . . . , f(vn)) is a gener-
ating set for W , then (v1, . . . ,vn) is a generating set for V .

(d) Suppose that f is one-to-one and onto. Show that (v1, . . . ,vn) is a
basis for V if and only if (f(v1), . . . , f(vn)) is a basis for W .
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5.8 Composition of linear transformations

Let U,V,W be vector spaces over a field F. For f ∈ HomF(U,V ) and
g ∈ HomF(V,W ), we can compose ( �"*,9%-) the two functions, yielding
a function

g ○ f ∶ U →W,

given for all u ∈ U by (g ○ f)(u) = g(f(u)).
Note that the composition of functions is a notion pertinent to sets; there is
nothing “linear” about it. The following proposition asserts that the compo-
sition of linear transformations is a linear transformation:

Proposition 5.19 Let U,V,W be vector spaces over a field F. If f ∈
HomF(U,V ) and g ∈ HomF(V,W ), then g ○ f ∈ HomF(U,W ).

Proof : For every u1,u2 ∈ U , since f and g are both linear transformations,

(g ○ f)(u1 + u2) = g(f(u1 + u2))= g(f(u1) + f(u2))= g(f(u1)) + g(f(u2))= (g ○ f)(u1) + (g ○ f)(u2),
and for every u ∈ U and a ∈ F,

(g ○ f)(au) = g(f(au)) = g(af(u)) = ag(f(u)) = a (g ○ f)(u),
proving that g ○ f is indeed a linear transformation. n

Example: Consider the case of U = Fn

col
, V = Fm

col
and W = Fk

col
. Let

A ∈ Mm×n(F) and B ∈ Mk×m(F). Define the linear transformations fA ∈
HomF(U,V ) and fB ∈ HomF(V,W ) by

fA(u) = Au and fB(v) = Bv.

Then, fB ○ fA ∈ HomF(U,W ) is given by

(fB ○ fA)(u) = fB(fA(u)) = B(fA(u)) = B(Au) = (BA)u,
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where in the last step we used the associativity of matrix multiplication.
Thus, fB ○ fA = fBA, showing that matrix multiplication is in fact a compo-
sition of linear transformations. ▲▲▲
The following properties of composition are easy to verify:

Proposition 5.20 Let f, f1, f2 ∈ HomF(U,V ) and g, g1, g2 ∈ HomF(V,W ).
Then, (g1 + g2) ○ f = g1 ○ f + g2 ○ f,
and

g ○ (f1 + f2) = g ○ f1 + g ○ f2.

We next relate the composition of linear transformations to the notions of
kernel and image:

Proposition 5.21 Let U,V,W be vector spaces over the same field F. Let

f ∈ HomF(U,V ) and g ∈ HomF(V,W ). Then,
ker f ≤ ker(g ○ f),

and

Image(g ○ f) ≤ Image g.

In other words, if f maps a vector to zero then the further application of
g cannot yield a non-zero vector. Also, g ○ f cannot return a vector that g
cannot return.

Proof : Let u ∈ ker f , i.e., f(u) = 0V , then
(g ○ f)(u) = g(f(u)) = g(0V ) = 0W ,

which means that u ∈ ker g ○ f , i.e., ker f ⊆ ker g ○ f .
Let w ∈ Image(g ○ f). By definition, there exists a u ∈ U such that

w = (g ○ f)(u),
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but this means that
w = g(f(u)),

proving that w ∈ Image g, i.e., Image(g ○ f) ⊆ Image g. n

Exercises

(easy) 5.27 Prove Proposition 5.20.

(easy) 5.28 Let f, g, h ∈ HomR(R3,R3) be defined by

f(x, y, z) = (x, y,−z) g(x, y, z) = (y + z, x, x + z)
h(x, y, z) = (x + 2y,2x + y,0).

Write explicitly the linear transformations

2f − g f + 2h f ○ g g ○ f h ○ f + 2g.
(easy) 5.29 Let f ∈ HomF(V,V ). Show that

ker f ≤ ker(f ○ f) and Image(f ○ f) ≤ Image f.

(intermediate) 5.30 Let f ∈ HomF(V,V ). Show that

ker f = ker(f ○ f)
if and only if ker f ∩ Image f = {0V }.
(intermediate) 5.31 Let V be a finitely-generated vector space over R. Let
f ∈ HomR(V,V ) satisfy

f ○ f = 2f.
Show that ker f ∩ Image f = {0V } and that

V = Image f ⊕ ker f.

(intermediate) 5.32 Let V be a finitely-generated vector space over R. Let
f ∈ HomR(V,V ). Show that

ker f = ker(f ○ f) implies Image f = Image(f ○ f).
(intermediate) 5.33 Find vector spaces U,V,W and linear transformations
f ∈ HomF(U,V ) and g ∈ HomF(V,W ), such that

ker f < ker g ○ f,
and

Image g ○ f < Image g.
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5.9 Rotations of the plane

In this section we introduce yet another family of linear transformations—
this time transformations from the plane to itself, R2 → R2. Recall that a
point (x, y) ∈ R2 can be represented by its distance from the origin, r, and
the angle ↵ formed between the arrow pointing to it from the origin and the
x axis:

r

(r cos↵, r sin↵)

↵

We define a family of linear transformations,

Rot✓ ∶ R2 → R2
,

where ✓ ∈ R, where

Rot✓(r cos↵, r sin↵) = (r cos(↵ + ✓), r sin(↵ + ✓)).

That is, this transformation rotates vector about the origin by an angle ✓.
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(r cos↵, r sin↵)

(r cos(↵ + ✓), r sin(↵ + ✓))

↵

✓

On the face of it, this transformation doesn’t seem linear; the trigonometric
functions are nonlinear. However, using the trigonometric identities,

cos(↵ + ✓) = cos↵ cos ✓ − sin↵ sin ✓

sin(↵ + ✓) = sin↵ cos ✓ + cos↵ sin ✓,

setting x = r cos↵ and y = r sin↵, we find that

Rot✓(x, y) = (cos ✓ x − sin ✓ y, sin ✓ x + cos ✓ y),
that is Rot✓ ∈ HomR(R2,R2).
If we rather write the components of vectors relative to the standard basis,

Rot✓ ��x
y
�� = �cos ✓ x − sin ✓ y

sin ✓ x + cos ✓ y� = �cos ✓ − sin ✓sin ✓ cos ✓
� �x

y
� .

Thus, a rotation in the plane by an angle ✓ is represented (in standard coor-
dinates) by a multiplication by a rotation matrix ( �"&"*2 ;7*9)/)

R✓ = �cos ✓ − sin ✓sin ✓ cos ✓
� .

What happens if we compose two rotations? What happens if we rotate a
vector by an angle ✓ and then rotate the result by an addition angle of '.
Clearly, we expect

Rot' ○Rot✓ = Rot'+✓ .
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A straightforward calculation shows that indeed

�cos' − sin'
sin' cos'

� �cos ✓ − sin ✓
sin ✓ cos ✓

� = �cos(' + ✓) − sin(' + ✓)
sin(' + ✓) cos(' + ✓) � ,

i.e.,
R'R✓ = R'+✓.

Note that
R2⇡ = R0 = I,

and
R✓R−✓ = I.

5.10 The dimension of HomF(V,W )
Since the set of linear transformations HomF(V,W ) is a vector space in its
own right, a number of questions arise right away: under what conditions is
it finitely-generated? What would be a natural basis for it?

The following lemma is the key to answering these questions:

Lemma 5.22 Let V and W be finitely-generated vector spaces. Let

B = �v1 . . . vn� and C = �w1 . . . wm�
be ordered bases for V and W . Then, there exists for every i = 1, . . . , n and

j = 1, . . . ,m a unique linear transformation f i

j
∈ HomF(V,W ), such that

f
i

j
(vk) =

�������
wj k = i
0W k ≠ i. (5.1)

Proof : This is an immediate consequence of Proposition 5.3 and Propo-
sition 5.4, whereby a linear transformation is uniquely determined by its
action on basis vectors. It is worth though to examine this in more detail.
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Let f ∈ HomF(V,W ) and consider the vector f(v1): it has a unique represen-
tation as a linear combination of the basis vectors wi, which we may write
as

f(v1) = �w1 . . . wm�
�������
a1
1⋮

a1
m

�������
.

Repeating this for each of the n vectors f(vj), we obtain that f is uniquely
determined by an m × n matrix

�f(v1) . . . f(vn)� = �w1 . . . wm�
�������
a1
1
� an

1⋮ ⋮ ⋮
a1
m
� an

m

�������
.

The function f i

j
corresponds to the matrix A which is zero everywhere, except

for the element on the i-th colum and j-th row, which is equal to one. n

Example: Let n = 3 and m = 5, then, for example,

f
2

4
(v1) = 0W f

2

4
(v2) =w4 and f

2

4
(v3) = 0W ,

namely,

�f 2

4
(v1) f 2

4
(v2) f 2

4
(v3)� = �w1 w2 w3 w4 w5�

�����������

0 0 0
0 0 0
0 0 0
0 1 0
0 0 0

�����������
.

▲▲▲

Theorem 5.23 Let V and W be finitely-generated vector spaces. Let

B = �v1 . . . vn� and C = �w1 . . . wm�
be ordered bases for V and W . Then, the linear transformations f i

j
defined

by (5.1) are a basis for HomF(V,W ). In particular,

dimFHomF(V,W ) = dimF V × dimFW.
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Corollary 5.24 In the particular case where W = F. Theorem 5.23 asserts

that

dimFHomF(V,F)�������������������������������������������������������
V ∨

= dimF V × dimF F���������������
1

= dimF V,

which we already know.

Proof : We need to show that the set of linear transformations

{f i

j
∶ i = 1, . . . , n, j = 1, . . . ,m}

is generating HomF(V,W ) and independent.

Let f ∈ HomF(V,W ). We want to show that it can be represented as

f = n�
i=1

m�
j=1

a
j

i
f
i

j
,

where a
j

j
∈ F are the coe�cients. As we know, a linear transformation is

uniquely determined by its action on basis vectors: substituting vk, k =
1, . . . , n on both sides,

f(vk) = n�
i=1

m�
j=1

a
j

i
f
i

j
(vk) = n�

i=1
m�
j=1

a
j

i
�
i

k
wj = m�

j=1
a
j

k
wj.

For every fixed k = 1, . . . , n, the coe�cients aj
k
are the coordinates of f(vk) ∈

W relative the basis C,
a
j

k
= ([f(vk)]C)j.

In other words, every f ∈ HomF(V,W ) can be represented as

f = n�
i=1

m�
j=1
([f(vi)]C)j f i

j
,

thus proving that the linear transformations f i

j
is a generating set for HomF(V,W ).

It remains to show that they are also independent. Let ai
j
be scalars and

suppose that
n�
i=1

m�
j=1

a
j

i
f
i

j
= 0HomF(V,W ).
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Substituting vk on both sides,

n�
i=1

m�
j=1

a
j

i
f
i

j
(vk) = m�

j=1
a
j

k
wj = 0W .

Since C is a basis for W , it follows that aj
k
= 0F for all j = 1, . . . ,m (and for

all k = 1, . . . , n), which completes the proof. n

5.11 Isomorphisms

The notion of isomorphism ( �.'*59&/&'*!) is fundamental is mathematics:
loosely speaking, two sets are said to be isomorphic if they are “the same”
up to a renaming of their elements. The most basic notion of isomorphism
is between plain sets: two sets S and T are isomorphic if there exists a func-
tion f ∶ S → T that is one-to-one ( �;*,93 $( $() and onto ( �-3); then,
the function f induces a relation where every element in S can be identified
with an element in T and vice-versa, so that we could say that f(x) ∈ T is
a “renaming” of x ∈ S. We then say that f is an isomorphism and that S

and T are isomorphic ( �.**59&/&'*!). An alternative way of stating that two
sets are isomorphic is that there exist two functions f ∶ S → T and g ∶ T → S,
such that

g(f(x)) = x for every x ∈ S,
and

f(g(y)) = y for every y ∈ T .
In other words, g ○ f = IdS and f ○ g = IdT .

Vector spaces are not just plain sets; they are endowed with a linear structure,
so for two vector spaces to be considered isomorphic, we require more than
being equivalent as sets. The function identifying an element in one space
with an element in the other space has to “respect” linear operations. This
leads us to the following definition:

Definition 5.25 Let V and W be vector spaces over a field F. The spaces

are called isomorphic if there exists a linear transformation f ∈ HomF(V,W )
and a linear transformation g ∈ HomF(W,V ) such that g ○f = IdV and f ○g =
IdW . The function f is called an isomorphism from V to W and g is called

an isomorphism from W to V .
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Note that f and g both necessarily one-to-one and onto. Take f for example:
for every w ∈W ,

w = f(g(w)),
showing that f is onto. Likewise, if

f(v1) = f(v2),
then

v1 = g(f(v1)) = g(f(v2)) = v2,

showing that f is one-to-one.

The next proposition provides a su�cient condition for two vector spaces to
be isomorphic.

Proposition 5.26 Let V and W be vector spaces over a field F. Let f ∈
HomF(V,W ) be one-to-one and onto. Then, f is an isomorphism from V to

W (implying that V and W are isomorphic).

Comment: This proposition states that if a linear transformation is invert-
ible, then its inverse is necessarily also a linear transformation.

Proof : Since f is one-to-one and onto, it has an inverse, which we denote by
g. It remains to prove that g is a linear transformation. Let w1,w2 ∈W . By
definition, there exist unique v1,v2 ∈ V , such that

w1 = f(v1) and w2 = f(v2).
Reciprocally,

v1 = g(w1) and v2 = g(w2).
By the linearity of f ,

w1 +w2 = f(v1) + f(v2) = f(v1 + v2),
and reciprocally,

g(w1 +w2) = v1 + v2 = g(w1) + g(w2),
thus proving the first condition of linearity for g.
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Likewise, let w ∈W and a ∈ F. There exists a unique v ∈ V , such that

w = f(v) and v = g(w).
By the linearity of f ,

aw = af(v) = f(av),
and reciprocally,

g(aw) = av = ag(w),
thus proving the second condition of linearity for g. n

Proposition 5.27 An isomorphism between vector spaces is an equivalence

relation.

Proof : Recall that an equivalence relation has three criteria: reflexivity,
symmetry and transitivity. Every vector space is isomorphic to itself. Why?
Take the identity f ∶ V → V , defined by

f(v) = v for all v ∈ V .

It is invertible (its inverse being also the identity) and linear, proving that V is
isomorphic to itself. Next, if V is isomorphic toW thenW is isomorphic to V ,
because an isomorphism is symmetric by construction. Remains transitivity:
suppose that U and V and isomorphic and V and W are isomorphic. By
definition, there exist

f ∈ HomF(U,V ) g ∈ HomF(V,U)
h ∈ HomF(V,W ) k ∈ HomF(W,V ),

such that

g ○ f = IdU f ○ g = IdV k ○ h = IdV and h ○ k = IdW .

U V W

f

((

g

hh

h

((

k

hh

Consider the functions

h ○ f ∶ U →W and g ○ k ∶W → U.
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Since they are compositions of linear transformations, they are linear trans-
formations, i.e.,

h ○ f ∈ HomF(U,W ) and g ○ k ∈ HomF(W,U).
Finally, for every u ∈ U ,

(g ○ k) ○ (h ○ f)(u) = g(k(h(f(u)) = g(f(u) = u,
and for every w ∈W ,

(h ○ f) ○ (g ○ k)(w) = h(f(g(k(w)) = h(k(w) =w,

proving that U and W are isomorphic. n

Now that we know what are isomorphic vector spaces, we will see examples,
and in particular, discover that we have already encountered isomorphisms
without being aware of it...

Example: Let V be finitely-generated vector space over F and let

B = �v1 . . . vn�
be an ordered basis. The mapping f ∶ V → Fn

col
,

f ∶ v � [v]B,
mapping every vector to its coordinate matrix relative to B is an isomor-
phism. We know that this is a linear transformation; it is also one-to-one—
every vector has a unique coordinate representation—and onto—every col-
umn of n scalars is the coordinate matrix of some vector. ▲▲▲
Lemma 5.28 Let V and W be finitely-generated vector spaces over F having

the same dimension. Let f ∈ HomF(V,W ). Then, f is one-to-one if and only

if f is onto.

Proof : This is an immediate consequence of the rank-nullity theorem (The-
orem 5.18), whereby

dimF ker f + dimF Image f = dimF V = dimFW.
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Recall that f is one-to-one if and only if dimF ker f = 0 (Proposition 5.12); f
is onto if and only if Imagef =W . Thus, if f is one-to-one, then

dimF Image f = dimFW,

which implies that Image f = W , proving that f is onto. Conversely, if f is
onto, namely, Image f =W , then

dimF ker f + dimFW = dimFW,

i.e., ker f = {0V }, hence f is one-to-one. n

Proposition 5.29 Every two finitely-generated vector spaces over the same

field having the same dimension are isomorphic.

Proof : Let V and W be vector spaces of dimension n over F. Let

B = �v1 . . . vn� and C = �w1 . . . wn�
be ordered bases for V and W . Define f ∈ HomF(V,W ) as the unique linear
transformation satisfying

f(vi) =wi for all i = 1, . . . , n.
If we show that f is one-to-one and onto, then we are done, but from
Lemma 5.28 it su�ces to show just one of them. Let w ∈W ; by the definition
of a basis, there exist scalars a1, . . . , an ∈ F, such that

w = a1w1 + ⋅ ⋅ ⋅ + anwn.

Then,
w = a1 f(v1) + . . . an f(vn) = f(a1v1 + ⋅ ⋅ ⋅ + anvn),

i.e., w ∈ Image f , which proves that f is onto. n

Corollary 5.30 Every finitely-generated vector space is isomorphic to its

dual.
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Comment: Isomorphisms are commonly split into two categories: natural
isomorphisms and “unnatural” ones. An isomorphism is called natural if its
definition does not rely on arbitrary choices. When we say that two vector
spaces of the same dimension are isomorphic, the isomorphism depends on a
choice of bases, therefore it is not considered natural.

Example: Let V be a finitely-generated vector space over F. It is isomorphic
to its dual, and its dual is isomorphic to its own dual (the so called double-
dual). By transitivity, V is isomorphic to (V ∨)∨. In this case, there exists a
natural isomorphism. Consider the map

f ∶ V → (V ∨)∨
assigning to every v ∈ V a linear form (on linear forms...) f(v) defined by

(f(v))(`) = `(v) for every ` ∈ V ∨.
We claim that f is an isomorphism, i.e., it is a linear transformation, one-to-
one and onto.

To show that it is linear, we note that for every u,v ∈ V and every ` ∈ V ∨,
(f(u + v))(`) = `(u + v) = `(u) + `(v) = (f(u))(`) + (f(v))(`),

and since this hold for every ` ∈ V ∨,
f(u + v) = f(u) + f(v).

Similarly, for v ∈ V , a ∈ F and ` ∈ V ∨,
(f(av))(`) = `(av) = a `(v) = a (f(v))(`),

and since this hold for every ` ∈ V ∨,
f(av) = af(v).

This completes the proof that f is a linear transformation.

Since V and (V ∨)∨ are of the same dimension, it su�ces to show that f is
one-to-one, and equivalently, that its kernel is trivial. Let v ∈ ker f . This
means that (f(v))(`) = `(v) = 0
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for all ` ∈ V ∨. We have seen that if v ≠ 0 then there exists a linear form
` ∈ V ∨ such that `(v) ≠ 0. We conclude that v = 0V , i.e.,

ker f = {0V },
completing the proof that f is an isomorphism. This isomorphism is consid-
ered natural because it does not hinge on any arbitrary construct. ▲▲▲
We end this section with one more manifestation of isomorphisms respecting
the linear structure of vector spaces:

Proposition 5.31 Let V,W be finitely-generated vector spaces over F and

let f ∈ HomF(V,W ) be an isomorphism. If

B = �v1 . . . vn�
is a basis for V , then

C = �f(v1) . . . f(vn)�
is a basis for W . In particular, two finitely-generated vector spaces are iso-

morphism if and only if they are of the same dimension.

Proof : We need to prove that C is generating W and independent. Denote
by g ∈ HomF(W,V ) the map inverse to f . Let w ∈W and let v = g(w). Since
B is a basis for V , we can write

v = a1v1 + ⋅ ⋅ ⋅ + anvn

for some scalars a1, . . . , an ∈ F. Then,
w = f(v) = a1 f(v1) + ⋅ ⋅ ⋅ + an f(vn),

proving that C is a generating set for W .

Let
a
1
f(v1) + ⋅ ⋅ ⋅ + an f(vn) = 0W .

Applying g on both sides, using its linearity and the fact that g ○ f = Id, we
obtain that

a
1v1 + ⋅ ⋅ ⋅ + anvn = 0V .

Since B is a basis, ai = 0 for all i = 1, . . . , n, proving that C is an independent
set. This completes the proof. n



220 Chapter 5

Exercises

(intermediate) 5.34 Complete the proof of Proposition 5.31: deduce that
if dimF V =m and dimFW = n, where m ≠ n, then V and W are not isomor-
phic.

(intermediate) 5.35 Let A ∈Mn(F). Prove that the linear transformation
f ∶ Fn

col
→ Fn

col
,

f(v) = Av
is an isomorphism if and only if A ∈ GLn(F).

5.12 Matrix representation

Recall that in finitely-generated vector spaces, the introduction of ordered
bases enables us to encode vectors as coordinate matrices. In a similar way, if
V and W are finitely-generated vector spaces, we can encode linear transfor-
mations in HomF(V,W ) as matrices acting of the coordinate representation
of v ∈ V , returning the coordinate representation of f(v) ∈W .

Consider the following diagram:

Fn

col
Fm

col

V W
f //

B

✏✏

C

✏✏

Af

//

In this diagram there are four vector spaces: V , W , Fn

col
and Fm

col
. The arrows

represent linear transformations between the tail of the arrow and the head
of the arrow. Thus, f is a linear transformation from V to W . Assume that
dimF V = n and dimFW =m. The introduction of ordered bases, B for V and
C for W , induces two linear transformations, one from V to the space of its
coordinate matrices Fn

col
, and one fromW to the space of its coordinate matri-

ces Fm

col
. In this section, we show that to every f ∈ HomF(V,W ) corresponds

a unique matrix Af ∈Mm×n(F), which we view as a linear transformation in
HomF(Fn

col
,Fm

col
), such that this diagram “commutes”. To explain what this

means, consider the same diagram through its action on a vector v ∈ V :
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[v]B [f(v)]C

v f(v)� f //
_

B

✏✏

_

C

✏✏
�

Af

//

Take the vector v ∈ V ; if we apply f on it we obtain a vector f(v) ∈W . If we
apply on the latter the linear transformation returning its coordinate matrix
relative to C, we obtain [f(v)]C ∈ Fm

col
. Alternatively, apply on v first the

linear transformation returning its coordinate matrix [v]B ∈ Fn

col
relative to

B. Multiply it then by the matrix Af , yielding a matrix Af [v]B. When we
say that the diagram commutes, we mean that either path yields the same
outcome, namely, [f(v)]C = Af [v]B.
The matrix Af is called the matrix representing ( �;#7*/% %7*9)/%) the
linear transformation f relative to the ordered bases B and C; we denote it
by [f]BC , i.e., [f(v)]C = [f]BC [v]B.
Theorem 5.32 Let V,W be finitely-generated vector spaces over F. Let

B = �v1 . . . vn� and C = �w1 . . . wm�
be ordered bases for V and W . Every f ∈ HomF(V,W ) has a unique A ∈
Mm×n(F), such that

[f(v)]C = A [v]B for every v ∈ V .

Proof : Consider the transformation taking v ∈ V and returning [f(v)]C.
This is a mapping V → Fm

col
, which is a composition of two linear transforma-

tions, hence it is a linear transformation. For every i = 1, . . . , n, substituting
vi, we obtain a coordinate matrix

[f(vi)]C ∈ Fm

col
.
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We define then the matrix A to be the unique linear transformation in
HomF(Fn

col
,Fm

col
) satisfying

A[vi]B = [f(vi)]C.
Here we used several facts: first, by Proposition 5.3 and Proposition 5.4,
a linear transformation is uniquely determined by its action on basis vec-
tors. But second, we used the fact that [vi]B is a basis for Fn

col
; this follows

from the fact that the mapping from a vector to its coordinate matrix is an
isomorphism (Proposition 5.31).

We claim that A has the desired property: for every v ∈ V , which we write
as

v = a1v1 + ⋅ ⋅ ⋅ + anvn,

we have

A[v]B = A[a1v1 + ⋅ ⋅ ⋅ + anvn]B
= A �a1 [v1]B + ⋅ ⋅ ⋅ + an [vn]B�
= a1A[v1]B +� + anA[vn]B= a1 [f(v1)]C + ⋅ ⋅ ⋅ + an [f(vn)]C= [a1 f(v1) + ⋅ ⋅ ⋅ + an f(vn)]C= [f(a1v1 + ⋅ ⋅ ⋅ + anvn)]C= [f(v)]C,

which completes the proof. n

We’ve already seen this matrix. Recall that there is a matrix A ∈Mm×n(F),
such that �f(v1) . . . f(vn)� = �w1 . . . wm�A,
The entries of A are precisely ([f(vi)]C)j. That is,

�f(v1) . . . f(vn)� = �w1 . . . wm� [f]BC .
Example: The zero transformation is represented by the zero matrix. ▲▲▲
Example: Let dimF V = n and consider the identity function Id ∈ HomF(V,V ),
i.e.,

Id(v) = v for all v ∈ V .
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Let B = �v1 . . . vn� be a basis for V . Then,

�Id(v1) . . . Id(vn)� = �v1 . . . vn�
�������
1 �

1

�������
,

i.e., the matrix representing the identity map of a vector space is the identity
matrix, [Id]BB = In.
In this very special case it does not depend on the choice of basis, as long as
we use the same basis both for the domain and the codomain. ▲▲▲
Example: Let dimF V = n and for a ∈ F consider the homothety f ∈
HomF(V,V ), given by

f(v) = av for all v ∈ V .

Let B = �v1 . . . vn� be a basis for V . Then,

�f(v1) . . . f(vn)� = �v1 . . . vm�
�������
a �

a

�������
,

i.e., the matrix representing a homothety is a multiple of the identity matrix,
and for every v ∈ V ,

[f(v)]B =
�������
a �

a

�������
[v]B.

▲▲▲
Example: Let B and C be two ordered bases for V (which is finitely-
generated). Recall that the two bases are connected via transition matrices,
P,Q ∈ GLn(F),

C =BP and B = CQ,

where Q = P −1. Furthermore, for every v ∈ V ,

[v]B = P [v]C and [v]C = Q[v]B.
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Since we can equivalently write

[Id(v)]B = P [v]C,
it follows that the transition matrix P is the matrix representing the identity
map Id ∈ HomF(V,V ) relative to the bases B and C, namely,

P = [Id]CB.
For example, let V = R2, with

B = ((1,2), (2,1)) and C = ((1,1), (1,−1)).
You may verify once again that

�(1,1) (1,−1)������������������������������������������������������������������������������������������
C

= �(1,2) (2,1)���������������������������������������������������������������������������������
B

�1�3 −1
1�3 1

�
�����������������������������������������

P

,

Then,

[Id]CB = �1�3 −11�3 1
� ,

implying that for all v ∈ R2,

[v]B = �1�3 −11�3 1
� [v]C.

▲▲▲
Exercises

(easy) 5.36 Let f ∈ HomR(R2,R2) be given by

f(x, y) = (2x, x + y).
Calculate [f]EB and [f]BE for

E = �(1,0) (0,1)� and B = �(1,1) (0,1)� .
(easy) 5.37 Let A ∈M2(F) and let f ∶M2(F)→M2(F) be given by f(B) =
AB.
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(a) Show that f is a linear transformation.

(b) Does there exist a basis B for M2(F), such that [f]BB = A?
(easy) 5.38 Let En denote the standard ordered basis for Rn. Let f ∈
HomR(R2,R3) be given by

f(x, y) = (2x − y, x + y,−x + 3y).
(a) Write the matrix [f]E2

E3
.

(b) Find the linear transformation g ∈ HomR(R2,R3) for which
[g]E2

E3
=
�������
1 0
0 2−1 2

�������
.

(easy) 5.39 Repeat the previous exercise, this time using the ordered bases

B = �(1,1) (1,−1)� and C = �(1,0,0) (1,1,0) (1,1,1)� .
(easy) 5.40 Find the linear transformation f ∈ HomR(R2,R3) satisfying[f]BC = I3 relative to the ordered bases

B = �(1,0,−1) (1,−1,0), (0,1,1)�
C = �(1,0,0) (1,1,0) (1,1,1)� .

(intermediate) 5.41 Let V =M2(R),
U = ��a b

0 0
� ∶ a, b ∈ R� and W = ��−c 0

c d
� ∶ c, d ∈ R� .

In Exercise 5.15 you showed that V = U ⊕W and wrote explicitly the pro-
jections pi and reflections Si.

(a) Find an ordered basis B = {u1,u2,w1,w2} for V , such that {u1,u2} is
a basis for U and {w1,w2} is a basis for W .

(b) Find the matrices [p1]BB and [S1]BB.
(intermediate) 5.42 Let V = (C,+,R, ⋅) and consider the linear transfor-
mation f ∶ C→ C defined by

f(z) = z̄.
Find [f]BB for B = (1,−ı).
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(intermediate) 5.43 Let

V = R<4[X] = {p ∈ R[X] ∶ deg p < 4}.
Let f ∶ V → V be defined by

(f(p))(X) =X p
′(X),

where p′ is the derivative of p, viewed as a function, e.g., f(3X − X2) =
X(3 − 2X) = 3X − 2X2.

(a) Show that f is a linear transformation.

(b) Find [f]BB for B = (1,X,X2,X3).
(c) Find the kernel and the image of f .

(intermediate) 5.44 Let V =M2(R) and let W = R<3[X]. Let f ∶ V →W

be the linear transformation defined by

f ��a b

c d
�� = (a + 2b + c) + (3a − d)X + (a − 4b − 2c − d)X2

.

(a) Find [f]BC for C = (1,X,X2) and
B = ��1 0

0 0
� �0 1

0 0
� �0 0

1 0
� �0 0

0 1
� .�

(b) Find the kernel and the image of f .

(intermediate) 5.45 Let f ∶ R<3[X]→ R<3[X] be the linear transformation
represented by the matrix

[f]BB =
�������
1 2 5−1 0 −1
0 1 2

�������
relative to the ordered basis B = (1,1 +X,1 −X +X2). Find Image f .
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(intermediate) 5.46 Let

B = �(1,3) (3,0)�
be an ordered basis for R2. Let f ∈ HomR(R3,R2) satisfy

[f]EB = �−2 5 0
1 0 −1� ,

where E is the standard basis. Find a matrix A ∈M2×3(R) such that

f(x, y, z) = (x, y, z)A.
(intermediate) 5.47 Let V be a vector space over R and letB = (v1,v2,v3)
be an ordered basis for V . Let f ∈ HomR(V,R2) be the linear transformation
satisfying

[f]BC = � 5 −3 4−1 6 2
�

where

C = �(1,2) (0,−1)� .
Let v ∈ V satisfy

[v]B =
�������
1
0−1
�������
.

Find f(v).

5.13 Algebra of transformations and matrix
algebra

We now connect the composition of linear transformations to their matrix
representation. Let U,V,W be vector spaces over F, let f ∈ HomF(U,V ) and
let g ∈ HomF(V,W ). Let B, C and D be ordered bases for U , V and W . The
following diagram is useful:
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Fn

col
Fm

col
Fk

col

U V W
f // g //

B

✏✏

C

✏✏

D

✏✏

[f]BC
// [g]CD

//

Proposition 5.33 The above diagram commutes, namely,

[g ○ f]BD = [g]CD[f]BC .
In other words, the matrix representation of a composition is the product of

the matrix representations.

Proof : By definition, for every u ∈ U ,

[f(u)]C = [f]BC [u]B
and for every v ∈ V , [g(v)]D = [g]CD[v]C.
Combining the two,

[g(f(u))]D = [g]CD[f(u)]C = [g]CD[f]BC [u]B,
and by definition, [g]CD[f]BC = [g ○ f]BD.

n

Linear transformation from V to W can also be added. The addition of
linear transformations is represented by the addition of the corresponding
transition matrices:

Proposition 5.34 Let V,W be vector spaces over F and let f, g ∈
HomF(V,W ). Let B and C be ordered bases for V and W . Then,

[f + g]BC = [f]BC + [g]BC .
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Proof : By definition, for every v ∈ V ,

[f(v)]C = [f]BC [v]B and [g(v)]C = [g]BC [v]B.
Combining the two,

[(f + g)(v)]C = [f(v) + g(v)]C= [f(v)]C + [g(v)]C
= [f]BC [v]B + [g]BC [v]B= ([f]BC + [g]BC )[v]B,

and by definition [f]BC + [g]BC = [f + g]BC .
n

Similarly, we can prove:

Proposition 5.35 Let V,W be vector spaces over F; let f ∈ HomF(V,W )
and a ∈ F. Let B and C be ordered bases for V and W . Then,

[af]BC = a [f]BC .

Proof : We leave this as an exercise. n

Example: Let V = U1 ⊕U2, where

dimFU1 = dimFU2 = 1.
Recall that every v ∈ V has a unique representation as v = u1 + u2, and we
defined the projection operators p1, p2 ∶ V → V by

p1(v) = u1 and p2(v) = u2,

and the reflection operators S1, S2 ∶ V → V by

S1(v) = u1 − u2 and S2(v) = u2 − u1.
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These linear transformations satisfy the following additive relations,

p1 + p2 = IdV

p1 − p2 = S1

p2 − p1 = S2

S1 + S2 = 0HomF(V,V ).
In the present case there exist u,w ∈ V , such that

U1 = Span{u} and U2 = Span{w}.
Take B = (u,w) as an ordered basis for V . We have

[u]B = �10� and [w]B = �01� .
Since p1(u) = u and p1(w) = 0V , the matrix representation of p1 relative to
the basis B is

[p1]BB = �1 0
0 0
� .

Likewise,

[p2]BB = �0 0
0 1
� .

Note that [p1]BB + [p2]BB = I2 = [IdV ]BB. Further
[S1]BB = [p1]BB − [p2]BB = �1 0

0 −1� ,
and

[S2]BB = [p2]BB − [p1]BB = �−1 0
0 1

� ,
so that [S1]BB + [S2]BB = 0M2(F), as expected.
Consider now compositions of these operators, for example,

p1 ○ p1 = p1 and p1 ○ p2 = 0V .
Indeed,

[p1]BB[p1]BB = �1 0
0 0
� �1 0

0 0
� = �1 0

0 0
� = [p1 ○ p1]BB,
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and

[p1]BB[p2]BB = �1 0
0 0
� �0 0

0 1
� = �0 0

0 0
� = [p1 ○ p2]BB.

▲▲▲
Exercises

(easy) 5.48 Show explicitly in the last example that p1 ○ S2 = −p1 and

[p1]BB[S1]BB = [p1 ○ S1]BB.
(harder) 5.49 Let V be a three-dimensional vector space over a field F
and let f ∈ HomF(V,V ) be a linear transformation, which is not the zero
transformation, satisfying

f ○ f = 0HomF(V,V ).
Show that there exists an ordered basis B for V , such that

[f]BB =
�������
0 0 1
0 0 0
0 0 0

�������
.

Hint: start by finding the dimensions of ker f and Image f . Is one of those
subspaces contained in the other?

(harder) 5.50 Let V be a three-dimensional vector space over a field F and
let f ∈ HomF(V,V ) be a linear transformation satisfying

f ○ f ≠ 0HomF(V,V ) and f ○ f ○ f = 0HomF(V,V ).
Show that there exists an ordered basis B for V , such that

[f]BB =
�������
0 1 0
0 0 1
0 0 0

�������
.

Hint: start by finding the dimensions of ker f and Image f . Is one of those
subspaces contained in the other? What is the implication of f ○f not being
the zero transformation?
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5.14 Change of basis

The change of an ordered basis induces a change in the coordinate matrices
of vectors. Likewise, it also induces a change in the matrix representation
of linear transformations. The following theorem provides a formula for the
change of the matrix representation.

Theorem 5.36 Let V be a finitely-generated vector space over F, dimF V =
n. Let B and C be ordered bases for V , such that

C =BP,

for some P ∈ GLn(F). Then, for f ∈ HomF(V,V ),
[f]CC = P −1[f]BBP.

Proof : By definition of the representing matrix, for every v ∈ V ,

[f(v)]B = [f]BB[v]B and [f(v)]C = [f]CC[v]C.
Moreover,

P [v]C = [v]B and P [f(v)]C = [f(v)]B,
from which we obtain,

[f]CC[v]C = [f(v)]C = P −1[f(v)]B = P −1[f]BB[v]B = P −1[f]BBP [v]C.
This holds for every v ∈ V , hence

[f]CC = P −1[f]BBP.
n

Example: Let V = R2 and let f ∈ HomR(R2,R2) be given by

f(x, y) = (3x + 7y,2x − 5y).
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With respect to the standard basis E,

[(x, y)]E = �x
y
� ,

and

[f(x, y)]E = �3x + 7y2x − 5y� = �3 7
2 −5� �xy� ,

namely

[f]EE = �3 7
2 −5� .

Let now
B = �(1,2) (2,1)�

be another ordered basis for R2. Then,

�(1,2) (2,1)� = �(1,0) (0,1)� �1 2
2 1
� ,

and for (x, y) ∈ R2,

�x
y
� = �1 2

2 1
� [(x, y)]B and [(x, y)]B = �−1�3 2�3

2�3 −1�3� �xy� .
Now,

[f(x, y)]B = [(3x + 7y,2x − 5y)]B
= �−1�3 2�3

2�3 −1�3� � 3x + 72x − 5y�
= �−1�3 2�3

2�3 −1�3� �3 7
2 −5� �xy�

= �−1�3 2�3
2�3 −1�3� �3 7

2 −5� �1 2
2 1
� [(x, y)]B.

We conclude that

[f]BB = �−1�3 2�3
2�3 −1�3� �3 7

2 −5� �1 2
2 1
� .

▲▲▲
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Definition 5.37 Square matrices A,B ∈Mn(F) are called similar (�;&/&$),
if there exists an invertible matrix P ∈ GLn(F) such that

B = P −1AP.
Thus, we have proved that matrices representing the same linear transfor-
mation f ∈ HomF(V,V ) relative to di↵erent bases are similar. The opposite
is also true: two matrices that are similar represent the same linear transfor-
mation relative to di↵erent bases.

Proposition 5.38 Similarity between matrices is an equivalence relation.

Proof : This is left as an exercise. n

Exercises

(intermediate) 5.51 Let

B = �(2,1) (3,2)� and C = �(1,−1) (−1,2)�
be ordered bases for R2. Let f ∈ HomR(R2,R2) be the linear transformation
satisfying

[f]BB = � 1 2−1 1
� .

Find [f]CC.
(easy) 5.52 Prove that similarity between matrices is an equivalence rela-
tion (first, remind yourself what it takes to be a similarity relation).

(easy) 5.53 Prove that similar matrices represent the same linear transfor-
mation relative to di↵erent bases.

(easy) 5.54 Show that for any scalar a, the matrix a In is similar only to
itself. Interpret this result in terms of the matrix representation of linear
transformations.

(intermediate) 5.55 Let A,B ∈ Mn(R). Prove or disprove each of the
following statements:
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(a) If A and B are row-equivalent, then they are similar.

(b) If A and B are similar, then they are row-equivalent.

(c) If A and B are similar and A is invertible, then B is invertible.

(d) If A is not invertible, then it is similar to a matrix having a row of
zeros.

(intermediate) 5.56 Let A ∈M2(R) be similar to the matrix

D = �3 0
0 2
�

Prove that (A − 3I2)(A − 2I2) = 0.
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