
Chapter 2

Linear Systems of Equations

2.1 One equation in multiple unknowns

We start by considering one linear equation in n unknowns:

Definition 2.1 A linear equation in n unknowns X1, . . . ,Xn with coe�-

cients a1, . . . , an, b ∈ F is an equation of the form

a1X
1 + a2X2 + ⋅ ⋅ ⋅ + anXn = b. (2.1)

The scalar ai is called the coe�cient (�.$8/) of the i-th unknown. We write

the coe�cients of the X i’s in the form

[a1, a2, . . . , an] ∈ Fn

row.

We also refer to the extended list of coe�cients, which includes the right-

hand side [a1, a2, . . . , an, b] ∈ Fn+1
row .

Example: Consider the following equation in two unknowns,

2(X1 +X2 − 6) = 3X2 + 4(8 −X1).
This is a linear equation in two unknowns albeit not of the form (2.1). By
algebraic manipulations (based on the axioms of field) we can rewrite it as

6X1 −X2 = 44,
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which in the above notation corresponds to the extended list of coe�cients[a1, a2, b] = [6,−1,44]. ▲▲▲
Definition 2.2 A solution to (2.1) is an n-tuple of field elements,

�������
x1

⋮
xn

�������
∈ Fn

col,

such that

a1x
1 + ⋅ ⋅ ⋅ + anxn = b. (2.2)

The set of all solutions (which could be an empty set) is a subset of Fn,

S[a1,...,an�b] =
���������
�������
x1

⋮
xn

�������
∈ Fn

col ∶ n�
i=1

aix
i = b
���������
.

In words, the set of solutions of the linear equation defined by the coe�cients[a1, . . . , an, b] is the set of all [x1, . . . , xn]T ∈ Fn

col satisfying (2.2).

Generally, an equation may have one solution, many solutions, or no solution
at all. What do we mean then by solving an equation? We mean that we
obtain a “constructive recipe” for generating all of its solutions.

Example: Consider the linear equation in two unknowns,

X
1 +X2 = 1. (2.3)

We are looking for pairs of scalars [x1, x2]T ∈ F2

col
satisfying this equation.

We may see right away that

�1
0
� and �0

1
�

are both solutions to (2.3), but do there exist more solutions? Take any t ∈ F
and substitute it for X2. Then, we are left with the equation

X
1 + t = 1,
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which is solvable, and this solution is unique, x1 = 1 − t. Thus, for every

choice of t ∈ F, the pair [1 − t, t]T is a solution to (2.3). Namely,

��1 − t
t
� ∶ t ∈ F� ⊆ S[1,1�1].

In words, for every t ∈ F, the pair [1 − t, t]T ∈ F2

col
is a solution to the linear

equation with two unknowns and coe�cients a1 = 1, a2 = 1 and b = 1.
In fact, this inclusion between sets turns out to be an equality, as every
solution to (2.3) must be of the form [1 − t, t]T . Note how we broke the
symmetry between the two unknowns: we treated the second unknown as a
“free” parameter, which may assume any value, whereas the value of the first
unknown was “dependent” on the choice of the second unknown. Note also
that the choice of the second unknown as “free” is arbitrary; we could have
done it the other way around. ▲▲▲
Definition 2.3 A linear equation of the form (2.1) is called homogeneous
(�;*1#&/&%) if b = 0. It is called consistent (�;*"83) if its set of solutions is

not empty.

Example: Suppose that all the coe�cients ai are zero, namely

0F ⋅X1 + ⋅ ⋅ ⋅ + 0F ⋅Xn = b.
If b ≠ 0F then no [x1, . . . , xn]T ∈ Fn

col
satisfies the equation, i.e., the equation

is not consistent, namely,
S[0,...,0�b] = �.

If on the other hand b = 0F, then every n-tuple is a solution, i.e., the set of
all solutions is Fn. In other words,

���������
�������
x1

⋮
xn

�������
∈ Fn

col
∶ n�

i=1
0F ⋅ xi = 0F

���������
= Fn

col
.

▲▲▲
We now show how an equation can be modified without changing its set of
solutions. Take an equation of the form (2.1), and let F ∋ c ≠ 0F. Consider
the equation (ca1)X1 + ⋅ ⋅ ⋅ + (can)Xn = cb, (2.4)

obtained by multiplying all the coe�cients in (2.1) by c.
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Proposition 2.4 Every solution of (2.1) is a solution of (2.4), and vice-

versa, every solution of (2.4) is a solution of (2.1). That is, both equations

have the same set of solutions,

S[a1,...,an�b] = S[ca1,...,can�cb].

Proof : If [x1, . . . , xn]T is a solution of (2.1), then by definition

a1x
1 + ⋅ ⋅ ⋅ + anxn = b.

Multiplying both sides by c, using the distributive law and the associativity
of products,

cb = c �a1x1 + ⋅ ⋅ ⋅ + anxn�
= c(a1x1) + ⋅ ⋅ ⋅ + c(anxn)
= (ca1)x1 + ⋅ ⋅ ⋅ + (can)xn

,

i.e., [x1, . . . , xn]T is also a solution of (2.4). The reverse implication follows
by multiplying (2.4) by c−1. n

Proposition 2.4 implies that we have a means of changing an equation with-
out changing its set of solutions. This is the idea behind the procedure of
simplifying equations. Suppose that there exists at least one ai di↵erent from
zero. Let k ∈ {1, . . . , n} be the smallest index for which ai ≠ 0, i.e., ak ≠ 0 and
ai = 0 for all i < k. That is, we can write the equation as

akX
k + ak+1Xk+1 + ⋅ ⋅ ⋅ + anXn = b.

(We call Xk the leading variable ( �-*"&/% %1;:/%) of the equation.) Mul-
tiplying this equation by a−1

k
we obtain an equation having the same set of

solutions, whose first non-zero coe�cient is one,

X
k + (ak+1�ak)Xk+1 + ⋅ ⋅ ⋅ + (an�ak)Xn = b�ak.

We say that this equation is in standard form ( �;18&;/ %#7%). By Theo-
rem 1.1, no matter which values we substitute forX1, . . . ,Xk−1 andXk+1, . . . ,Xn,
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there exists a unique value of Xk for which this equation holds. That is, the
set of solutions can be written as

S[a1,...,an�b] =

�����������������������������

����������������

t1⋮
tk−1

b�ak −∑n

i=k+1(ai�ak)ti
tk+1⋮
tn

����������������

∶ t1, . . . , tn ∈ F

�����������������������������

.

This is what we mean by a solutions which is constructive, or explicit (�:9&5/).
The full set of solutions can be generated by selecting all possible values for(t1, . . . , tk−1, tk+1, . . . tn). In this representation we say that the variables X i

for i ≠ k are free variables ( �.**:5&( .*1;:/) (because we can generate
all solutions by selecting their values “freely”) whereas Xk is a dependent
variable ( �9&:8 %1;:/) (because once the free variables have been assigned,
the value of Xk depends on those assigned values).

We may formulate the following corollary:

Corollary 2.5 Every linear equation in n unknowns having at least one

non-zero coe�cient ai is consistent, and its set of solutions can be represented

by means of n − 1 free variables.

Exercises

(easy) 2.1 Write the set of solutions to the linear equation in two unknowns
over R,

3X1 − 4X2 = 7.
(easy) 2.2 Write the equation over R

0X1 + 0X2 − 4X3 + 0X4 + 7X5 = 3
in normalized form and write its set of solutions in explicit form.
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(intermediate) 2.3 Find the set of solutions to the equation

X
1 +X2 +X3 = 1

over the field F2. Solve the same equation over the field F3.

(intermediate) 2.4 Find the set of solutions to the equation

a1X
1 + a2X2 + a3X3 = b

over the field R for the following sets of coe�cients:

(a) [a1, a2, a3�b] = [1,1,2�1].
(b) [a1, a2, a3�b] = [0,1,6�3].
(c) [a1, a2, a3�b] = [0,3,6�3].

(intermediate) 2.5 Suppose that [x1, . . . , xn]T is a solution to both equa-
tions,

a1X
1 + ⋅ ⋅ ⋅ + anXn = b and c1X

1 + ⋅ ⋅ ⋅ + cnXn = d.
Prove that for every ↵ ∈ F it is also a solution to the equation

(↵a1 + c1)X1 + ⋅ ⋅ ⋅ + (↵an + cn)Xn = ↵ b + d.

2.2 Systems of equations

We introduce next the notion of a system of m linear equations in n

unknowns ( �;&*9!*1*- ;&!&&:/ ;,93/). For this we need m sets of coe�cients
ai and b. Rather than using new symbols for each equation, we denote the
coe�cients for the i-th equation by an upper index i. That is, we consider a
system of m equations of the form

a1
1
X1 +a1

2
X2 + . . . +a1

n
Xn = b1

a2
1
X1 +a2

2
X2 + . . . +a2

n
Xn = b2⋮ ⋮ ⋮ ⋮

am
1
X1 +am

2
X2 + . . . +am

n
Xn = bm

, (2.5)

where
a
i

j
∈ F i = 1, . . . ,m and j = 1, . . . , n
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is the coe�cient ( �.$8/) of the j-th variable in the i-th equation, and

b
i ∈ F i = 1, . . . ,m

is the right-hand side of the i-th equation. Please note: the upper indexes in
ai
j
and in bi enumerate the equation, whereas the lower index in ai

j
enumerates

the variable.

A solution ( �0&9;5) to the system is any n-tuple [x1, x2, . . . , xn]T ∈ Fn

col
, such

that
a1
1
x1 +a1

2
x2 + . . . +a1

n
xn = b1

a2
1
x1 +a2

2
x2 + . . . +a2

n
xn = b2⋮ ⋮ ⋮ ⋮

am
1
x1 +am

2
x2 + . . . +am

n
xn = bm

. (2.6)

Given a system of equations (2.5) (which is uniquely determined by n, m and
the scalars ai

j
and bi), we would like to find the set of all of its solutions,

S =
���������
�������
x1

⋮
xn

�������
∈ Fn ∶ n�

j=1
a
i

j
x
j = bi for all i = 1, . . . ,m

���������
.

As in the case of a single equation, solving the system of equations means
obtaining a constructive way of generating all of its solutions.

Like for a single equation:

Definition 2.6 A system of linear equations (2.5) is called homogeneous
(�;*1#&/&% ;&!&&:/ ;,93/) if the right-hand side is zero, namely, bi = 0 for all

i = 1, . . . ,m. It is called consistent (�;*"83) if its set of solutions is not

empty.

Example: Consider the inhomogeneous system of two equations in two un-
knowns over R,

X1 +X2 = 0
X1 +X2 = 1.

Each equation separately has a solution, however this system is not consistent
as if [x1, x2]T was a solution, it would imply that

0 = x1 + x2 = 1,
which violates the axioms of field. ▲▲▲
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Example: Consider the inhomogenous system of m = 2 linear equations in
n = 4 unknowns over R,

X1 +2X2 −X4 = 1
X3 +4X4 = 3.

This is a quite special form of a system as we will immediately see. First, it
is not very di�cult to “guess” a solution

[1,0,3,0]T ∈ F4

col
.

In fact, we may observe that the variable X1 only appears in the first equa-
tion, whereas the variable X3 only appears in the second equation. As a
result, suppose that we substitute s ∈ F for X2 and t ∈ F for X4. Then, we
obtain two decoupled linear equations for X1 and X3, whose solutions are

x
1 = 1 − 2s + t

x
3 = 3 − 4t.

As we did in the previous section, we may treat X2 and X4 as free vari-
ables, so that the set of solutions is generated by all possible choices of those
variables, yielding,

S =
�������������

���������

1 − 2s + t
s

3 − 4t
t

���������
∈ F4

col
∶ s, t ∈ F

�������������
.

If, for example, F is a finite field, then we can enumerate the set of solutions,
which is a finite set. ▲▲▲
Not every system of equations is as “transparent” as in the above example.
What do we do when the system is more complicated? We transform it into
a “transparent” one having the same set of solutions, and we then solve the
easier one.

Example: Consider the inhomogeneous system of m = 2 linear equations in
n = 4 unknowns over R,

X1 +2X2 +X3 +3X4 = 4
3X1 +6X2 +2X3 +5X4 = 9.



Linear Systems of Equations 27

This system is not “transparent” as the previous one. In secondary school
you learned how to solve such equations by eliminating variables (6&-*(
�.*1;:/). Take the first equation and multiply it by 3,

3X1 +6X2 +3X3 +9X4 = 12.
We proved (Proposition 2.4) that this does not alter its set of solutions. Take
now this equation and subtract it from the second equation in the original
system, yielding −X3 −4X4 = −3.
Then, add this equation to the first equation in the original system, yielding

X1 +2X2 −X4 = 1.
Finally, multiply the penultimate equation by (−1) yielding

X3 +4X4 = 3.
Look at the last two equations. This is the system of the previous example—
the “transparent” system, whose solution we’ve already found. As we will
prove in the next section, the solutions of both sets of equations are the same.▲▲▲

2.3 Equivalent systems of equations

Our goal is to now formalize the process we have just done in a specific
example. Given a linear system (2.5) of m equations in n unknowns, we may
form a new equation, which is a linear combination ( �*9!*1*- 4&9*7) of the
m equations by multiplying each equation by a number ci, i = 1, . . . ,m, and
add up the resulting m equations, Multiplying the i-th equation by ci and
summing over the m equations yields the equation

m�
i=1

ci � n�
j=1

a
i

j
X

j� = m�
i=1

cib
i
,

which we can rearrange by interchanging the order of summation (see Exer-
cise 1.20 ) into

n�
j=1
� m�
i=1

cia
i

j
�

�����������������������������������
coe�cient of X

j

X
j = m�

i=1
cib

i

�����������
right-hand side

.
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In more explicit notation, if for every i = 1, . . . ,m,

a
i

1
X

1 + ⋅ ⋅ ⋅ + ai
n
X

n = bi,
then multiplying this equation by ci and summing over all i = 1, . . . ,m,

c1(a11X1 + ⋅ ⋅ ⋅ + a1
n
X

n) + ⋅ ⋅ ⋅ + cm(am1 X1 + ⋅ ⋅ ⋅ + am
n
X

n) = c1b1 + ⋅ ⋅ ⋅ + cmbm,
which we further reorganize as

(c1a11 + . . . cmam1 )X1 + ⋅ ⋅ ⋅ + (c1a1n + . . . cmamn )Xn = c1b1 + ⋅ ⋅ ⋅ + cmbm. (2.7)

Note that we applied here both the extended associativity and commutativity
of addition and the distributive law. We conclude that a linear combination
of linear equations is again a linear equation.

Proposition 2.7 (( �%:&9*% )5:/)) Every solution [x1, . . . , xn]T ∈ Fn

col of

(2.5) is also a solution of (2.7).

Proof : Let [x1, . . . , xn]T be a solution to (2.5), i.e.,

a
i

1
x
1 +� + an

j
x
n = bi for all i = 1, . . . ,m.

Multiplying the i-th equation by ci, summing over i and applying the dis-
tributive law, we recover the desired result after exchanging the order of
summation. Note that we used here the consistency of equality and addi-
tion: if s1 = t1, s2 = t2 up to tm = sm, then

s1 + s2 + ⋅ ⋅ ⋅ + sm = t1 + t2 + ⋅ ⋅ ⋅ + tm.
n

Note, however, that the reverse is not necessarily true. Not every solution to
(2.7) is necessarily a solution of (2.5) (“information may have been lost”).

More generally, consider a linear system of k equations in n unknowns,

g1
1
X1 +g1

2
X2 + . . . +g1

n
Xn = z1

g2
1
X1 +g2

2
X2 + . . . +g2

n
Xn = z2⋮ ⋮ ⋮ ⋮

gk
1
X1 +gk

2
X2 + . . . +gk

n
Xn = zk

. (2.8)
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If each of the k equations in (2.8) is a linear combination of the m equations
in (2.5), then, by Proposition 2.7, every solution of (2.5) is also a solution to
(2.8) (but not necessarily the other way around).

This observation brings us to the following definition:

Definition 2.8 Two linear systems of equations are called equivalent (�;&-&8:)
if every equation in one system is a linear combination of the equations in

the other system.

Example: Back to our first example, the systems

2X1 −X2 +X3 = 0
X1 +3X2 +4X3 = 0

and
X2 +X3 = 0

X1 +X3 = 0
are equivalent. The first equation in the second system is obtained by a linear
combination of the first system with coe�cients [−1�7,2�7] and the second
equation in the second system is obtained by a linear combination of the
first system with coe�cients [3�7,1�7]. Conversely, the first equation in the
first system is obtained by a linear combination of the second system with
coe�cients [−1,2], and the second equation in the first system is obtained
by a linear combination of the second system with coe�cients [3,1]. ▲▲▲
The importance of equivalent systems stems from the following fact:

Proposition 2.9 Equivalent systems have the same set of solutions.

Proof : By Proposition 2.7, every solution of a linear system is also a solution
of an equation obtained by a linear combination of that system. Since each
equation in one system is a linear combination of the equation in the other
system, every solution of System A is a solution of System B, and conversely,
every solution of System B is a solution of System A, n

This notion of two systems being equivalent has a very important property:
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Lemma 2.10 If a linear system of equations B is obtained by linear combi-

nations of a linear system of equations A, and a linear system of equations

C is obtained by linear combinations of a linear system of equations B, then

System C is obtained by linear combinations of the equations in System A.

Proof : Suppose that System A has m equations, System B has k equations
and System C has p equations, all in n unknowns. If System B is obtained
by linear combinations of System A, then the `-th equation in System B is
obtained by taking linear combinations of the m equations in System A, with
coe�cients c`

1
, . . . , c`

m
, namely, the `-th equation of system B is of the form

m�
s=1

c
`

s

n�
j=1

a
s

j
X

j = m�
s=1

c
`

s
b
s
.

Likewise, if System C is is obtained by linear combinations of System B, then
the i-th equation in System C is obtained by taking linear combinations of
the k equations in System B, with coe�cients di

1
, . . . , di

k
, namely, the i-th

equation of system C is of the form

k�̀=1di`
m�
s=1

c
`

s

n�
j=1

a
s

j
X

j = k�̀=1di`
m�
s=1

c
`

s
b
s
.

Reorganizing this equation as

m�
s=1
� k�̀=1di`c`s������������������������������������

eis

n�
j=1

a
s

j
X

j = m�
s=1
� k�̀=1di`c`s������������������������������������

eis

b
s
,

proves that System C is obtained by a linear combinations of System A. n

Corollary 2.11 If a linear system of equations B is equivalent to a linear

system of equations A, and a linear system of equations C is equivalent to a

linear system of equations B, then System C is equivalent to System A.

Proof : Apply the previous lemma both ways. n
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These observations are key to the solution of linear systems of equations.
What we actually do is to replace the original system by equivalent systems
through a chain of transformations which ensure that we always remain with
a system that is equivalent to the original one, so that the set of solutions
never changes. The key is to end up with a system equations which is “trans-
parent”.

Comment: Note that in all summations, the index we sum upon always
appears once as an upper index and once as a lower index. If you come
across a summation in which this is not the case, look for an error.

We end this section by observing that while we have a well-defined notion
of equivalence between systems of equations, we don’t yet have a means for
verifying wether two systems of equations are equivalent, nor a systematic
way of generating equivalent systems to a given system.

Exercises

(easy) 2.6 Consider the following linear system of two equations in three
unknowns over R,

2X1 +X2 +X3 = 2
X1 +2X2 −X3 = −1.

(a) Is this a homogeneous system?

(b) Is [1,0,0]T a solution?

(c) Write an equation which is a linear combination of this system with
coe�cients [2,−3].

(d) Is X1 +X2 = 1�3 a linear combination of this system? If it is, what are
the coe�cients?

(e) Is 2X1 +X2 +X3 = 1 a linear combination of this system? If it is, what
are the coe�cients?

(easy) 2.7 Write the set of solutions of the linear system over R in the
unknowns (X,Y ):

X +Y = 5
2X −Y = 3.
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(easy) 2.8 Write the set of solutions of the linear system over R in the
unknowns (X,Y,Z):

X +Y −Z = −1
X −Y −Z = −1.

(intermediate) 2.9 Show that the following two homogeneous systems of
equations are equivalent,

�������
X1 −X2 = 0
2X1 +X2 = 0 and

�������
3X1 +X2 = 0
X1 +X2 = 0.

(intermediate) 2.10 Show that the following two homogeneous systems of
equations over R are equivalent,

�����������
−X1 +X2 +4X3 = 0
X1 +3X2 +8X3 = 0
1

2
X1 +X2 +5

2
X3 = 0

and
�������

X1 −X3 = 0
X2 +3X3 = 0.

(intermediate) 2.11 Consider the following two homogeneous systems of
equations over R

�������
X1 −X2 = 0
2X1 +X2 = 0 and

�������
X1 +2X2 = 0
−2X1 −4X2 = 0.

Are they equivalent? If they are, write each system as a linear combination
of the other.

(harder) 2.12 We showed that if two systems of equations are equivalent,
then they have the same sets of solutions. What about the converse? Show
that if two homogeneous systems of linear equations in two unknowns have
the same solutions, then they are equivalent.

(harder) 2.13 Does there exists a linear system of m equations in n un-
knowns having a unique solution when

(a) m = 4 and n = 3.
(b) m = 3 and n = 4.

If the answer is positive provide an example; if it is negative explain why.
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2.4 Matrix notation

2.4.1 Definitions

An important practice in mathematics is the adoption of convenient nota-
tions. In the present case, since a linear system of equations (hence also its
solutions) is fully determined by the coe�cients ai

j
and the bi, there is no

need to carry around also the variables Xj. We organize the coe�cients ai
j

in a rectangular array

A =
���������

a1
1

a1
2
� a1

n

a2
1

a2
2
� a2

n⋮ ⋮ � ⋮
am
1

am
2
� am

n

���������
which we call the m×n matrix of coe�cients ( �.*/$8/% ;7*9)/). The entry
at the i-th row and the j-th column is the coe�cient of the j-th unknown in
the i-th equation. Likewise, we organize the bi’s as an m × 1 matrix

b =
���������

b1

b2⋮
bm

���������
,

which is an element of Fm

col
. If we further organize the unknowns as an n × 1

matrix,

X =
���������

X1

X2

⋮
Xn

���������
,

then we may symbolically represent the system of equations as AX = b. At
this stage this is just a symbolic notation, but it will acquire a meaning
shortly.

Comments:

(a) Note that in ai
j
, the upper index i designates the row and the lower

index j designates the column. It will sometimes be convenient to write
the (i, j)-th element of a matrix A also by (A)i

j
.
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(b) Formally, an m × n matrix A is a function from the set {1, . . . ,m} ×{1, . . . , n} to the field F. For every pair of indexes (i, j) it returns the
field element which we denote by ai

j
.

(c) We denote the set of m × n matrices with values in the field F by

Mm×n(F).
(d) M1×n(F) coincides with Fn

row
, whereas Mm×1(F) coincides with Fm

col
.

We denote the i-th row of the matrix A by

Rowi(A) = �ai
1

ai
2

. . . ai
n
� .

Likewise, we denote the j-th column of A by

Colj(A) =
���������

a1
j

a2
j⋮

am
j

���������
.

In fact, we may present the matrix A either as a column of m rows, each of
size n or as a row of n columns, each of size m,

A =
���������

Row1(A)
Row2(A)⋮
Rowm(A)

���������
=
�������
Col1(A) Col2(A) � Coln(A)

�������
We may also write the coe�cients and the right-hand side of the equations
as a unified m × (n + 1) matrix,

�A�b� =
���������

a1
1

a1
2
� a1

n
b1

a2
1

a2
2
� a2

n
b2⋮ ⋮ � ⋮ ⋮

am
1

am
2
� am

n
bm

���������
.

It is called the augmented matrix ( �;"(9&/% %7*9)/%) of the system AX =
b. Finally, we denote the set of solutions to AX = b by S[A�b].
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Exercises

(easy) 2.14 Consider the matrix

A =
�������
0 0 1 4
2 4 2 6
3 6 2 5

�������
What are a2

3
, Row2(A) and Col3(A)?

(easy) 2.15 Write the system of equations represented by the extended ma-
trix �������

0 0 1 4 3
2 4 2 6 7
3 6 2 5 8

�������
.

2.4.2 Elementary row-operations and row-equivalence

Next, we consider operations on matrices that correspond to forming lin-
ear combinations of equations. We define the following elementary row-
operations ( �;&*$&2* %9&: ;&-&35):

1. Multiplication of the k-th row by a non-zero scalar F ∋ c ≠ 0.
2. Replacement of the r-th row with row r plus c times row s, where c ∈ F.

These operations are in fact functions taking an element in Mm×n(F) and
returning an element in Mm×n(F).
Formally, if A is a matrix, and e is the operation (the function) taking a
matrix and returning a matrix having all rows the same, except that the r-th
row has been multiplied by F ∋ c ≠ 0, then for every pair of indexes i, j,

(e(A))i
j
= �������

c ai
j

i = r
ai
j

i ≠ r,
i.e.,

e ∶
�����������

a1
1
� a1

n⋮ ⋮ ⋮
ar
1
� ar

n⋮ ⋮ ⋮
am
1
� am

n

�����������
�
�����������

a1
1
� a1

n⋮ ⋮ ⋮
c ar

1
� c ar

n⋮ ⋮ ⋮
am
1
� am

n

�����������
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If e is the operation taking a matrix and returning a matrix having all rows
the same, except for the r-th row being the sum of the r-th row and c times
the s-th row of A, then for every pair of indexes i, j,

(e(A))i
j
= �������

ai
j
+ c as

j
i = r

ai
j

i ≠ r,
i.e.,

e ∶
�����������

a1
1
� a1

n⋮ ⋮ ⋮
ar
1
� ar

n⋮ ⋮ ⋮
am
1
� am

n

�����������
�
�����������

a1
1

� a1
n⋮ ⋮ ⋮

ar
1
+ c as

1
� ar

n
+ c as

n⋮ ⋮ ⋮
am
1

� am
n

�����������
Lemma 2.12 Every elementary row-operation e has in inverse operation

e−1, which is also an elementary row-operation, such that for every matrix

A,

e
−1(e(A)) = A.

Proof : The operation of multiplying the r-th row by c ≠ 0 can be reversed
by multiplying that same row by 1�c (which is why we required c ≠ 0), which
is also an elementary row-operation. The operation of replacing the r-th row
by the sum of row r and c times row s can be reversed by the elementary
row-operation of replacing the r-th row by the sum of row r and (−c) times
row s. n

Definition 2.13 An m × n matrix A is row-equivalent (�%9&: *5- %-&8:)
to an m × n matrix B if it can be obtained from B by a finite sequence of

elementary row-operations. That is, if there exists a sequence e1, e2, . . . , es of

elementary row-operations, such that

A = es(es−1(. . . e1(B))).
Example: Since

�1 2 3
4 5 6

� r2←r2+2r1�→ �1 2 3
6 9 12

� r1←−4r1�→ �−4 −8 −12
6 9 12

� ,
it follows by definition that all three matrices are row-equivalent. ▲▲▲
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Proposition 2.14 Row-equivalence is an equivalence relation (2(*
�;&-*8:): that is, (i) every matrix is row-equivalent to itself, (ii) if A is row-

equivalent to B then B is row-equivalent to A, and (iii) if A is row-equivalent

to B and B is row-equivalent to C, then A is row-equivalent to C. (In par-

ticular, we have a well-defined notion of two matrices being row-equivalent to

each other.)

Proof : Every matrix A is equivalent to itself, for example, because if e is the
elementary row-operation of multiplying the first row by 1, then

A = e(A).
If A is row-equivalent to B, then by definition, there exists a sequence of
elementary row-operations e1, e2, . . . , ek, such that

A = ek(ek−1(�e2(e1(B)))).
Since every ej has an inverse e−1

j
, it follows that

e
−1
k
(A) = e−1

k
(ek(ek−1(�e2(e1(B))))) = ek−1(�e2(e1(B))),

and proceeding inductively,

B = e−1
1
(e−1

2
(�e−1

k−1(e−1k (A))),
proving that B is row-equivalent to A. Finally, if B is also row-equivalent to
C, then by definition, there exists a sequence of elementary row-operations
f1, f2, . . . , fs, such that

B = fs(fs−1(�f2(f1(C)))).
Hence,

A = ek(ek−1(�e2(e1(fs(fs−1(�f2(f1(C)))))))),
proving that A is row-equivalent to C. n

Note that we have two notions of equivalence: equivalence between systems
of equations and row-equivalence between matrices. We will shortly claim
that these two notions are related, namely, if two matrices are row-equivalent,
then they represent equivalent systems of equations.
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Proposition 2.15 If A and B are row-equivalent m × n matrices, then the

homogeneous linear systems AX = 0 and BX = 0 have the same solutions,

S[A�0] = S[B�0].

Proof : By definition, there exists a sequence of elementary row-operations
e1, e2, . . . , ek, such that

A = ek(ek−1(�e2(e1(B)))).
It su�ces to show that if e is any elementary row-operation, then the homoge-
nous linear systems e(A)X = 0 and AX = 0 have the same set of solutions.

Let e be an elementary row-operation. Since every row in e(A) is a linear
combination of the rows in A, then every solution of AX = 0 is also a solution
of e(A)X = 0 (see Proposition 2.9). Conversely, since every row in A is a
linear combination of the rows in e(A) (since A = e−1(e(A))), then every
solution of e(A)X = 0 is also a solution of AX = 0. n

In fact, an analogous statement holds for inhomogeneous systems by consid-
ering the extended matrices:

Proposition 2.16 If [A�c] and [B�d] are row-equivalent m× (n+1) matri-

ces, then the linear systems AX = c and BX = d have the same solutions,

S[A�c] = S[B�d].

Exercises

(easy) 2.16 Let e be an elementary row-operation. Show that for every
matrix A, every row of e(A) is a linear combination of the rows in A.

(easy) 2.17 Explain explicitly why in the proof of Proposition 2.15 it su�ces
to show that the solutions of a homogeneous linear system do not change
under a single elementary row-operation.
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(easy) 2.18 Can a matrixA ∈M2×4 and a matrixB ∈M4×3 be row-equivalent?
If yes, give an example and if not explain why.

(easy) 2.19 Consider the following row-operations:

e1 ∶multiplying the first row by −2.
e2 ∶ exchanging the first and the second rows.

e3 ∶ adding the third row 3 times the first row.

(a) What are the inverse operations e−1
1
, e−1

2
and e−1

3
.

(b) Perform the three operations sequentially on the matrix

�������
2 1 −1 3
1 −2 0 1
0 0 2 1

�������
∈M3×4(F).

(intermediate) 2.20 Let e1 and e2 be two elementary row-operations. Is
it always the case that

e1(e2(A)) = e2(e1(A)) ?
If yes, explain why. If not, give an example.

(intermediate) 2.21 Let

A = �a b

c d
� ∈M2×2(F).

(a) Show that if ad − bc = 0 then A is row-equivalent to a matrix having a
row with all entries zero. Hint: separate the cases c = 0 and c ≠ 0.

(b) Show that if ad − bc ≠ 0 then A is row-equivalent to the matrix

�1 0
0 1
� .

(intermediate) 2.22 Show that two matrices in which two rows have been
interchanged are row-equivalent.



40 Chapter 2

2.4.3 Row-reduced echelon matrices

We next show how a sequence of elementary row-operations can be used to
“simplify” a matrix, which means that its set of solutions can be obtained
easily.

Example: By performing a sequence of eight elementary row-operations,
the matrix

A =
�������
2 −1 3 2
1 4 0 −1
2 6 −1 5

�������
can be brought to the form

B =
�������
1 0 0 17�3
0 1 0 −5�3
0 0 1 −11�3

�������
.

What did we gain? The homogeneous linear system BX = 0, whose solutions
coincide by Proposition 2.15 with those of AX = 0, takes the form

X1 +17�3X4 = 0
X2 −5�3X4 = 0

X3 −11�3X4 = 0.
We can let X4 assume any value, say s, and then

x = [−17�3s,5�3s,11�3s, s]T
is a solution. In fact, there are no other solutions, as any other solution
would fail to satisfy the equation BX = 0. That is,

S[A�0] = S[B�0] =
�������������

���������

−17�3s
5�3s
11�3s
s

���������
∈ F4

col
∶ s ∈ F

�������������
.

▲▲▲



Linear Systems of Equations 41

Comment: It is sometimes notationally convenient to write a blank instead
of zero in a matrix. Thus, the above matrix B is written as

B =
�������
1 17�3

1 −5�3
1 −11�3

�������
.

Example: Consider the non-homogeneous linear system represented by the
augmented matrix

A =
�������
1 −2 8 5 2
2 3 1 4 1
4 −1 17 14 3

�������
.

By performing a sequence of elementary row-operations, we obtain the aug-
mented matrix

B =
�������
1 −2 8 5 2

7 −17 −6 −3−2
�������
.

This system is not consistent because the third equation has all coe�cients
of the X i’s zero but the right-hand side is not zero. ▲▲▲
In both example, we manipulated the system through the matrix of coe�-
cients until reaching an equivalent system which is explicit, from which we
could determine the solution (in the first example) or determine that there
are no solutions (in the second example). This brings us to the following
definition:

Definition 2.17 An m×n matrix A is said to be a row-reduced echelon
matrix (�;/7/&7/ ;&#9$/ ;9&7" %7*9)/) if

(a) There exists a number r ≤m, such that the rows r + 1, . . . ,m are iden-

tically zero (if r =m then there are no rows that are identically zero).

(b) For each i = 1, . . . , r (i.e., for each non-zero row), let ai
ki

be the first

non-zero entry; then ai
ki
= 1 and k1 < k2 < ⋅ ⋅ ⋅ < kr (the ki’s are the

columns of the leading coe�cients in the non-zero rows).

(c) For each i, ai
ki

is the only nonzero element in the ki-th column.
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Example: A zero matrix ( �.*25! ;7*9)/) is a matrix having all entries
zero; if A ∈ Mm×n is a zero matrix, we write A = 0, or A = 0m×n. A zero
matrix is an example of a row-reduced echelon matrix (with r = 0). ▲▲▲
Example: The matrix B in the first example is a row-reduced echelon matrix
(with r =m = 3). The matrix

�����������

1 −3 17�3
1 −5�3

1 −11�3
�����������

(2.9)

also satisfies all three conditions with m = 5, r = 3 and k1 = 1, k2 = 3 and
k3 = 4. ▲▲▲
Example: A very important row-reduced echelon matrix is the identity
matrix ( �;&%'% ;7*9)/) I, which is a square matrix (i.e., m = n) of the form

I
i

j
= �j

i
= �������

1 i = j
0 i ≠ j,

i.e.,

I =
���������

1
1 �

1

���������
.

The symbol �j
i
is called Kronecker’s delta. ▲▲▲

Row-reduced echelon matrices are useful, because we can read o↵ the solution
to the associated linear system right away. For every i = 1, . . . , r, we call the
variable Xki a dependent variable; a variable Xj which is not a dependent
variable, i.e., j �∈ {k1, . . . , kr}, is called a free variable. The general solution
of a linear system AX = b, where A is a row-reduced echelon matrix is
constructed as follows: assign arbitrary values to the free variables, and
then, express the dependent variables in terms of the free variables: that is,
for each i = 1, . . . , r,

x
ki = bi − �

j�∈{k1,...,kr}
a
i

j
x
j
.

Note that the summation is only on the indexes of the free variables.
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Example: In the matrix (2.9), X1, X3 and X4 are dependent variables,
whereas X2 and X5 are free variables. Setting X2 = s and X5 = t, the
general solution of AX = 0 is

x = [3s − 17

3
t, s,

5

3
t,

11

3
t, t]T .

▲▲▲
When is a non-homogeneous system consistent? Let AX = b with A being
a row-reduced echelon matrix. There are two possibilities: if A has a row
with all its entries zero, and the corresponding row of b is non-zero, then the
system does not have any solution. Otherwise, the zero rows can be ignored,
and the system is consistent.

Exercises

(easy) 2.23 Construct three matrices, each of which fails to satisfy exactly
one condition in the definition of a row-reduced echelon matrix.

(easy) 2.24 Let A be a row-reduced echelon matrix having r non-zero rows.
Explain why it must hold that r ≤m and r ≤ n.
(easy) 2.25 Characterize all 1×n and allm×1 row-reduced echelon matrices.

(easy) 2.26 Explain why the n×n identity matrix is the unique n×n row-
reduced echelon matrix having no zero row.

(easy) 2.27 Characterize all the 2 × 2 row-reduced echelon matrices.

2.4.4 The Gauss-Jordan algorithm

The key theorem for a systematic solution of linear systems is the following:

Theorem 2.18 Every m × n matrix A is row-equivalent to a row-reduced

echelon matrix.
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Proof : The proof follows a procedure called the Gauss-Jordan algorithm.
If all the entries of A are zero, then A is already a row-reduced echelon matrix
(hence it is row-equivalent to one). Otherwise, if needed, take any row whose
first nonzero entry is the least, and bring it to be the first row (this is an
operation preserving row-equivalence, see Exercise 2.22); in the new matrix,
k1 is the column of the first non-zero entry of the first row. Divide the first
row by a1

k1
such that after this change a1

k1
= 1. Then, subtract from the

i-th row, i ≠ 1, ai
k1

times the first row. These are elementary row-operations
which eliminate all entries in the k1-st column except in the first row.

Next, ignore the first row and bring to the second row the row whose first
nonzero entry is the least. Denote by k2 the column of the first non-zero
entry of the second row; by construction, k2 > k1. Divide the second row by
a2
k2

such that after this change a2
k2
= 1. Then, subtract from the i-th row,

i ≠ 2, ai
k2

times the second row. These are elementary row-operations which
eliminate all entries in the k2-nd column except in the second row. Note
also that this did not destroy the fact that up to the k2-th column, the only
nonzero entries are a1

k1
= 1 and possibly a1

j
for k1 < j < k2.

We proceed this way, until reaching the m-th row, or until the remaining
rows are identically zero. n

Example: Apply the Gauss-Jordan algorithm on

A =
�������
2 1 2 10
1 2 1 8
3 1 −1 2

�������
.

We follows the procedure,

�������
2 1 2 10
1 2 1 8
3 1 −1 2

�������
r1←r1�2�→

�������
1 1�2 1 5
1 2 1 8
3 1 −1 2

�������
r2←r2−r1�→

�������
1 1�2 1 5
0 3�2 0 3
3 1 −1 2

�������
r3←r3−3r1�→

�������
1 1�2 1 5
0 3�2 0 3
0 −1�2 −4 −13

�������
r2←2r2�3�→

�������
1 1�2 1 5
0 1 0 2
0 −1�2 −4 −13

�������
r1←r1−r2�2�→

�������
1 0 1 4
0 1 0 2
0 −1�2 −4 −13

�������
r3←r3+r2�2�→

�������
1 0 1 4
0 1 0 2
0 0 −4 −12

�������
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r3←−r3�4�→
�������
1 0 1 4
0 1 0 2
0 0 1 3

�������
r1←r1−r3�→

�������
1 0 0 1
0 1 0 2
0 0 1 3

������� ▲▲▲
Example: With A as in the previous example, solve the linear system

AX =
�������
1
2
3

�������
using the augmented matrix of this system. ▲▲▲
Solution of linear systems using the Gauss-Jordan algorithm Let[A�b] be the augmented matrix representing a linear system of m equations
in n unknowns. We now have a systematic way of determining whether it
is consistent, and if it is, finding its set of solutions. Let R ∈ Mm×n(F) be
a row-reduced echelon matrix which is row-equivalent to A and let [R�d] be
the augmented matrix obtained by applying on [A�b] the elementary row-
operations bringing A into R. That is, the system represented by [R�d] has
the same set of solutions as the system represented by [A�b].
Let r ≤ m be the number of non-zero rows in R and let k1 < k2 < ⋅ ⋅ ⋅ < kr be
the columns of the leading non-zero elements in each of these rows. Thus,
the variables

X
k1 ,X

k2 , . . . ,X
kr

are the dependent variables, whereas the rest, which we denote by

X
`1 ,X

`2 , . . . ,X
`n−r

are the free variables.

By the structure of the row-reduced echelon matrix, the first r equations read

X
k1 + n−r�

j=1
r
1

`j
X

`j = d1
⋮

X
kr + n−r�

j=1
r
r

`j
X

`j = dr,
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whereas the next m − r equations read

0 = dr+1
⋮
0 = dm.

Evidently, if dr+1, . . . , dm are not all zero, then the system is not consistent.
If however,

d
r+1 = dr+2 = ⋅ ⋅ ⋅ = dm = 0,

then we can replace the free variables X`1 , . . . ,X`n−r by any sequence of
scalars t1, . . . , tn−r, obtaining a solvable equation for each of the dependent
variables Xk1 , . . . ,Xkr (a linear equation in one unknown!), whose solution
is

x
ki = di − n−r�

j=1
r
1

`j
t
j
.

We should have perhaps noted long ago, that any homogeneous linear system
has at least one solution, [0,0, . . . ,0]T , which we simply denote by 0 ∈ Fn

col
.

This solution is called the trivial solution ( �*-!*&&*9)% 0&9;5%). For any
matrix that has free variables, there also exist non-trivial solutions to the
homogeneous problem (as they may assume any value). In particular,

Proposition 2.19 If A is an m × n matrix with m < n (i.e., less equa-

tions than unknowns), then the homogeneous system AX = 0 has non-trivial

solutions.

Proof : Reduce A to a row-reduced echelon matrix. Then, there are at most
m nonzero rows, hence there are at least m − n free variables. n

The question of whether there exist non-trivial solutions is central to linear
algebra. Naively, we would expect solutions to be unique when the number
of equations is equal to the number of unknown, i.e., when m = n. This is
not su�cient. The following theorem characterizes the square matrices for
which the trivial solution is the only solution:
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Theorem 2.20 Let A be an n × n matrix. Then, the homogeneous system

AX = 0 has only a trivial solution if and only if A is row-equivalent to the

n × n identity matrix.

Proof : There are two directions to prove. Assume first that A is row-
equivalent to the identity matrix. Since row-equivalent matrices have the
same associated solutions, the solutions to AX = 0 coincide with the solu-
tions of IX = 0, i.e,

X
1 = 0 X

2 = 0 � X
n = 0,

and those only include the trivial solution.

Conversely, suppose that x = 0 is the only solution to AX = 0. Let R denote
a row-reduced echelon matrix which is row-equivalent to A. Then, RX = 0
doesn’t have non-trivial solutions, which means that all of its n rows are non-
zero. This is only possible if k1 = 1, k2 = 2, etc, and the only row-reduced
echelon matrix satisfying these conditions is the identity matrix. n

Exercises

(intermediate) 2.28 Suppose that A is a square matrix which is row-
equivalent to the identity matrix. Show that the inhomogeneous system
AX = b is consistent and has a unique solution.

(intermediate) 2.29 Let F = Q. Find all the solutions to the homogeneous
linear system

1

3
X1 +2X2 −6X3 = 0−4X1 +5X3 = 0−3X1 +6X2 −13X3 = 0−7

3
X1 +2X2 −8

3
X3 = 0

by first writing it in matrix form, and then transforming the matrix of coef-
ficients into a row-reduced echelon matrix.

(intermediate) 2.30 What are all the solutions (if any) of the system

X1 −X2 +2X3 = 1
2X1 +2X3 = 1
X1 −3X2 +4X3 = 2.
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Use the augmented matrix representation to solve this system.

(intermediate) 2.31 Show using the Gauss-Jordan algorithm that the non-
homogeneous system

X1 −2X2 +X3 +2X4 = 1
X1 +X2 −X3 +X4 = 2
X1 +7X2 −5X3 −X4 = 3.

has no solutions.

(intermediate) 2.32 Let

A =
�������
3 −1 2
2 1 1
1 −3 0

�������
.

For which b ∈ F3

col
does the system AX = b have a solution?

(intermediate) 2.33 Let

A =
���������

3 −6 2 −1−2 4 1 3
0 0 1 1
1 −2 1 0

���������
.

For which b ∈ F4

col
does the system AX = b have a solution?

(harder) 2.34 Let A and B be two 2 × 3 row-reduced echelon matrices.
Suppose that the homogeneous systems AX = 0 and BX = 0 have the same
set of solutions. Prove that A = B.

2.5 Operations with matrices

2.5.1 Addition of matrices

Given two matrices A,B ∈Mm×n(F) we define their sum

S = A +B
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to be a matrix S ∈Mm×n(F), whose entries si
j
are given by

s
i

j
= ai

j
+ bi

j
.

Note that the “+” sign in both relations has a totally di↵erent meaning: the
first is addition in Mm×n(F), whereas the second is addition in F. Another
way to write the definition of the addition of matrices (of the same size!) is

(A +B)i
j
= ai

j
+ bi

j
.

Example:

�1 2 3
4 5 6

� + � 7 8 9
10 11 12

� = � 8 10 12
14 16 18

� .
▲▲▲

If we denote by 0m×n (or just 0 in short) the m × n-matrix whose entries are
all zero, then

A + 0 = A
for every A ∈ Mm×n(F). Likewise, given A ∈ Mm×n(F), we denote by (−A)
the m × n matrix given by (−A)i

j
= −ai

j
.

For every A ∈Mm×n(F),
A + (−A) = 0.

It is easy to see that matrix addition is associative, namely, for every A,B,C ∈
Mm×n(F) we have (A +B) +C = A + (B +C),
and commutative. namely,

A +B = B +A.
Note that the addition of matrices satisfies the four axioms of addition in a
field. This doesn’t make Mm×n(F) into a field!

We could define in a similar way products of matrices of the same size. We
could. But we won’t do so. We will rather have a di↵erent definition for
products of matrices, not necessarily of the same size, which will relate to
linear combinations of systems of equations.

You may ask yourself what is the purpose of adding up matrices, and whether
it relates to the solution of linear systems of equations. The meaning of
matrix addition will be clarified later in this course, in the context of linear
transformations.
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Exercises

(easy) 2.35 Show that matrix addition is both associative and commuta-
tive.

2.5.2 Multiplication by a scalar

For a matrix A ∈Mm×n(F) and a scalar c ∈ F we define their product, cA ∈
Mm×n(F), whose entries are defined by

(cA)i
j
= c ai

j
.

That is, the scalar c multiplies every entry of A to yield the matrix cA.
We could think of the elements of F as “acting” on elements in Mm×n(F)
resulting in an element in Mm×n(F).
Example:

4 ⋅ �1 2 3
4 5 6

� = � 4 8 12
16 20 24

� .
▲▲▲

It is easy to see that multiplication by a scalar satisfies

1F ⋅A = A
for every A ∈Mm×n(F), and

c(dA) = (cd)A
for every c, d ∈ F and A ∈Mm×n(F); this is a kind-of associativity up to the
fact that the product between scalars di↵ers from the product between a
scalar and a matrix. Also, for every A ∈Mm×n(F),

0F ⋅A = 0m×n
and for every c ∈ F,

c0m×n = 0m×n.
Finally, for every A ∈Mm×n(F),

(−1F)A = (−A).
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The product of a scalar and a matrix satisfies also distributive properties:
on the one hand, for every A,B ∈Mm×n(F) and c ∈ F,

c (A +B) = cA + cB. (2.10)

On the other hand, for every A ∈Mm×n(F) and c, d ∈ F,
(c + d)A = cA + dA. (2.11)

Exercises

(easy) 2.36 Show that the multiplication of a matrix by a scalar satisfies
1F ⋅A = A for every A ∈Mm×n(F), and c(dA)) = (cd)A for every c, d ∈ F and
A ∈Mm×n(F).
(easy) 2.37 Show that for every A ∈Mm×n(F),

(−1F)A = (−A),
and more generally that for every A ∈Mm×n(F) and c ∈ F

(−c)A = −(cA).
(easy) 2.38 Prove the two distributive properties (2.10), (2.11) of the prod-
uct of a scalar and a matrix.

2.5.3 Products of matrices

We started this chapter by considering linear systems in which each equation
is a linear combination of the equations of another system, before focusing
on the particular case of elementary row-operations. We now return to the
procedure of forming linear combinations of equations in a more systematic
way, leaning upon our new notational system of matrices.

Let A ∈ Mm×n(F) be a matrix representing a system of m equations in n

unknowns. Suppose that we want to create from it a system of p equations
in the same n unknowns by taking linear combinations of the equations of the
first system. Think of the i-th equation in the new system. It is formed by
multiplying the first equation by a scalar bi

1
, the second equation by a scalar

bi
2
up to the m-th equation by a scalar bi

m
, and adding up the m equations.
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What is the coe�cient of X1 in the new equation? It is

b
i

1
a
1

1
+ bi

2
a
2

1
+ ⋅ ⋅ ⋅ + bi

m
a
m

1
= m�

k=1
b
i

k
a
k

1
.

Note that the index i remains fixed—it represents the index of the equation
in the new system—and so does the index 1—which represents the variable
whose coe�cient we calculate.

Likewise, the coe�cient of X2 in the new i-th equation is

b
i

1
a
1

2
+ bi

2
a
2

2
+ ⋅ ⋅ ⋅ + bi

m
a
m

2
= m�

k=1
b
i

k
a
k

2
,

and more generally, the coe�cient of Xj in the new i-th equation is

b
i

1
a
1

j
+ bi

2
a
2

j
+ ⋅ ⋅ ⋅ + bi

m
a
m

j
= m�

k=1
b
i

k
a
k

j
.

Thus, to form p equations by linear combinations of m equations we need
p ×m scalars

{bi
j
∶ i = 1, . . . , p, j = 1, . . . ,m},

such that the coe�cient of the j-th variable in the new i-th equation is given
by

m�
k=1

b
i

k
a
k

j
.

This operation of forming linear combinations of equations can be represented
using matrices.

Definition 2.21 Let B ∈ Mp×m(F) and let A ∈ Mm×n(F). Their product

(�;&7*9)/ -: %-5,/) BA is a p × n matrix whose (i, j)-th entry is given by

(BA)i
j
= m�

k=1
b
i

k
a
k

j
= bi

1
a
1

j
+ ⋅ ⋅ ⋅ + bi

m
a
m

j
.

Note: for the product BA to be defined, the number of columns in B has to
be equal to the number of rows in A.
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Example: Consider a linear system of 2 equations in 3 unknowns represented
by the matrix

A = � 5 −1 2
15 4 8

� .
We form a new system of 2 equations in 3 unknowns by multiplying it by the
matrix

B = � 1 0−3 1
� .

The first equation in the new system is obtained by multiplying the first
equation in the original system by 1 and the second equation by zero and
adding the two—in other words, the first equation remains the same. The
second equation in the new system is obtained be multiplying the first equa-
tion in the original system by (−3) and the second equation by 1 and adding
the two. The corresponding matrix product is

� 1 0−3 1
� � 5 −1 2

15 4 8
� = �5 −1 2

0 7 2
� .

▲▲▲
Note that when we wrote the unknowns as an n×1 matrix, and the right-hand
side of the equation as an m × 1 matrix,

X =
���������

X1

X2

⋮
Xn

���������
and b =

���������

b1

b2⋮
bm

���������
,

the equation AX = b can be interpreted in terms of matrix multiplication:
the product of an m × n matrix and an n × 1 matrix is an m × 1 matrix.

Example: Let A be an m×n matrix and let Im (or in short I) be the m×m
identity matrix, which we recall is given by

I
j

i
= �j

i
= �������

1 i = j
0 i ≠ j.

Then,

(ImA)ij = m�
k=1

�
i

k
A

k

j
= Ai

j
,
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namely ImA = A for every A. Likewise,

(AIn)ij = n�
k=1

A
i

k
�
k

j
= Ai

j
,

namely, AIn = A. ▲▲▲
Example: Let’s see what happens when we multiply a matrix by a matrix
which has all entries zero except for one entry, which is 1. For example,
suppose that the (2,3) entry equals one,

�������
0 0 0
0 0 1
0 0 0

�������
�������
a1
1

a1
2

a1
3

a1
4

a2
1

a2
2

a2
3

a2
4

a3
1

a3
2

a3
3

a3
4

�������
=
�������
0 0 0 0
a3
1

a3
2

a3
3

a3
4

0 0 0 0

�������
.

Thus, the third row was copied into the second row of the product.

For the other way around

�������
a1
1

a1
2

a1
3

a1
4

a2
1

a2
2

a2
3

a2
4

a3
1

a3
2

a3
3

a3
4

�������

���������

0 0 0
0 0 1
0 0 0
0 0 0

���������
=
�������
0 0 a1

2

0 0 a2
2

0 0 a3
2

�������
,

i.e., the second column was copied into the third column of the product.▲▲▲
Here is another way to define the product of two matrices. Let B ∈M1×m(F) =
Fm
row

and A ∈Mm×1(F) = Fn

col
. We define their product by

BA = �b1 b2 � bm�
���������

a1

a2⋮
am

���������
= m�

j=1
bja

j
.

Then, for B ∈ Mp×m(F) and A ∈ Mm×n(F), their product BA ∈ Mp×n(F) is
defined by (BA)i

j
= Rowi(B) ⋅Colj(A).

The following relations are useful to remember,

Rowi(AB) = Rowi(A) ⋅B
Colj(AB) = A ⋅Colj(B). (2.12)
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Exercises

(easy) 2.39 Let

A = �2 −1 1
1 2 1

� B =
�������
3
1−1
�������

and C = �1 −1� .
Calculate ABC and CAB (advice: before starting to calculate, determine
the size of the matrices in each case).

(easy) 2.40 Let

A =
�������
1

1
1

�������
B =
�������

1
1

1

�������
and C =

�������
a b c

d e f

g h i

�������
.

Calculate AB, BA, ABC and CBA.

(intermediate) 2.41 Let

A =
�����������

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

�����������
.

Calculate A2, A3, A4, A5 and A6.

(intermediate) 2.42 Find a non-zero matrix A ∈ M2×2(F) satisfying A2 =
02×2.
(intermediate) 2.43 Let

A = �1 1
0 1
� .

Calculate A2020.

(intermediate) 2.44 Let A ∈ Mm×n(F) and B ∈ Bk×m(F). Which of the
following statements is true? If it is, prove it, otherwise provide a counter
example.
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(a) If the first row of A is zero, then the first row of BA is zero.

(b) If the first column of A is zero, then the first column of BA is zero.

(c) If the first two rows of B are zero, then the first two rows of BA are
zero.

(d) If the first two columns of B are zero, then the first two columns of BA

are zero.

(e) If the i-th and the j-th rows of A are equal then the i-th and the j-th
rows of BA are equal.

(f) If the i-th and the j-th columns of A are equal then the i-th and the
j-th columns of BA are equal.

(g) If the i-th and the j-th rows of B are equal then the i-th and the j-th
rows of BA are equal.

(h) If the i-th and the j-th columns of B are equal then the i-th and the
j-th columns of BA are equal.

(harder) 2.45 Prove or disprove the following statements:

(a) If A,B ∈Mn×n(F) satisfy AB = B and B ≠ 0, then A = I2.
(b) There exists a matrix A ∈M2×2(F) satisfying A2 = −I2.

2.5.4 Algebraic properties of matrix multiplication

Since we have introduced a new operation—a product of matrices—there are
natural questions to raise: (i) is it commutative? (ii) is it associative? (iii)
does this product have a unit element? (iii) is it distributive? (iv) How does
it relate to multiplication by a scalar?

For commutativity, for AB and BA to be defined, it must be that if A ∈
Mm×n(F), then B ∈Mn×m(F). Take for example, m = n = 2, and consider the
matrices

A = �1 2
3 4
� and B = �2 1

0 3
� .

Then,

AB = �2 7
6 15

� and BA = �5 8
9 12

� ,
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i.e., matrix multiplication is not commutative.

For associativity, we first note that if A is an m × n matrix, B is an n × p
matrix and C is a p×q matrix, then both (AB)C and A(BC) are well-defined
m × q matrices.

Proposition 2.22 Matrix multiplication is associative: for all A ∈
Mm×n(F), B ∈Mn×p(F) and C ∈Mp×q(F),

(AB)C = A(BC).

Proof : Just follow the definition, using the associative properties of both
addition and multiplication in F.

((AB)C)i
j
= p�

k=1
(AB)i

k
c
k

j
= p�

k=1
� n�
s=1

a
i

s
b
s

k
� ck

j
= p�

k=1
n�
s=1

a
i

s
b
s

k
c
k

j
,

and

(A(BC))i
j
= n�

s=1
a
i

s
(BC)s

j
= n�

s=1
a
i

s
� p�
k=1

b
s

k
c
k

j
� = n�

s=1
p�

k=1
a
i

s
b
s

k
c
k

j
.

Since the order of summation can be interchanged (commutativity of addi-
tion), both expressions are equal. n

Comment: Since (AB)C = A(BC), we may write products ABC unam-
biguously. The same holds for the product of four of more matrices (as long
as they are of compatible size).

Comment: if A is a square matrix, then AA is well-defined. By associativity,
AAA, AAAA are well-defined, hence we may write Ak, k ∈ N unambiguously.

Regarding unit elements, we saw that an m×n matrix has a unit element Im
for left-multiplication and a unit element In for right-multiplication.

Next,
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Proposition 2.23 Matrix multiplication and matrix addition are distribu-

tive. If A and B are m × n matrices and C and D are n × p matrices, then

(A +B)C = AC +BC and A(C +D) = AC +AD.

Proof : This is left as an exercise. n

Finally, we also have the following form of associativity:

Proposition 2.24 Let A ∈Mm×n(F) and B ∈Mn×p(F). Let � ∈ F. Then,
�(AB) = (�A)B.

Proof : This is left as an exercise. n

Exercises

(intermediate) 2.46 Prove Propositions 2.23 and 2.24.

2.5.5 Matrix multiplication and block patterns

Consider as an example a product of a 3 × 2 matrix A and a 2 × 5 matrix B.
We may look at this product as follows:

A

B
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In this illustration, (AB)2
4
is determined by multiplying the second row of A

and the fourth column of B.

Think now of A and B as matrices which are internally divided into sub-
matrices as follows:

A

B

C

D

E F

C ⋅E C ⋅ F

D ⋅E D ⋅ F

Here, we partition the rows of A into two groups so that we represent the
matrix A ∈M3×2(F) as

A = �C
D
� ,

where C ∈M2×2(F) and D ∈M1×2(F). Likewise, we partition the columns of
B into two groups so that we represent the matrix B ∈M3×2(F) as

B = �E F � ,
where E ∈M2×3(F) and F ∈M2×2(F). Then, the product AB ∈M3×5(F) can
be represented as a block matrix

AB = �CE CF

DE DF
� ,

with CE ∈M2×3(F), CF ∈M2×2(F), DE ∈M1×3(F) and DF ∈M1×2(F).
2.5.6 Invertible matrices

In this section we consider the algebra of n×nmatrices with values in F, which
we denote by Mn(F) (as short-hand notation for Mn×n(F)). Such matrices
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are called square matrices ( �;&*3&"*9 ;&7*9)/); they have the property that
their product yields once again a matrix of the same type. Note that in the
context of linear systems, square matrices represent systems of equations in
which the number of equations equals the number of variables.

Definition 2.25 A matrix A ∈Mn(F) is called invertible (�%,*5%) if there

exists a matrix B ∈Mn(F) such that

BA = AB = In.
The matrix B is called an inverse ( �;*,5%) of the matrix A. The set of n×n
invertible matrices is denoted by GLn(F).
Comments:

(a) By definition, if A is invertible and B is an inverse of A, then B is
invertible and A is an inverse of B.

(b) At this stage, we are referring to an inverse rather than the inverse
because we don’t (yet) know whether there exists a unique inverse.

Example: The matrix In is invertible as

InIn = In,
i.e., In is its own inverse. ▲▲▲
Comment: If a matrix A ∈Mn(F) has a row whose entries are all zero or a
column whose entries are all zero, then it is not invertible. Why? Suppose
that the i-th row of A is zero. Then, for every matrix B ∈Mn(F),

(AB)i
i
= Rowi(A) ⋅Coli(B) = 0 ≠ (In)ii,

i.e., AB cannot be equal In. Similarly, if the i-th column of A is zero, then
for every matrix B ∈Mn(F),

(BA)i
i
= Rowi(B) ⋅Coli(A) = 0F ≠ 1F = (In)ii,

and BA product cannot be equal In.

In fact, there are many more matrices that are not invertible:
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Proposition 2.26 Let A ∈ Mn(F). If there exists a non-zero matrix C ∈
Mn(F) such that AC = 0, then A in not invertible.

Proof : Suppose by contradiction that A is invertible. That it, there exists
a matrix B ∈ Mn(F) such that BA = In. Using the associativity of matrix
multiplication,

C = InC = (BA)C = B(AC) = B ⋅ 0n×n = 0n×n,
which is a contradiction, because we assumed that C was not a zero matrix.
n

Example: In the case of 2 × 2 matrices we can find “by hand” a complete
characterization of all the invertible matrices. Let

A = �a b

c d
� ≠ 02×2.

A direct calculation shows that

�a b

c d
� � d −b−c a

� = � d −b−c a
� �a b

c d
� = �ad − bc

ad − bc� = (ad − bc)I.
There are now two possibilities: if ad − bc = 0F then

�a b

c d
� � d −b−c a

� = 02×2,
and by Proposition 2.26, A is not invertible. If, however, ad − bc ≠ 0F, then
A is invertible with

1

ad − bc � d −b−c a
�

being an inverse. ▲▲▲
Comment: The scalar ad− bc is known as the determinant ( �%)11*/9)$) of
the matrix A, denoted

detA = ad − bc.
We will study determinants of general square matrices later on in this course.
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Lemma 2.27 Let A,L,R ∈Mn(F) be such that

LA = In and AR = In.
(The matrix L is called a left-inverse (�;*-!/: ;*,5%) of A and the matrix

R is called a right-inverse (�;*1/* ;*,5%) of A.) Then

L = R,

and A is invertible.

Proof : Using the associativity of matrix multiplication,

L = LIn = L(AR) = (LA)R = InR = R,

i.e., L = R. By definition L(= R) is an inverse of A. n

Corollary 2.28 If A ∈Mn(F) is invertible, then its inverse is unique.

Proof : Suppose that L,R ∈Mn(F) are both inverses of A. By defintiion,

LA = In and AR = In.
By Lemma 2.27, L = R, proving the uniqueness of A. n

Since an invertible matrix A has a unique inverse, we can introduced a no-
tation for its inverse: A−1.
We now further characterize the set GLn(F) of invertible n×n matrices with
entries in F.

Proposition 2.29 Let A,B ∈Mn(F). Then,
(a) If A is invertible, so is A−1 and (A−1)−1 = A
(b) If A and B are both invertible, then so is AB and

(AB)−1 = B−1A−1.
(Note the inversion in the order of B−1 and A−1 relative to A and B,

and recall that matrix multiplication is not commutative.)
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Proof : By definition of the inverse,

AA
−1 = A−1A = In,

which proves, by definition, that A−1 is invertible and A is its inverse. For
the second statement, using the associativity of matrix multiplication,

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In(AB)(B−1A−1) = A(BB
−1)A−1 = AInA−1 = AA−1 = In,

proving that B−1A−1 is the inverse of AB. n

Corollary 2.30 Any (finite) product of invertible matrices is invertible.

Proof : This is left as an exercise. n

Comment: We have just seen that the set GLn(F) satisfies the following
properties:

(a) It is not empty.

(b) It is endowed with a product that takes two elements of GLn(F) and
returns an element in GLn(F).

(c) It has a unit element In satisfying AIn = InA = A for every A ∈ GLn(F).
(d) Every A ∈ GLn(F) has a B ∈ GLn(F) satisfying AB = BA = In.

Such a structure is called a group ( �%9&"(); it is the main subject of a second-
year course in algebra. Note that a group, unlike a field, is endowed with
only one algebraic operation, which does not need to be commutative. The
notation GLn stands for the general linear group.

Exercises

(easy) 2.47 Let A ∈ Mn(F). Show that if there exists a non-zero matrix
C ∈Mn(F) such that CA = 0, then A in not invertible.
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(easy) 2.48 Is the matrix

�1 3
2 6
�

invertible? If it is, what is its inverse?

(easy) 2.49 Is the matrix �������
1

3
6

�������
invertible? If it is, what is its inverse?

(intermediate) 2.50 Prove that for every k ∈ N, a product of k invertible
matrices is invertible.

(intermediate) 2.51 Prove or disprove the following statements:

(a) If A,B,C ∈ Mn(F) satisfy that A is invertible and AB = AC, then
B = C.

(b) If A,B ∈ GLn(F), then A +B ∈ GLn(F).
(c) If A,B ∈Mn(F) are not invertible, then A +B is not invertible.

(d) If A ∈ GLn(F), then A3 ∈ GLn(F).

2.5.7 Elementary matrices

Next, we relate matrix multiplication to elementary row-operations. When
we start with an m × n matrix, an elementary row-operation yields a new
matrix of the same size, with each row being a linear combination of the
rows of the original matrix. In other words, an elementary row-operation
can be represented by a left-multiplication by an m ×m matrix.

Definition 2.31 An m × m matrix E is called an elementary matrix
(�;*$&2* %7*9)/) if there exists an elementary row-operation e such that for

every matrix A (having m rows) EA = e(A).
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Example: Let m = 2. Then, the elementary matrices obtained by multiply-
ing the first and second rows by 0 ≠ c ∈ F are

�c
1
� and �1

c
� .

The elementary matrices corresponding to adding s times the first row to the
second row, and s times the second row to the first row are

�1
s 1
� and �1 s

1
� .

▲▲▲
More generally, we denote by Dk(a) the elementary matrix multiplying the
k-th row by a. It is easy to verify that since

(e(A))i
j
= �������

cAk

j
i = k

Ai

j
i ≠ k,

it follows that

(Dk(a))ij =
�����������
1 i = j ≠ k
a i = j = k
0 otherwise

.

Example: The elementary matrix corresponding to multiplying the second
row by c ≠ 0 is �����������

1 0 0 � 0
0 c 0 � 0
0 0 1 � 0⋮ ⋮ ⋮ � ⋮
0 0 0 � 1

�����������
.

▲▲▲
We denote by T `

k
(c) the elementary matrix adding c times the `-th row to

the k-th row. It is easy to verify that since

(e(A))i
j
= �������

Ai

j
i ≠ k

Ar

j
+ cAk

j
i = r,
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it follows that

(T `

k
(c))i

j
=
�����������
1 i = j
c i = k, j = `
0 otherwise

.

Proposition 2.32 An elementary matrix is invertible and its inverse is

again an elementary matrix; hence a product of elementary matrices is in-

vertible.

Proof : We show first that

(Dk(a))−1 =Dk(a−1).
Indeed,

(Dk(a) ⋅Dk(a−1))ij = m�
p=1
(Dk(a))ip(Dk(a−1))pj =

�����������
0 i ≠ j
1 ⋅ 1 i = j ≠ k
a ⋅ a−1 i = j = k.

In a similar way, we show that

(T `

k
(a))−1 = T `

k
(−a).

Finally, since any product of invertible matrices is invertible, it follows that
any product of elementary matrices is invertible (see Exercise 2.50). n

Corollary 2.33 Two matrices A,B ∈ Mm×n(F) are row-equivalent if and

only if there exists an m ×m matrix P , which is a product of elementary

matrices (hence in GLm(F)), such that

B = PA.

Proof : By definition, A and B are row-equivalent if and only if there exists
a sequence of elementary row-operations e1, . . . , ek, such that

B = ek(ek−1�(e1(A))).
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We have just seen that every elementary row-operation is realized by a left-
multiplication by an elementary matrix. That is, there exists a sequence
E1, . . . ,Ek of elementary matrices such that

B = Ek(Ek−1 . . . (E1(A))).
Since matrix multiplication is associative, we obtain the desired result with

P = EkEk−1 . . .E1.

n

Corollary 2.34 To every matrix A ∈ Mm×n(F) there exists a matrix P ∈
GLm(F), which is a product of elementary matrices, such that

R = PA

is a row-reduced echelon matrix.

Proof : By the Gauss-Jordan algorithm, A is row-equivalent to a row-reduced
echelon matrix R. By Corollary 2.33, there exists a matrix P ∈ GLm(F),
which is a product of elementary matrices, such that R = PA. n

Exercises

(easy) 2.52 Show by a direct calculation that the elementary 2 × 2 matrix

T
2

1
(c) = �1 c

0 1
�

is invertible.

(easy) 2.53 Write down explicitly the elementary matrix corresponding to
the elementary row-operation of adding c times row 4 to row 2 for m = 5.
(intermediate) 2.54 For each of the following matrices, determine whether
it is a product of elementary matrices; if it is find its inverse:

A =
�������
1 0 0
0 0 1
0 1 0

�������
B =
�������
0 0 1
1 0 0
0 1 0

�������
C =
�������
0 1 2
0 1 0
0 0 1

�������
D =
�������
1 0 0
0 2 0
0 2 1

�������
E =
�������
1 0 0
0 1 0
0 0 2

�������
.
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2.5.8 Elementary matrices and invertibility

We will now use the last results to state conditions under which a square
matrix is invertible.

Theorem 2.35 Let A ∈Mm(F). Then the following statements are equiva-

lent:

(a) A is invertible.

(b) A is row-equivalent to Im.

(c) A is a product of elementary matrices.

Comment: When we say that three (or more) statements are equivalent, it
means that if one of them is true, then all of them are true, and equivalently,
if one of them is false, then all are false. To prove it, it su�ces to prove that
the first statement implies the second, that the second implies the third, and
so on, and finally that the last implies the first.

Proof : Statement (b) implies statement (c) as if A is row-equivalent to Im,
then there exist elementary matrices E1, . . . ,Es such that

A = EsEs−1 . . .E1Im = EsEs−1 . . .E1.

Statement (c) implies statement (a) by Proposition 2.32. Thus, it only re-
mains to prove that an invertible matrix is row-equivalent to Im.

Let R be a row-reduced echelon matrix which is row-equivalent to A. Since
R and A are row-equivalent, there exists a matrix P , which is a product of
elementary matrices, such that R = PA, hence R is invertible. It follows that
R does not have a row that is zero, but a square row-reduced echelon matrix
which has no zero rows can only be the identity matrix. n

In fact, the inverse of an invertible matrix can be calculated as follows:
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Proposition 2.36 Let A ∈ GLm(F) and let P be a product of elementary

matrices such that PA = Im. Then,
PIm = A−1.

That is, the sequence of operations reducing A to Im is the same sequence

bringing Im to A−1.

Proof : We have (PIm)A = P (ImA) = PA = Im,
which, by the uniqueness of the matrix inverse proves that PIm = A−1. n

We finally relate the property of being invertible to the existence of solution
to linear systems of equations:

Theorem 2.37 Let A ∈Mm(F). The following statements are equivalent:

(a) A is invertible.

(b) The homogeneous system AX = 0 only has the trivial solution.

(c) For every m × 1 matrix b, the system AX = b is consistent and its

solution is unique.

Proof : Suppose that Statement (a) holds, i.e., A is invertible. On the one
hand, x = A−1b is a solution; on the other hand, if Ax = b, then

x = Ix = A−1Ax = A−1b,
i.e., a solution exists and it is unique (because we actually determined what it
must be), so that Statement (c) holds. Statement (b) is a particular example
of Statement (c), so that (c) implies (b). It remains to prove that Statement
(b) implies Statement (a).

Suppose, by contradiction, that Statement (b) holds and that A is not in-
vertible. Let R be the row-reduced echelon matrix which is row-equivalent
to A. Since A is not invertible, R is not the identity matrix, hence it has at
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least one row identically zero. It follows that it has at least one free variable,
contradicting the fact that AX = 0 has a unique solution (since its solutions
are the same as the solutions of RX = 0). n

With that we finally have:

Corollary 2.38 A square matrix having either a left- or a right-inverse is

invertible. That is, let A ∈ Mn(F). If there exists an L ∈ Mn(F) such that

LA = In, or if there exists an R ∈ Mn(F) such that AR = In, then A is

invertible.

Proof : Suppose for example that A has a left-inverse L. Let x be a solution
to AX = 0, then

x = Inx = LAx = L(Ax) = 0,
i.e., 0 is the unique solution to AX = 0 implying by Theorem 2.37 that A is
invertible. On the other hand, if R is a right-inverse of A, then A is a left-
inverse for R, hence R is invertible, and AR = In implies that A is invertible
as well. n

Corollary 2.39 A product of square matrices is invertible if and only if

every matrix in this product is invertible.

Proof : We will show it for a product of two matrices; the general case can
be shown inductively. We already know that a product of invertible matrices
is invertible—we will now show that if AB is invertible then both A and B

are invertible. Let C be the inverse of AB, then

(AB)C = A(BC) = I,
i.e., A has a right-inverse, and by Corollary 2.38 it is invertible. Likewise,

C(AB) = (CA)B = I,
i.e., B has a left-inverse, and by Corollary 2.38 it is invertible. n

As a final note, if A ∈ GLn(F), then the linear system (whether homogeneous
or not)

AX = b
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has a unique solution,
x = A−1b.

In this section we obtained an algorithm (using the Gauss-Jordan procedure)
for calculating A−1. Note however, that this chapter has a much wider scope,
encompassing linear systems of arbitrary m,n, whether consistent or not.

Exercises

(easy) 2.55 Let A be an m ×m matrix. Prove that if A is invertible and
AB = 0 for some m ×m matrix B, then B = 0.
(intermediate) 2.56 For each of the two matrices

�������
2 5 −1
4 −1 2
6 4 1

�������
and

�������
1 −1 2
3 2 4
0 1 −2

�������
find using elementary row-operations whether they are invertible and find
their inverses if they are (this is quite tedious, but one has to do it at some
point...).

(intermediate) 2.57 Is the matrix

���������

1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4

���������
invertible? If it is, what is its inverse?

(intermediate) 2.58 Let A be a 2 × 1 matrix and let B be a 1 × 2 matrix.
Show that the 2 × 2 matrix AB is not invertible.

(intermediate) 2.59 The following matrices are over R. Determine whether
they are invertible, and if they are, find their inverses:

U1 =
�������
2 1 2
4 0 3
0 3 5

�������
U2 =

�������
1 1 1
1 1 1
0 1 1

�������
U3 =

�������
1 1 1
0 1 0
1 0 1

�������
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U4 =
�������
1 1 1
0 1 0
0 1 1

�������
U5 =

�������
2 3 4
0 1 2
0 0 3

�������
U6 =

�������
1 3 4
2 4 0
3 1 1

�������
(intermediate) 2.60 Consider the matrix

A =
�������
1 0 3
3�2 1�2 3−5 4 −9

�������
.

If possible, express it as a product of elementary matrices. If not, explain
why.

(intermediate) 2.61 Let A ∈Mn(F) satisfy the equation

A
2 −A + I = 0.

Show that A is invertible and express its inverse in terms of A.

(intermediate) 2.62 Let A ∈Mn(F) satisfy the equation

A
3 − 2A + I = 0.

Show that A is invertible and express its inverse in terms of A.

(intermediate) 2.63 Show that if A,B ∈ Mn(F) satisfy that AB2 − A is
invertible, then BA −A is invertible.

(intermediate) 2.64 Let A ∈ Mn(F), B ∈ Mk(F) and D ∈ Mn×k(F ). Con-
sider the block matrix C ∈Mn+k(F) given by

C = �A D

B
� .

Show that if A and B are invertible, then so is C. What about the converse?

(harder) 2.65 Show that if A,B,A +B ∈ GLn(F), then
A
−1 +B−1 ∈ GLn(F).

(harder) 2.66 Let A be an m×m matrix. Prove that if A is not invertible
then there exists a non-zero m ×m matrix B such that AB = 0.
(harder) 2.67 Let A be an m×n matrix with n <m, and let B be an n×m
matrix. Show that AB is not invertible. Hint: what can you say about the
homogeneous system BX = 0?
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2.6 The structure of the set of solutions

2.6.1 The homogeneous case

Let A ∈Mm×n(F). Consider the set S[A�0] of all solutions x ∈Mn×1(F) = Fn

col

to the homogeneous system
AX = 0.

This set turns out to have interesting properties, which will play a central
role throughout this course:

Theorem 2.40 Let A ∈Mm×n(F).Then,
(a) If u,v ∈ S[A�0], then u + v ∈ S[A�0].
(b) If u ∈ S[A�0] and � ∈ F, then �u ∈ S[A�0].

(In other words, the set of solutions of a homogeneous system is closed under

addition and under scalar multiplication.)

Proof : For the first statement, if u,v ∈ S[A�0], then
Au = 0 and Av = 0,

from which follows from distributivity that

A(u + v) = Au +Av = 0,
namely u + v ∈ S[A�0]. For the second statement, if Au = 0, then

A(�u) = �(Au) = 0,
namely �u ∈ S[A�0]. Note that we used here the fact that for every i = 1, . . . ,m,

(A(�u))i = n�
k=1

a
i

k
(�u)k = n�

k=1
�a

i

k
u
k = � n�

k=1
a
i

k
u
k = (�(Au))i.

n
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Example: Consider the case of m = 1 and n = 2,
X

1 +X2 = 0.
The set of solutions of this “system” of equations is

S[1,1�0] = �� t−t� ∶ t ∈ F� .
Take any two elements,

� t−t� , � s−s� ∈ S[1,1�0],
their sum

� t−t� + � s−s� = � t + s−(t + s)�
is also an element of S[1,1�0]. Likewise, for every � ∈ F,

� � t−t� = � �t−�t�
is an element of S[1,1�0]. ▲▲▲
2.6.2 The inhomogeneous case

Consider next an inhomogeneous system,

AX = b,
where A ∈ Mm×n(F) and b ∈ Fm

col
. Do we get here the same phenomenon?

Is it true that u,v ∈ S[A�b] implies that u + v ∈ S[A�b]. Let’s verify it. If
u,v ∈ S[A�b], then

Au = b and Av = b,
and

A(u + v) = Au +Av = b + b
which di↵ers from b unless b = 0 (note that we don’t write b + b = 2b as we
are in a general field). Thus, unless the system is homogeneous, u+v �∈ S[A�b].
The following theorem shows that the set of solution of an inhomogeneous
system has its own algebraic structure:
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Theorem 2.41 Let A ∈Mm×n(F) and b ∈ Fm

col. If u ∈ S[A�b] and v ∈ S[A�0],
then u + v ∈ S[A�b].

Proof : Let u ∈ S[A�b] and v ∈ S[A�0], namely,

Au = b and Av = 0.
Then,

A(u + v) = Au +Av = b + 0 = b,
which means that u + v ∈ S[A�b]. n

In fact, we can prove something even stronger.

Theorem 2.42 Let A ∈Mm×n(F) and b ∈ Fm

col. Suppose that the inhomoge-

neous system is consistent, namely, that there exists x ∈ Fn

col satisfying

Ax = b.
Then, every u ∈ S[A�b] can be represented as

u = x + v,
for some v ∈ S[A�0].

Proof : Let u ∈ S[A�b], and write

u = x + (u − x)��������������������=v
.

Now,
Av = A(u − x) = Au −Ax = b − b = 0,

i.e., v ∈ S[A�0]. n

In other words, if an inhomogeneous system is consistent, every solution can
be represented as the sum of one particular solution and a solution of the
corresponding homogeneous system.
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Example: Consider the inhomogeneous system with m = 1 and n = 2,
X

1 +X2 = 5.
The set of solutions of this “system” of equations is

S[1,1�5] = �� t

5 − t� ∶ t ∈ F� .
Note that

x = �0
5
�

is a particular solution of this system, and that the set of solutions can be
written as

S[1,1�5] = ��05� + � t−t� ∶ t ∈ F� .
That is, every solution can be represented as the sum of one particular solu-
tion and a solution of the homogeneous system. ▲▲▲

2.7 The geometry of solutions

2.7.1 A�ne spaces

We end this chapter on linear systems of equations by presenting a geometric
interpretation of the set of solutions of systems AX = b. To this end we
introduce an algebraic construct called an a�ne space ( �*1*5! "(9/) over a
field F. The introduction will be somewhat less formal than the standard of
this course, because the goal here is mainly to develop some intuition.

An a�ne space over a field F encompasses two (non-empty) sets: a set of
so-called points ( �;&$&81) and a set of so-called translations ( �;&''%). To
distinguish between the two, we denote the points by uppercase roman char-
acters, e.g., P,Q, . . . , and we denote the translations by lowercase roman
characters, e.g., u,v, . . . .

It is useful to think of the points as actual points (say on a plane) and of
the translations as arrows on that same plane. Translations act on points by
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translating them into other points. We denote this action using the addition
sign: a translation v acting on a point P yields a point which we denote by

P + v.
In other words there exists a function of the type

+ ∶ points × translations→ points.

This is the image one should have in mind:

P

P + vv

The rule is that for every two points P,Q there exists a unique translation
v such that Q = P + v; we denote this unique translation by Q −P , which is
sometimes also denoted by �PQ.

Comments:

(a) There is no meaning to adding two points! Thus far, the addition
operation represents only the action of a translation on a point.

(b) An a�ne space does not come equipped with a special point, such as
an origin.

Translations can be composed. One can act on a point P by a translation v
and then act on the resulting point by a translation w, as depicted below:

P

v
w

v +w
In an a�ne space, an addition of translations is defined, satisfying the rule
that v +w is the translation equivalent to a translation by v followed by a
translation by w, that is,

P + (v +w) = (P + v) +w.
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Note the di↵erence between the types of addition on both sides of the equa-
tion. The addition on the left-hand side is a function

+ ∶ translations × translations→ translations.

The addition of translations is assumed to be associative and commutative.
Also, there exists a zero translation, which we denote by 0, satisfying for
every point P ,

P + 0 = P.
This last point merits some elaboration. By assumption, there exists for a
point P a unique translation v satisfying

P + v = P,
and there exists for a point Q a unique translation w satisfying

Q +w = Q,

The claim is that v =w, so that there exists a single translation which leaves
all points una↵ected. Why this? Because if Q − P = u, i.e., Q = P + u, then
Q + v = (P + u) + v = P + (u + v) = P + (v + u) = (P + v) + u = P + u = Q,

i.e., both Q+w = Q and Q+v = Q, and by the uniqueness assumption, v =w.

Also, given a point P and a translation v, there exists a unique translation
w, such that (P + v) +w = P,
i.e.,

P + (v +w) = P,
from which we deduce that v +w = 0, i.e., every translation has an additive
inverse.

Thus far, the field F has played no role. An a�ne space is endowed with an
additional operation, which is the scalar multiplication of a translation by a
scalar (think of it as a scaling of the translation): for a translation v and a
scalar � ∈ F, one forms a product �v, which is a translation. That is,

⋅ ∶ scalars × translations→ translations.
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Scalar multiplication is associative, in the sense that

↵(�v) = (↵�)v,
has a neutral element,

1F ⋅ v = v,
and is distributive both over scalar addition,

(↵ + �)v = ↵v + �v
and over the addition of translations,

↵(u + v) = ↵u + ↵v.
2.7.2 The a�ne space An(F)
Thus far, the discussion was completely general. We now consider a particu-
lar instance of an a�ne space. Let n ∈ N be any natural number. The a�ne
space An(F) is defined as follows: the points belong to the set

An(F) =
���������
���
p1⋮
pn

��� ∶ p
1
, . . . , p

n ∈ F
���������
,

whereas the translation belong to the set,

V
n(F) =

���������
�������
v1⋮
vn

�������
∶ v1, . . . , vn ∈ F

���������
.

Note that these two sets are essentially “the same”, and we use di↵erent
parentheses to distinguish between the two.

The action of a translation on a point is defined by

���
p1⋮
pn

��� +
�������
v1⋮
vn

�������
= ���

p1 + v1⋮
pn + vn

��� .
For the operations on translations, we exploit the fact that we use a matrix
notation so that addition and scalar multiplication have already been defined.
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And now we connect this geometric construct to the set of solutions to linear
system. Let A ∈Mm×n(F). We interpret the solutions of the system AX = b
(which are n-tuples of field elements) as points in the a�ne space An(F). In
contrast, we interpret the set of solutions of the homogeneous system AX = 0
(which are also n-tuples of field elements) as the space of translations V n(F).
Theorem 2.42 can then be interpreted as follows. Suppose that the system
AX = b is consistent, i.e., it has at least one solution P (a point in the a�ne
space). Then, its set of solutions is all the points Q obtained by translating
P by a solution of the homogeneous equation (which is indeed a translation).

2.7.3 Lines in a�ne spaces

Let A be the set of points in an a�ne space over F and let V be the set of
translations. A set of points L ⊂ A is called a line ( �9:*), if there exists a
point P ∈ A and a translation 0 ≠ v ∈ V , such that

L = {P + tv ∶ t ∈ F}.
That is, a line is a set of points obtained by translating a point P ∈ A by all
translations which are multiples of a translation v ∈ V .

P
v

Proposition 2.43 Let a, b ∈ F, which are not both zero and let c ∈ F. Then,
the set of solutions to the equation

aX + bY = c
is a line in the a�ne space A2(F).

Proof : We already have a technique for finding the space of solutions S[a,b�c].
Suppose first that a ≠ 0F. Then, the extended matrix [a, b�c] is row-equivalent
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to a matrix of the form [1, d�e]; the corresponding linear systems have the
same solutions. The set of solutions is the set of points

S[1,d�e] = ��e − dt
t
� ∶ t ∈ F� ,

which we can rewrite as

S[1,d�e] = ��e0� + t �−d1 � ∶ t ∈ F� .
If a = 0 and b ≠ 0, then

S[0,b�c] = �� t

c�b� ∶ t ∈ F� ,
which we can rewrite as

S[0,b�c] = �� 0
c�b� + t �10� ∶ t ∈ F� ,

which is also a line. n

In fact the converse is also true:

Proposition 2.44 Let L ⊂ A2(F) be a line. Then, there exist a, b ∈ F, which
are not both zero and a c ∈ F, such that L is the set of solutions to the linear

equation

aX + bY = c.

Proof : Let

L = ��p1
p2
� + t �v1

v2
� ∶ t ∈ F�

be a line in A2(F). Let [x1, x2]T ∈ L. Then, there exists a t ∈ F, such that

x
1 = p1 + tv1 and x

2 = p2 + t v2.
Since the translation is non-zero, either v1 ≠ 0 or v2 ≠ 0. If v1 ≠ 0, then

t = (x1 − p1)�v1,



82 Chapter 2

so that
x
2 = p2 + v2(x1 − p1)�v1,

which we may rewrite as

v
2
x
1 − v1x2 = v2p1 − v1p2.

That is, all points in L are solution of the equation

v
2
X

1 − v1X2 = v2p1 − v1p2.
We can also think of it di↵erently: we are trying to solve a system of two
equations in one unknown,

v
1
t = x1 − p1

v
2
t = x2 − p2.

The extended matrix is

� v1 x1 − p1
v2 x2 − p2 .�

Suppose that v1 ≠ 0. Then, the corresponding row-reduced echelon matrix is

� 1 (x1 − p1)�v1
0 (x2 − p2) − v2(x1 − p1)�v1 .�

This equation is consistent if and only if

(x2 − p2) − v2(x1 − p1)�v1 = 0,
which is the same as we obtained before. n

2.7.4 Planes in a�ne spaces

Let A be the set of points in an a�ne space over F and let V be the set of
translations. A set of points M ⊂ A is called a plane ( �9&:*/), if there exists
a point P ∈ A and two translation 0 ≠ u,v ∈ V , such that none is a multiple
of the other, such that

M = {P + su + tv ∶ s, t ∈ F}.
That is, a plane is a set of points obtained by translating a point P ∈ A by
all translations which are linear combinations of two translation u,v ∈ V .
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Proposition 2.45 Let a, b, c ∈ F, which are not all zero and let d ∈ F. Then,
the set of solutions to the equation

aX + bY + cZ = d
is a plane in the a�ne space A3(F).

Proof : We leave this as an exercise. Separate the cases a ≠ 0, a = 0 by b ≠ 0,
and a = b = 0. n

And conversely,

Proposition 2.46 Let M ⊂ A3(F) be a plane. Then, there exist a, b, c ∈ F,
which are not all zero and a d ∈ F, such that M is the set of solutions to the

linear equation

aX + bY + cZ = d.
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