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Abstract

We derive a dimensionally-reduced limit theory for an n-dimensional nonlinear elastic body that is slen-
der along k dimensions. The starting point is to view an elastic body as an n-dimensional Riemannian
manifold together with a not necessarily isometric W1,2-immersion in n-dimensional Euclidean space. The
equilibrium configuration is the immersion that minimizes the average discrepancy between the induced and
intrinsic metrics. The dimensionally-reduced limit theory views the elastic body as a k-dimensional Rieman-
nian manifold along with an isometric W2,2-immersion in n-dimensional Euclidean space and linear data
in the normal directions. The equilibrium configuration minimizes a functional depending on the average
covariant derivatives of the linear data. The dimensionally-reduced limit is obtained using a Γ -convergence
approach. The limit includes as particular cases plate, shell, and rod theories. It applies equally to “stan-
dard” elasticity and to “incompatible” elasticity, thus including as particular cases so-called non-Euclidean
plate, shell, and rod theories.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The derivation of dimensionally-reduced elastic theories is a longstanding theme in material
sciences, which goes back as far as to Euler, D. Bernoulli, Cauchy, and Kirchhoff [12], and in
the last century, to name just a few, to von Kármán [24], E. and F. Cosserat, Love [19], and
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Koiter [14]. In essence, the problem is the following: Elasticity theory models the static and
dynamic properties of three-dimensional bodies. Unless simplifying assumptions can be made,
these models are highly nonlinear and notoriously complex. In many cases, however, one is
interested in elastic bodies that are slender across one or two dimensions. In such cases it is
appealing to model the body as an object of lower dimension—either a surface or a curve, de-
pending on the number of slender axes. The challenge is to derive reduced models for surface-like
or curve-like bodies, departing from the full three-dimensional model.

This is the context to which belong plate, shell, and rod theories [21,14]. Plates and shells
are thin elastic sheets that are modeled as two-dimensional surfaces; plates are in a state of
mechanical rest when they are planar, whereas shells are at rest in a non-planar configuration.
Rods are thin and elongated bodies that are modeled as one-dimensional curves.

Elastostatics can be formulated using a variational approach, where the equilibrium configu-
ration of the body is a minimizer of an energy functional defined on the space of configurations.
Until quite recently, the derivation of dimensionally-reduced models from three-dimensional
elasticity had been based mostly on ansatzes for energy minimizers (e.g., the Kirchhoff–Love
assumptions [12,19]). Such an approach is non-rigorous, and in particular, different ansatzes
lead to different reduced models (sometimes mutually inconsistent), a situation that has lead
over the years to numerous controversies. This situation has changed drastically over the last
decade with the development of new analytical methods, based on Γ -convergence, which have
lead to rigorous derivations of plate [10], shell [11], and rod [20] theories.

An underlying assumption of classical three-dimensional elastic theories is the existence of
a configuration in which the body is free of any internal stresses; this reference configuration
is unique modulo rigid transformations. Deviations from the reference configuration involve an
elastic energy “cost”, and only occur in response to external forces or to the imposition of con-
straints, such as boundary conditions that are incompatible with the reference configuration. In
the absence of such forces or constraints, the reference configuration is the equilibrium configu-
ration.

There are many systems however, in which a stress-free configuration does not exist; such
bodies are said to be residually-stressed. The distinctive feature of a residually-stressed body
is that its constituents change their shape if the body is dissected into parts (thus releasing the
residual stress). The study and modeling of residually-stressed bodies has its own history, starting
with the pioneering work of Bilby and co-workers [2,3] and Kondo [15], followed about a decade
later by Wang [25,26] and Kröner [16]; most of the cited work addressed residual-stress in the
context of defects and dislocations. In more recent years there has been a renewed interest in
residually-stressed elastic bodies in the context of pattern formation in plants (see e.g. [23,18,1])
and in synthetic materials, such as thermo-responsive gels [13].

A residually-stressed body (made of an amorphous material) can be modeled as a three-
dimensional Riemannian manifold M; the intrinsic property of the material is (local) distances
between neighboring material elements. Thus, the concept of a reference configuration is re-
placed by that of a reference metric g [26]. A configuration of this body is a mapping f : M → R3

from the Riemannian manifold into the ambient three-dimensional Euclidean space. The map-
ping f induces on M a metric g = f �e, where e is the canonical Euclidean metric in Rn. The
local energy density associated with the mapping f is assumed to only depend on the metric
discrepancy between g and g (this metric discrepancy is called a strain in the elastic context).
Note that there exist also geometric treatments of residually-stressed materials in which extra-
structure, in addition to the metric, is assumed; in this context see the work of Yavari and Goriely
on geometric approaches to defects in solids [27–29].
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If M is simply-connected and the reference metric g is flat, namely, has a vanishing curvature
tensor, then there exists an isometric immersion f of (M,g) into (Rn, e), in which case g = g,
hence f is a stress-free equilibrium configuration. If g is not flat, there does not exist a configu-
ration for which g = g, and the energy minimizing configuration will necessarily carry non-zero
elastic energy, i.e., it will be residually-stressed. In the elastic context, the metric g is said to be
incompatible, and the elastic model is known as incompatible elasticity.

Organisms such as plant organs, and the thermo-responsive gels studied in [13] are surface-
like residually stressed materials. The interest in such systems has naturally lead to the de-
velopment of dimensionally-reduced models in incompatible materials. A reduced theory of
non-Euclidean plates was developed in [7] based on a non-rigorous ansatz, followed in [9] by
a reduced theory of non-Euclidean shells (we will elaborate on the distinction between the two
cases in Section 8). Lewicka and Pakzad [17] rigorously derived the limit of non-Euclidean plates
using a Γ -convergence approach, thus generalizing the result of Friesecke et al. [10] (the latter
being a particular case for a flat g).

In this paper we present an analysis that generalizes in one fell swoop the derivation of (Eu-
clidean) plate [10], shell [11], and rod [20] theories, and (non-Euclidean) plate theory [17], and
also provides, as particular cases, a rigorous derivation of non-Euclidean shell and rod theories,
for which no current analyses exist. Specifically, we consider a family of elastic problems in
which the domains Ωh ⊂ M are a one-parameter family of n-dimensional Riemannian mani-
folds that are shrinking into an (n− k)-dimensional submanifold S as the thickness parameter h
tends to zero. For each such domain we consider immersions into an n-dimensional Euclidean
space (in the physical context n = 3 and k = 1,2) and associate with each such immersion an
energy Eh :W 1,2(Ωh;Rn)→ R. Under suitable assumptions, we prove that any family of (possi-
bly approximate) minimizers fh ∈W 1,2(Ωh;Rn) of Eh converges in a sense we define (modulo
subsequences) as h→ 0 to a mapping f ∈W 2,2(S;Rn), which minimizes a limiting energy func-
tional Elim :W 2,2(S;Rn)→ R. Thus, the elastic problem associated with the immersion of the
(n− k)-dimensional manifold S into Rn is the dimensionally-reduced model in the h→ 0 limit.

As stated above, this general result embodies the existing theories for plates, shells, and rods,
the distinction between the first two cases being solely a property of the reference metric g,
whereas the distinction between plates/shells and rods is the codimension k. Indeed, an approach
based on a reference metric rather than a reference configuration makes the distinction between
plates and shells almost unnoticed. Moreover, under this viewpoint, there is nothing special about
non-Euclidean plates, shells, or rods, except for the fact that the limiting energy functional Elim
may not assume a state of zero energy. The remarkable fact is that the formulation of the problem
within the framework of Riemannian geometry leads to a limiting model that has the exact same
form in all instances.

While our result is very general in that it covers a variety of limits of elastic problems that were
previously treated separately, we have deliberately restricted our attention to a specific energy
density, which can be considered as a generalization of Hooke’s law for isotropic materials, and
to slender bodies with a symmetric cross section. An extension of the present analysis to remove
these restrictions seems to be straightforward.

2. Problem statement and main result

Let M be an n-dimensional smooth oriented manifold; let S ⊂ M be anm-dimensional smooth
oriented submanifold; let k denote the codimension of S so that m + k = n. We endow M

with a smooth Riemannian metric g. The submanifold (S,g|S) is bounded, either closed, or



Author's personal copy

2992 R. Kupferman, J.P. Solomon / Journal of Functional Analysis 266 (2014) 2989–3039

having a Lipschitz continuous boundary. In either case, the Riemann curvature tensor is uni-
formly bounded in M. In the context of incompatible elasticity, the manifold (M,g) models an
elastic body with internal distances prescribed by the reference metric g.

Let h ∈ (0, h0) be a continuous parameter, and let

Ωh = {
p ∈ M: dist(p,S) < h

} ⊂ M

be a family of tubular neighborhoods of S that inherit the reference metric g. The boundedness
of the curvature implies that for small enough h, the exponential map,

exp : {(p, ξ) ∈ NS: |ξ | � h
} →Ωh

is a diffeomorphism, where NS = TM|⊥S is the orthogonal complement of TM|‖S ∼= T S in TM|S.
Thus, we identify

TM|S ∼= T S ⊕ NS.

As standard, we denote by π : NS → S the projection from the vector bundle NS, or its re-
striction to Ωh, onto its base. Let E → S and F → NS be vector bundles, and let Φ : π∗E → F .
Let ξ ∈ NS and let η ∈Eπ(ξ). The fiber (π∗E)ξ is canonically identified with the fiber Eπ(ξ). So,
we can unambiguously apply Φ at ξ to η. Denote the result by Φξ(η).

We next introduce some definitions and notations. We define the projection operators,

P ‖ : TM|S → T S and P⊥ : TM|S → NS,

and the corresponding inclusions

ι‖ : T S ↪→ TM|S and ι⊥ : NS ↪→ TM|S.
Let ∇ be the Levi-Civita connection on TM|S. Then, the induced connections on T S and NS are

∇‖ = P ‖ ◦ ∇ ◦ ι‖ and ∇⊥ = P⊥ ◦ ∇ ◦ ι⊥.
When it does not cause confusion, we use ∇ without any decorations to denote the induced
connections as well.

Let ι : π∗NS ↪→ TNS denote the canonical identification of the vector bundle NS with its
own vertical tangent space. Specifically, for ξ ∈ NS and η ∈ (π∗NS)ξ , there is a canonical iden-
tification of η with an element of (NS)π(ξ). We then define a curve γ : I → NS,

γ (t)= ξ + ηt,

and identify ιξ (η)= γ̇ (0).
As stated above, we identify Ωh with a subset of NS. Consider now the tangent space TNS.

Define the isomorphism

Π : π∗T S ⊕ π∗NS → TNS,

as follows. Let ζ denote the zero section of NS. Define Π to be the unique map such that
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Π |S = dζ ⊕ ι|S,

and for each ξ ∈ NS we have

∇ιξ (ξ)Π = 0.

That is, Π is given by radial parallel transport along the fibers of NS.
A notable property of Π is that it preserves the metric, namely

g(Πξu,Πξv)= g(u, v), ∀ξ ∈ NS, u, v ∈ Tπ(ξ)M.

For every h ∈ (0, h0) we consider mappings fh ∈ W 1,2(Ωh;Rn), and assign to every such
mapping an energy Eh[fh]. In (hyper-)elasticity the energy Eh is assumed to be a volume integral
of a non-negative energy density Wh [22]. In the absence of external constraints and forces, Wh

only depends on the local value of the derivative of the mapping dfh, and only vanishes if fh is
a local orientation-preserving isometry, namely, if dfh ∈ SO(n), where

SO(n)= {
q : TΩh → Rn: q∗e = g, q is orientation-preserving

}
.

The mappings fh ∈W 1,2(Ωh;Rn) are only of interest modulo rigid transformations, hence we
may assume (for the sake of a later compactness argument) that∫

Ωh

fh d volg = 0. (2.1)

In the present work we consider a specific energy functional that postulates that the material
is isotropic and that the energy density scales quadratically with the distance of dfh from SO(n).
Such an energy density can be viewed as a continuum variant of Hooke’s law for linear springs
(i.e., the energy density is quadratic in the local strain). Specifically, we define

Eh[fh] = 1

h2
−
∫
Ωh

dist2
(
dfh,SO(n)

)
d volg, (2.2)

where −
∫

denotes integration divided by the volume of the domain, and the additional 1/h2 pref-
actor is discussed next.

For every fixed h ∈ (0, h0) the energy functional (2.2) defines an elastic problem: find the
mapping fh ∈W 1,2(Ωh;Rn) that minimizes Eh. It is not known a priori that such minimizers
do exist, but one can always consider a family fh of approximate minimizers, defined by the
condition

lim
h→0

(
Eh[fh] − E∗

h

) = 0,

where

E∗
h = inf

{
Eh[f ]: f ∈W 1,2(Ωh;Rn

)}
.
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As h→ 0 the family of n-dimensional domains Ωh shrinks to the m-dimensional subman-
ifold S, and hence the volume integral of the energy density in the (exact or approximate)
equilibrium configuration is expected to tend to zero. Since we are interested in the h→ 0 limit
of this family of elastic problems, we have first rescaled the energy by dividing it by the volume
of the domain. Furthermore, motivated by the physical setting in which S is an either a one-
or two-dimensional submanifold of a three-dimensional manifold, one can expect Ωh to be “al-
most” W 1,2-isometrically immersible in Rn, in the sense that even the energy per unit volume
tends to zero as h→ 0. This amounts to the submanifold (S;g|S) being isometrically immersible
in Rn more regularly than W 1,2. As will be shown, if (S;g|S) is W 2,2-isometrically immersible
into Rn, then the energy per unit volume isO(h2) as h→ 0, which is why we divided the energy
per unit volume in (2.2) by the additional 1/h2 factor.

Our assumptions about the immersibility of (S,g|S) in Rn are encapsulated in the so-called
finite bending assumption:

There exists a sequence of mappings fh ∈W 1,2(Ωh;Rn) such that

Eh[fh] =O(1). (2.3)

We now state our main results: Let

X = {(
F,q⊥)

: F ∈W 2,2(S;Rn
)
, q⊥ ∈W 1,2(S;NS∗ ⊗ Rn

)}
.

We say that a sequence of maps fh :Ωh → Rn reduced-converges to an element (F,q⊥) ∈ X if

lim
h→0

−
∫
Ωh

|fh − F ◦ π |2 d volg = 0, (2.4)

and

lim
h→0

−
∫
Ωh

∣∣dfh ◦Π − π∗(dF ⊕ q⊥)∣∣2
d volg = 0. (2.5)

For the physically-oriented reader, condition (2.4) states that the conformations fh of the shrink-
ing domains Ωh converge in the mean-square to a conformation F of the submanifold S. Con-
dition (2.5) states that the tangential component of dfh consistently converges to the derivative
of F , whereas the normal component of dfh converges to a limit q⊥.

Here and throughout this paper, we denote by π∗dF the section of π∗T ∗S ⊗ Rn obtained
by pulling-back dF considered as a section of T ∗S ⊗ Rn. This should not be confused with the
closely related pull-back of dF considered as a 1-form on S involving composition with dπ ,
which we denote by

π�dF = π∗dF ◦ dπ = dπ∗ ◦ π∗dF.

The first step in our analysis is to show that any family of (possibly approximate) minimizers
fh of Eh reduced-converges, modulo subsequences, to an element (F,q⊥) of the space X .
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We introduce a functional Elim : X → R ∪ {∞}, defined as follows. For (F,q⊥) ∈ X , define
q ∈W 1,2(S, T ∗M|S ⊗ Rn) by

q = dF ⊕ q⊥,

and let P ‖
q ∈ Γ (S;Rn ⊗ T S) and P⊥

q ∈ Γ (S;Rn ⊗ NS) be defined by

P
‖
q = P ‖ ◦ q−1 and P⊥

q = P⊥ ◦ q−1.

Define

Elim
[
F,q⊥] =

{
κ
2 −
∫

S(2|P ‖
q ◦ ∇q⊥ − II |2 + |P⊥

q ◦ ∇q⊥|2) d volg|S q ∈ SO(n) a.e.,

∞ otherwise,
(2.6)

where g|S is the induced metric on S and κ is the volume of the k − 1 dimensional unit sphere
divided by k + 2.

We prove the following:

1. The lower-semicontinuity property,

lim inf
h→0

Eh[fh] � Elim
[
F,q⊥]

.

2. For every (Φ,p) ∈ X there exists a family of mappings φh ∈ W 1,2(Ωh;Rn) (a so-called
recovery sequence), such that φh reduced-converges to (Φ,p) and

lim
h→0

Eh[φh] = Elim[Φ,p].

It is easy then to show (see e.g., dal Maso [5] on Γ -convergence) that the (possibly partial)
limit (F,q⊥) of the sequence fh of (possibly approximate) minimizers is a (true!) minimizer of
the limiting functional Elim, and moreover that

Elim
[
F,q⊥] = lim

h→0
Eh[fh].

The practical implication of this result is the following: whenever faced with the need to find
a minimizer fh :Ωh → Rn of Eh for sufficiently small h, one can rather look for a minimizer
(F,q⊥) of Elim, which approximates fh in the sense of (2.4) and (2.5). In most cases, the latter
task turns out to be easier.

3. Preliminaries

In this section, we collect a number of definitions, facts, and basic lemmas used throughout
the paper.
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3.1. Integration

Let M be a manifold with boundary and let N be a manifold without boundary. Let f :
M → N be smooth. Let E → N be a vector bundle. Denote by Al(N,E) differential forms of
degree l on N with coefficients in E. Denote by f � : A∗(N,E)→ A∗(M,f ∗E) the pull-back
of differential forms by f . If f and f |∂M are proper submersions of relative dimensions k and
k − 1 respectively, denote by f� : A∗(M,f ∗E) → A∗(N,E)[−k] the push-forward operator
or integration over the fiber of f . See Bott and Tu [4] for a discussion of integration over the
fiber in the case when M is the total space of a vector bundle, which is what we will use. The
push-forward operator f� satisfies the following properties:

1. Let N be the point so that E,f ∗E, are trivial bundles. If α ∈Al(M,f ∗E), then

f�α =
{∫

M
α l = dimM,

0 otherwise.

2. If β ∈A∗(M,f ∗E) and α ∈A∗(N,E), then

f�
(
f �α ∧ β) = α ∧ f�β. (3.1)

This is a generalization of the linearity of integration to the fibered context.
3. Let

P
g

h

M

f

Q
k

N

be a commutative diagram of smooth maps, where f is a proper submersion, P is the fiber
product M ×N Q, and g,h are the canonical projections. Then, h is a proper submersion,
and if α ∈A∗(M,f ∗E), then

h�g
�α = k�f�α.

This is a generalization of the classical change of variables formula.

It is easy to see that properties (1)–(3) uniquely characterize f�. Moreover,

4. Let

P
g−→M

f−→N,

where g and f are proper submersions. Then

f� ◦ g� = (f ◦ g)�. (3.2)

This is a generalization of Fubini’s theorem.
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5. Let ∇ denote a connection on E as well as the associated pull-back connection on f ∗E. Let
ω ∈Al(M,f ∗E). The following generalization of Stokes theorem holds:

∇(f�ω)= f�(∇ω)+ (−1)l+k(f |∂M)�(ω).

The following special cases will be particularly useful. It follows from (3.1) that if α = F is a
zero-form on S and β = d volg, then

π�(F ◦ π d volg)= Fπ�d volg . (3.3)

It follows from (3.2) and item 1 above that if

Ωh
π−→ S

ψ−→ point,

then for every differential form β on NS,∫
S

π�(β)=
∫
Ωh

β, (3.4)

3.2. The tangent bundle of a tubular neighborhood

In Section 2, we defined an isomorphism Π : π∗T S ⊕ π∗NS → TNS using the connection
on M and the identification of an open subset of NS with a tubular neighborhood of S in M by
the exponential map. In the present section, we will construct another isomorphism

σ ⊕ ι : π∗T S ⊕ π∗NS → TNS

using only the induced connection on NS. Lemma 3.1 below estimates the discrepancy between
σ ⊕ ι and Π . Thus, we may take advantage of the linearity of σ ⊕ ι to expedite calculations.

Let ι : π∗NS ↪→ TNS denote the canonical identification of the vector bundle NS with its
own vertical tangent space, as explained in Section 2. The differential dπ : TNS → π∗T S is
also defined canonically. Clearly,

dπ ◦ ι= 0, (3.5)

which implies that

π∗NS
ι
↪→ TNS

dπ−→ π∗T S

is a short exact sequence.
To fully determine an isomorphism TNS ∼= π∗T S ⊕ π∗NS we need a map

σ : π∗T S → TNS,

such that

dπ ◦ σ = Id. (3.6)
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Here, we use the induced connection on NS. Define σ to be the unique map such that for any
curve α : I → S and any parallel normal field ξ : I → NS along α, we have

σξ (α̇)= ξ̇ .

Thus, we have constructed an isomorphism,

σ ⊕ ι : π∗T S ⊕ π∗NS → TNS.

Let λ denote the tautological section of π∗NS. That is, for ξ ∈ NS,

λξ = ξ ∈ (
π∗NS

)
ξ
.

Let II : NS ⊗ T S → T S denote the second fundamental form. Then:

Lemma 3.1. We have

σ ⊕ ι−Π = σ ◦ π∗ II◦(
λ⊗ π∗P ‖) +O

(
λ⊗2).

Proof. We start by writing

σ ⊕ ι−Π = (
σ −Π ◦ π∗ι‖

) ⊕ (
ι−Π ◦ π∗ι⊥

)
.

First, we show that for ξ ∈ NS ∣∣(ι−Π ◦ π∗ι⊥
)
ξ

∣∣ =O
(|ξ |2). (3.7)

Indeed, let p ∈ S and ζ, η ∈ NSp be arbitrary. Consider the sections ι(ζ ), ι(η) of π∗NS|π−1(p).
Thinking of p as a point in NS, we claim that

∇ι(ζ )ι(η)|p = 0. (3.8)

In fact, by symmetry of the connection,

∇ι(ζ )ι(η)|p = D

dt

(
d

ds
(tζ + sη)

∣∣∣∣
s=0

)∣∣∣∣
t=0

= D

ds

(
d

dt
(tζ + sη)

∣∣∣∣
t=0

)∣∣∣∣
s=0

= ∇ι(η)ι(ζ )|p. (3.9)

Since the identification between Ωh and a neighborhood of S ⊂ NS is via the exponential map,
we have

∇ι(ζ )ι(ζ )|p = 0 (3.10)

for arbitrary ζ . Eq. (3.8) follows by the polarization identity from Eqs. (3.9) and (3.10).
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An immediate consequence of (3.8) is that∣∣(∇ι(ζ )ι(η))sξ ∣∣ =O
(|sξ |).

So, by definition of Π , ∣∣∇ι(ξ)(ι−Π ◦ ι⊥)
sξ

∣∣ =O
(|sξ |).

Since

Π ◦ ι⊥|S = ι|S,

Eq. (3.7) follows by integrating radially.
It remains to show that

σ −Π ◦ π∗ι‖ = σ ◦ π∗ II◦(
λ⊗ π∗P ‖) +O

(
λ⊗2). (3.11)

Let p ∈ S, let η ∈ TpS and ξ ∈ NSp . Let α : I → S with α̇(0)= η. Let β be a parallel normal field
along α with β(0) = ξ . For s ∈ R, sβ is also a parallel normal field along α. So, by definition
of σ ,

σsξ (η)= d

dt
sβ

∣∣∣∣
t=0
.

Applying the covariant derivative ∇ to both sides, we calculate how σ varies radially along ξ :

D

ds
σsξ (η)

∣∣∣∣
s=0

= D

ds

(
d

dt
(sβ)

∣∣∣∣
t=0

)∣∣∣∣
s=0

= D

dt

(
d

ds
(sβ)

∣∣∣∣
s=0

)∣∣∣∣
t=0

= D

dt
ι⊥(β)

∣∣∣∣
t=0

= ι‖ ◦ II(ξ, η), (3.12)

where the last equality follows from the definition of the second fundamental form. On the other
hand, by Leibniz’s product rule,

D

ds
σsξ

(
II(sξ, η)

)∣∣∣∣
s=0

= ι‖ ◦ II(ξ, η). (3.13)

Combining Eqs. (3.12) and (3.13) we obtain

D

ds
σsξ (η)

∣∣∣∣
s=0

= D

ds
σsξ

(
II(sξ, η)

)∣∣∣∣
s=0
.
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So, considering p as a point of NS, by definition of Π ,

∇ιp(ξ)
(
σ −Π ◦ π∗ι‖ − σ ◦ π∗ II◦(

λ⊗ π∗P ‖)) = 0.

Since (
σ −Π ◦ π∗ι‖

)∣∣
S

= 0 = σ ◦ π∗ II◦(
λ⊗ π∗P ‖)∣∣

S
,

Eq. (3.11) follows by integrating radially. �
3.3. The metric on a tubular neighborhood

Corollary 3.1.

g ◦ (σ ⊕ ι)⊗2 − π∗g =O(λ).

Proof. Since parallel transport preserves g, we have

g ◦Π⊗2 = π∗g.

So, the corollary follows from Lemma 3.1. �
Let g̃ denote the unique metric on the total space of NS such that σ ⊕ ι is an isometry. It’s

easy to see that g̃|S = g|S. The following Corollary follows immediately from the previous.

Corollary 3.2.

g̃ − g =O(λ).

In the rest of this paper we will write g instead of π∗g when it does not cause confusion.

3.4. The volume form on a tubular neighborhood

LetE,F →M , be vector bundles and let h :E → F be a morphism of vector bundles. Denote
by Λah :ΛaE →ΛaF the associated vector bundle morphism between the ath exterior powers
of E and F .

Taking the determinant of Π , we have an isomorphism(
ΛnΠ

)−1∗ :Λmπ∗T ∗S ⊗Λkπ∗NS∗ →ΛnT ∗NS.

Write

ρ = (σ ⊕ ι)−1∗ ◦ (
π∗P ‖)∗ : π∗T ∗S → T ∗NS,

θ = (σ ⊕ ι)−1∗ ◦ (
π∗P⊥)∗ : π∗NS∗ → T ∗NS.

Note that

σ ∗ ◦ ρ = Id, ι∗ ◦ θ = Id, σ ∗ ◦ θ = 0, ι∗ ◦ ρ = 0. (3.14)
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Moreover, Eqs. (3.14) uniquely characterize ρ and θ . Taking exterior powers, we have

Λiρ :Λiπ∗T ∗S →ΛiT ∗NS, Λj θ :Λjπ∗NS∗ →ΛjT ∗NS.

Moreover, ⊕
i+j=l

Λiρ ∧Λjθ =Λl(σ ⊕ ι)−1∗ :
⊕
i+j=l

Λiπ∗T ∗S ⊗Λjπ∗NS∗

�Λlπ∗(T ∗S ⊕ NS∗) →ΛlT ∗NS. (3.15)

Let η̃ be the unit norm section of ΛmT ∗S belonging to the orientation class, i.e. η̃= d volg|S .
Let ω̃ be the unit norm section of ΛkNS∗ belonging to the orientation class determined by the
orientations of M and S. Define

η=Λmρ ◦ π∗η̃, ω=Λkθ ◦ π∗ω̃.

In particular, η ∈Am(NS) and ω ∈Ak(NS). It is immediate from the definition that

η ∧ω= d volg̃ . (3.16)

Corollary 3.3.

η ∧ω− d volg =O(λ).

Proof. The corollary is an immediate consequence of Eq. (3.16) and Corollary 3.1. �
Lemma 3.2. Let α ∈Al(S). Then

π�α =Λlρ ◦ π∗α.

Proof. By Eqs. (3.5) and (3.6), we have

ρ = dπ∗.

So, the lemma follows from the definition of π�. �
Lemma 3.3.

η= π�d volg|S .

Proof. Combine Lemma 3.2 for l =m with the fact that

Λmρ ◦ π∗d volg|S =Λmρ ◦ π∗η̃= η. �
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Lemma 3.4. We have

π�d volg
|Ωh| − d volg|S

|S| =O(h), |S|νkhk − |Ωh| =O
(
h1+k), (3.17)

where νk is the volume of the k-dimensional unit ball.

Proof. By Corollary 3.3 and Lemma 3.3, we have

π�(ω)d volg|S −π�d volg = π�
(
π�d volg|S ∧ω) − π�d volg =O

(
h1+k).

Note that π�(ω) is the constant νkhk . Integrating over S, we have

|S|νkhk − |Ωh| =O
(
h1+k).

The lemma follows. �
Lemma 3.5. We have ω|∂Ωh = 0.

Proof. Let ShNS ⊂ NS denote the radius h sphere bundle inside of NS. Since we have identified
Ωh with a subset of NS via the exponential map, it follows that ∂Ωh = ShNS. Let λ⊥ ⊂ π∗NS

denote the rank k−1 subbundle that is the orthogonal complement of λ in NS. By definition of ι,

ι|λ⊥|ShNS
: λ⊥|ShNS → T ∂Ωh.

Moreover, since the connection ∇ used to define σ is metric,

σ |π∗TS|ShNS
: π∗T S|ShNS → T ∂Ωh.

Counting dimensions, we conclude that

ι|λ⊥|ShNS
⊕ σ |π∗TS|ShNS

: λ⊥|ShNS ⊕ π∗T S|ShNS → T ∂Ωh

is an isomorphism. So, it suffices to show that

Λk(ι|λ⊥|ShNS
⊕ σ |π∗TS|ShNS

)∗ω= 0.

Indeed, by the definition of ω and the third of Eqs. (3.14),

Λk(ι|λ⊥|ShNS
⊕ σ |π∗TS|ShNS

)∗ω=Λk(ι|λ⊥|ShNS
)∗ ◦Λkθ ◦ π∗ω̃.

But, Λk(ι|λ⊥|ShNS
)∗ = 0 because λ⊥ has rank k− 1. The lemma follows. �



Author's personal copy

R. Kupferman, J.P. Solomon / Journal of Functional Analysis 266 (2014) 2989–3039 3003

3.5. Rescaling a tubular neighborhood

Define μh :Ωh0 →Ωh0h by

μh(ξ)= hξ.

Clearly π ◦μh = π . So, there is a canonical bundle map μ̃h : π∗TM|S → π∗TM|S covering μh.
By abuse of notation, we use μ̃h to denote its own restriction to the summands π∗T S and π∗NS

of π∗TM|S .

Lemma 3.6. We have

dμh ◦ ι= h(ι ◦ μ̃h), (3.18)

dμh ◦ σ = σ ◦ μ̃h. (3.19)

Proof. Let ξ ∈Ωh0 , let ζ ∈ NSπ(ξ) and let χ ∈ Tπ(ξ)S. By definition ιξ (ζ )= γ̇ (0), where γ (t)=
tζ + ξ . So,

dμh ◦ ιξ (ζ )= d

dt
μh ◦ γ (t)

∣∣∣∣
t=0
.

Furthermore,

μh ◦ γ (t)= htζ + hξ.

On the other hand, ιhξ (ζ )= δ̇(0) where δ(t)= tζ + hξ . Eq. (3.18) follows from the fact that

d

dt
μh ◦ γ (t)

∣∣∣∣
t=0

= hδ̇(0).

Similarly, by definition σξ (χ)= ν̇(0), where ν(t) is a parallel normal field along a path α(t) in S

with α̇(0)= χ and ν(0)= ξ . So,

dμh ◦ σξ (χ)= d

dt
μh ◦ ν(t)

∣∣∣∣
t=0
.

Moreover, μh ◦ ν(t)= hν(t). On the other hand, hν(t) is a parallel normal field along α(t) with
hν(0)= hξ . So,

σhξ (χ)= d

dt
hν(t)

∣∣∣∣
t=0
,

and Eq. (3.19) follows. �
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Corollary 3.4. We have

ι∗ ◦ dμ∗
h = h

(
μ̃∗
h ◦ ι∗), σ ∗ ◦ dμ∗

h = μ̃∗
h ◦ σ ∗, (3.20)

dμ∗
h ◦ θ = h

(
θ ◦ μ̃∗

h

)
, dμ∗

h ◦ ρ = ρ ◦ μ̃∗
h. (3.21)

Proof. Eqs. (3.20) are the duals of Eqs. (3.18) and (3.19). Eqs. (3.21) follow from Eqs. (3.20)
and the fact that Eqs. (3.14) characterize ρ and θ . �
Corollary 3.5. We have

μ�hω= hkω, μ�hη= η.

Proof. The corollary follows from the definition of ω and η along with Eqs. (3.21). �
Lemma 3.7. Let f ∈ L1(Ωh0h). Then

−
∫
Ωh0h

f d volg = 1 +O(h)

νkh
k
0|S|

∫
Ωh0

(f ◦μh)η ∧ω.

Proof. Using Corollary 3.3, Lemma 3.4 and Corollary 3.5, we calculate

−
∫
Ωh0h

f d volg = 1 +O(h)

νkh
k
0h
k|S|

∫
Ωh0h

f η ∧ω

= 1 +O(h)

νkh
k
0h
k|S|

∫
Ωh0

(f ◦μh)μ�h(η ∧ω)

= 1 +O(h)

νkh
k
0|S|

∫
Ωh0

(f ◦μh)η ∧ω. �

Let

∗iS :Λiπ∗T ∗S →Λm−iπ∗T ∗S, ∗jN :Λjπ∗NS∗ →Λk−jNS∗,

denote the Hodge star operators induced by the metric g. Let

∗̃l :ΛlT ∗NS →Λn−lT ∗NS

denote the Hodge star operator induced by the metric g̃. Then,

∗̃l =
∑
i+j=l

(
ρ ◦ ∗iS ◦ σ ∗) ⊗ (

θ ◦ ∗jN ◦ ι∗). (3.22)

Denote by μ�h∗̃ the pull-back Hodge star operator, i.e.
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(
μ�h∗̃

)(
μ�hα

) = μ�h(∗̃α).

So, μ�h∗̃ is the Hodge star operator of the metric g̃.

Lemma 3.8.

μ�h∗̃ = ∗̃.

Proof. The lemma follows from Eqs. (3.22), (3.20) and (3.21). �
3.6. Weak convergence on shrinking tubular neighborhoods

Definition 3.1. A sequence of L2 differential forms αh ∈Al
L2(Ωhh0) weakly converges to zero if

for all Φ ∈An−l (Ωh0) we have ∫
Ωh0

(
μ�hg̃

)(
μ�hαh,Φ

)
η ∧ω→ 0

as h→ 0. A sequence of sections ah ∈ L2(Ωhh0 ,π
∗ΛlT ∗M|S) weakly converges to zero if the

corresponding sequence αh =Λl(Π∗)−1 ◦ ah ∈Al
L2(Ωhh0) weakly converges to zero.

Lemma 3.9. A sequence ah ∈L2(Ωhh0 ,π
∗ΛlT ∗M|S) weakly converges to zero if and only if

−
∫
Ωhh0

g(ah,βh) d volg → 0

for all sequences βh of the form

βh = hj−p
(
π∗β ◦ λ⊗p)

where β ∈ L2(S;ΛiT ∗S ⊗ΛjNS∗ ⊗ NS∗⊗p) with i + j = n− l and p is arbitrary.

Proof. Let

β̃h = (
Λiρ ⊗Λjθ

) ◦ βh.

In particular, β̃h is a family of (n − l)-forms on Ωh0h. It is clear from the definition of λ that
λ ◦μh = hλ. So, by Eqs. (3.21) we have

μ∗
hβ̃h = (

Λiρ ⊗Λjθ
)
π∗β ◦ λ⊗p.

The right hand side of the preceding equation is clearly independent of h. So, we write

Φβ = μ�hβ̃h.
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Let αh =Λl(Π∗)−1 ◦ah. By Lemma 3.1, Corollary 3.1, Eq. (3.15), Corollary 3.2 and Lemma 3.7,

−
∫
Ωhh0

g(ah,βh) d volg = −
∫
Ωhh0

g
(
Λl(σ ⊕ ι)∗ ◦ αh,βh

)
d volg +O(h)

= −
∫
Ωhh0

g
(
αh,

(
Λiρ ⊗Λjθ

) ◦ βh
)
d volg +O(h)

= (
1 +O(h)

) −
∫
Ωhh0

g̃(αh, β̃h) d volg +O(h)

= 1 +O(h)

νkh
k
0|S|

∫
Ωh0

(
μ�hg̃

)(
μ�hαh,Φβ

)
η ∧ω+O(h).

Observe that Φβ is an arbitrary L2 form on Ωh0 that is polynomial along the fibers of π . The
lemma follows since polynomials are dense in L2. �
4. Rigidity

The compactness property, whereby any sequence of approximate minimizers of Eh reduced-
converges, is based on a rigidity theorem that can be viewed as a quantitative version of Liou-
ville’s theorem. A rigidity theorem for mappings Rn → Rn was proved by Friesecke et al. [10],
paving the way to their derivation of plates, shell, and rod theories. In this section, we present
a generalization of the rigidity theorem of [10] that applies to our Riemannian setting. Like
Lewicka and Pakzad in [17], we base our proof on the theorem in Euclidean space. The notable
difference between our formulation of the rigidity theorem and the ones in [10] and [17] is that
in the Riemannian setting one has to adapt the notion of a spatially constant matrix. Another dif-
ference between the approach here and the above mentioned references is the use of a smoothing
convolution operator rather than a partition of unity.

We introduce some more notations. Consider the commutative diagram in Fig. 1. Recall that
π : NS → S denotes the canonical projection. Moreover, let � : T S → S denote the canonical
projection, and let e : T S → S denote the exponential map. The other maps in the diagram are
canonical projections of fiber products.

Below, we will use repeatedly the following identities that follow from the commutativity of
the diagram, and the properties of the push-forward operators:∫

S

e� =
∫
S

��, (4.1a)

π̃�̃e
∗ = e∗π�, (4.1b)

�̃�π̂�e
∗ = e∗��π̃�, (4.1c)

e ∗π̃∗ = π̂∗ ê ∗, (4.1d)

e∗�� = �̃�̂e
∗, (4.1e)
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e∗NS

T S

S

S

NSê ∗e∗NS

e∗T S

T S

ST S

�∗T S

�

e

π

ẽ

π̃

e

ê

e

π̂

�̃

�

�

β

α

Fig. 1. Commutative diagram used to infer Eqs. (4.1a)–(4.1g).

β∗� ∗ = α∗� ∗, (4.1f)

β�α
∗ =� ∗��. (4.1g)

For every h ∈ (0, h0) we define the indicator function Jh : T S → R:

Jh(p,η)= 1|η|<h.

We then define a family of non-negative test functionsKh : T S → R whose support is compactly
embedded in the support of the Jh and satisfying

��

(
Kh π̃�̃e

∗d volg
) =��

(
Kh e∗π�d volg

) = 1, (4.2)

where the first equality follows from (4.1b). We further choose Kh such that

C1h
nKh � Jh � C2h

nK2n, (4.3)

and

Chn+1|dKh| � Jh. (4.4)

Next, we introduce the function Φ : T S → T S defined by

e ◦ Φ =� and � ◦Φ = e.

Clearly, Φ is a diffeomorphism, and

Φ ◦Φ = Id, (4.5a)

Jh ◦Φ = Jh. (4.5b)
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Changing variables, we may also express the normalization of Kh as follows:

e�
(
(Kh ◦Φ)� ∗π�d volg

) = 1. (4.6)

We then define the mapping Ξ : e∗T S →� ∗T S:

Ξ(p,η, ζ )= (p,η, τ ),

where τ ∈ TpS is the unique vector satisfying:

expp(τ)= expexpp(η)
(ζ ).

We note that

β ◦Ξ = �̃ , (4.7a)

e ◦ α ◦Ξ = e ◦ ê, (4.7b)

�̃�Ξ
∗ = β�, (4.7c)

� ∗�� = β�α
∗, (4.7d)

that is, the following diagram commutes:

T S

� ∗T S T S

e∗T S T S S

β

α

Ξ

�̃

ê e

e

We augment this diagram by adding the maps Ξ̃ , α̃ and π as follows:

T S

� ∗T S T S

e∗T S T S S

α∗e∗NS e∗NS

ê ∗e∗NS e∗NS NS

β

α

Ξ

�̃

ê e

e

π π̃

α̃
π̂ π̃ π

e ẽΞ̃

ẽ

hence
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π ◦ Ξ̃ =Ξ ◦ π̂ , (4.8a)

ẽ ◦ α̃ ◦ Ξ̃ = ẽ ◦ e, (4.8b)

π̂�Ξ̃
∗α̃∗ = Ξ̃∗α∗π̃�. (4.8c)

Let Ψ :� ∗TM|S → e∗TM|S be the isomorphism given by parallel transport along geodesic
rays; we can view Ψ(p,η) as a mapping from TpM|S to Texpp(η)M|S.

Lemma 4.1.

Ξ∗α∗Ψ − ê ∗Ψ ◦ �̃ ∗Ψ =O
(
h2). (4.9)

Proof. Holonomy around a loop is the integral of curvature over a spanning surface. �
We these preliminaries, we state a local rigidity theorem:

Theorem 4.1. There exists a constant C > 0 such that for every h ∈ (0, h0) and every fh ∈
W 1,2(Ωh;Rn) there exists a section ph ∈L2(S;T ∗M|S ⊗ Rn), such that

��

[
Jh π̃�

(∣∣̃e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph
∣∣2ẽ ∗d volg

)]
� C

{
��

[
Jhπ̃�̃e

∗(dist2
(
dfh,SO(n)

)
d volg

)] + h2��

(
Jh π̃�̃e

∗d volg
)}
.

Proof. Fix p ∈ S. Let BhTpS ⊂ TpS denote the ball of radius h, and let

Up,h = {
ξ ∈ e∗NS

∣∣
BhTpS

: |ξ | � h
}
.

For sufficiently small h, we identify Up,h with the open subset of Euclidean space

Vh =
{
(x1, . . . , xn) ∈ Rn

∣∣∣ m∑
i=1

x2
i � h2,

k∑
j=1

x2
j+m � h2

}

as follows. Let ηi be a basis of TpS and let ξj be a frame of e∗NS|BhTpS such that ∇ξj vanishes
at 0 ∈ TpS for all j . The map up,h : Vh →Up,h given by

up,h(x)=
k∑
j=1

xj+mξj
(

m∑
i=1

xiη
i

)

is a diffeomorphism and, therefore, defines coordinates on Up,h. We claim that with respect to
the coordinates xi , the metric has the form

gij = δij +O
(
h2). (4.10)

We return to the proof of (4.10) below. Using this system of coordinates, we view maps
Up,h → Rn as maps Rn → Rn. By the rigidity theorem proved in [10], there exists a constant
C > 0 such that for every f ∈W 1,2(Up,h;Rn) there exists an n× n matrix Q ∈ SO(n), such that
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−
∫
Up,h

|∇f −Q|2 dx � C −
∫
Up,h

dist2
(∇f,SO(n)

)
dx,

where all inner products here are Euclidean. The theorem follows by using the fact that the
Euclidean metric differs from the Riemannian metric by an O(h2) term.

It remains to prove (4.10). For the rest of this proof, exp denotes the exponential map of M

while e denotes the exponential map of S. Let fp,h :Up,h →Ωh be given by

fp,h(ξ)= expep(π̃(ξ))(ξ).

The metric on Up,h relevant to formula (4.10) is f ∗
p,hg. Let ξ,χ be sections of e∗NS with

∇ξ = ∇χ = 0 (4.11)

at 0 ∈ TpS. Let η, ν ∈ TpS, and let

g(s, t)= fp,h
([
t (ξ + sχ)

]
t (η+sν)

)
.

Denote by Q the vector field along g(0, t) given by

Q(t)= ∂g

∂s
(0, t).

To prove (4.10), it suffices to show that∣∣Q(t)∣∣2 = t2
(∣∣χ(0)∣∣2 + |ν|2) +O

(
t4

)
.

Indeed, it is easy to see that Q(0)= 0. We denote the covariant derivatives of Q by Q′,Q′′, etc.
Using the symmetry of the connection,

Q′(0)= D

∂t

∂g

∂s

∣∣∣∣
s=0

∣∣∣∣
t=0

= D

∂s

∂g

∂t

∣∣∣∣
t=0

∣∣∣∣
s=0

= ∂

∂s

(
ξ(0)+ sχ(0)+ η+ sν

)∣∣∣∣
s=0

= χ(0)+ ν.

Let R denote the curvature of g. Using the symmetry of the connection and assumption (4.11),

Q′′(t)= D

∂t

D

∂s

∂g

∂t

∣∣∣∣
s=0

∣∣∣∣
t=0

=R

(
∂g

∂t
(0,0),Q(0)

)
∂g

∂t
(0,0)+ D

∂s

D

∂t

∂g

∂t

∣∣∣∣
t=0

∣∣∣∣
s=0

= 0 + D

∂s
∇η+sν(ξ + sχ)

∣∣∣∣
s=0

= 0.

So,
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〈Q,Q〉′(0)= 2
〈
Q′,Q

〉
(0)= 0,

〈Q,Q〉′′(0)= 2
〈
Q′,Q′〉(0)+ 2

〈
Q′′,Q

〉
(0)= 2

∣∣χ(0)+ ν
∣∣2
,

〈Q,Q〉′′′(0)= 6
〈
Q′,Q′′〉(0)+ 2

〈
Q′′′,Q

〉
(0)= 0,

and (4.10) follows. �
This local rigidity theorem is the basis for proving the following “global” rigidity theorem:

Theorem 4.2. There exists a constant C > 0 such that for every h ∈ (0, h0) and every fh ∈
W 1,2(Ωh;Rn) there exists a section qh ∈W 1,2(S;T ∗M|S ⊗ Rn), such that

−
∫
Ωh

∣∣dfh ◦Π − π∗qh
∣∣2
d volg � Ch2{Eh[fh] + 1

}
(4.12)

and

−
∫
S

|∇qh|2π�d volg
|Ωh|/|S| � C

{
Eh[f ] + 1

}
. (4.13)

Proof. Let ph ∈ L2(S;T ∗M|S ⊗Rn) be a section satisfying the assertion of Theorem 4.1. We de-
fine

qh =��

(
Kh π̃�

(̃
e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ ⊗ ẽ ∗d volg

))
. (4.14)

Consider now the integral

I =
∫
Ωh

∣∣dfh ◦Π − π∗qh
∣∣2
d volg .

Then

I =
∫
S

π�
(∣∣dfh ◦Π − π∗qh

∣∣2
d volg

)
(4.6)=

∫
S

π�
(∣∣dfh ◦Π − π∗qh

∣∣2
d volg

)
e�

(
(Kh ◦Φ)� ∗π�d volg

)
(3.1)=

∫
S

e�
{
(Kh ◦Φ)� ∗π�d volg ∧e∗π�

(∣∣dfh ◦Π − π∗qh
∣∣2
d volg

)}
(4.1a), (4.1b)=

∫
S

��

{
(Kh ◦Φ)� ∗π�d volg ∧π̃�̃e ∗(∣∣dfh ◦Π − π∗qh

∣∣2
d volg

)}
(3.1)=

∫
S

(π�d volg)��

{
(Kh ◦Φ) π̃�

(∣∣̃e ∗dfh ◦ ẽ ∗Π − π̃∗e∗qh
∣∣2

ẽ ∗ d volg
)}
,
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where here and in the remainder of the proof we write above the relation signs the equation
number from which the relation follows.

Using next the fact that parallel transport is norm-preserving, adding and subtracting π̃∗� ∗ph,
and using the Cauchy–Schwarz inequality, we get

I � 2I1 + 2I2,

where

I1 =
∫
S

(π�d volg)��

{
(Kh ◦Φ) π̃�

(∣∣̃e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph
∣∣2

ẽ ∗ d volg
)}
,

I2 =
∫
S

(π�d volg)��

{
(Kh ◦Φ) π̃�

(∣∣π̃∗� ∗ph − π̃∗e∗qh ◦ π̃∗Ψ
∣∣2 ẽ ∗ d volg

)}
.

Consider I1:

I1
(4.3),(4.5b)

� C

hn

∫
S

(π�d volg)��

{
Jh π̃�

(∣∣̃e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph
∣∣2

ẽ ∗d volg
)}

(4.12)
� C

hn

∫
S

(π�d volg)��

{
Jh π̃�

(
dist2

(
dfh,SO(n)

) ◦ ẽ
(̃
e ∗d volg

))}

+ Ch2

hn

∫
S

(π�d volg)��

{
Jh π̃�̃e

∗d volg
}

(4.3)
� C

∫
S

(π�d volg)��

{
K2h π̃�

(
dist2

(
dfh,SO(n)

) ◦ ẽ
(̃
e ∗d volg

))}
+Ch2

∫
S

(π�d volg)��

{
K2h π̃�̃e

∗ d volg
} ≡ I1a + I1b.

We then basically revert the steps we did before:

I1a
(3.1)
� C

∫
S

(π�d volg)��

{
K2h π̃�̃e

∗(dist2
(
dfh,SO(n)

)
d volg

)}
(4.1b)= C

∫
S

(π�d volg)��

{
K2he∗π�

(
dist2

(
dfh,SO(n)

)
d volg

)}
(3.1)= C

∫
S

��

{
K2he∗π�

(
dist2

(
dfh,SO(n)

)
d volg

) ∧� ∗π�d volg
}

(4.1a)= C

∫
S

e�
{
K2he∗π�

(
dist2

(
dfh,SO(n)

)
d volg

) ∧� ∗π�d volg
}
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(3.1)= C

∫
S

π�
(
dist2

(
dfh,SO(n)

)
d volg

)
e�

{
K2h�

∗π�d volg
}

(4.2)
� C

∫
S

π�
(
dist2

(
dfh,SO(n)

)
d volg

) def= Ch2|Ωh|Eh[fh],

and

I1b = Ch2
∫
S

π�d volg ��

{
K2h π̃�̃e

∗d volg
}

(4.1b)= Ch2
∫
S

π�d volg ��

{
K2h e∗π�d volg

}
(4.2)
� Ch2

∫
S

π�d volg = Ch2|Ωh|.

Consider next I2:

I2
(3.1)=

∫
S

(π�d volg)��

{
(Kh ◦Φ) ∣∣� ∗ph − e∗qh ◦Ψ ∣∣2

π̃�̃e
∗d volg

}
. (4.15)

We derive the following identity:

e∗qh ◦Ψ (4.14)= e∗��

{
Kh π̃�

((̃
e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ

)
ẽ ∗d volg

)} ◦Ψ
(3.1)= e∗��π̃�

(
(Kh ◦ π̃ )(̃e∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ

)
ẽ ∗d volg

) ◦Ψ
(4.1c)= �̃�π̂�e

∗((Kh ◦ π̃ )(̃e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ
)

ẽ ∗d volg
) ◦Ψ

= �̃�π̂�
(
(Kh ◦ π̃ ◦ e)

(
e ∗̃e∗dfh ◦ e ∗̃e ∗Π ◦ e∗π̃∗Ψ

)
e∗̃e ∗d volg

) ◦Ψ
(3.1)= �̃�π̂�

(
(Kh ◦ π̃ ◦ e)

(
e ∗̃e ∗dfh ◦ e ∗̃e ∗Π ◦ e∗π̃∗Ψ ◦ π̂∗�̃ ∗Ψ

)
e ∗̃e ∗d volg

)
(4.1d), (4.8b)= �̃�π̂�

(
(Kh ◦ ê ◦ π̂)

× (
Ξ̃∗α̃∗̃e ∗dfh ◦ Ξ̃∗α̃∗̃e ∗Π ◦ π̂ ∗̂e∗Ψ ◦ π̂∗�̃ ∗Ψ

)
Ξ̃∗α̃∗̃e ∗d volg

)
(4.9)= �̃�π̂�

(
(Kh ◦ ê ◦ π̂)

× (
Ξ̃∗α̃∗̃e ∗dfh ◦ Ξ̃∗α̃∗̃e ∗Π ◦ π̂∗Ξ∗α∗Ψ

)
Ξ̃∗α̃∗̃e ∗d volg

) +O
(
h2)

(3.1)= �̃�

{
(Kh ◦ ê)π̂�Ξ̃

∗α̃∗((̃e ∗dfh ◦ ẽ ∗Π
)

ẽ ∗d volg
) ◦Ξ∗α∗Ψ

} +O
(
h2)

(4.8c)= �̃�

{
(Kh ◦ ê)Ξ̃∗α∗π̃�

((̃
e ∗dfh ◦ ẽ ∗Π

)
ẽ ∗d volg

) ◦Ξ∗α∗Ψ
} +O

(
h2)

(3.1)= �̃�

{
(Kh ◦ ê)Ξ∗α∗π̃�

((̃
e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ

)
ẽ ∗d volg

)} +O
(
h2)

= �̃�Ξ
∗{(Kh ◦ ê ◦Ξ−1)α∗π̃�

((̃
e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ

)
ẽ ∗d volg

)} +O
(
h2)

(4.7c)= β�
{(
Kh ◦ ê ◦Ξ−1)α∗π̃�

((̃
e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ

)
ẽ ∗d volg

)} +O
(
h2).
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On the other hand, using the fact that

e∗1 = e∗� ∗(Khπ̃�̃e ∗d volg
)

(4.1b), (4.1e)= �̃�̂e
∗(Khe∗π�d volg

)
= �̃�

(
(Kh ◦ ê)̂e ∗e∗π�d volg

)
(4.7b)= �̃�

(
(Kh ◦ ê)Ξ∗α∗e∗π�d volg

)
(3.1), (4.1b)= �̃�Ξ

∗((Kh ◦ ê ◦Ξ−1)α∗π̃�̃e ∗d volg
)

(4.7c)= β�
((
Kh ◦ ê ◦Ξ−1)α∗π̃�̃e ∗d volg

)
we have

� ∗ph = � ∗ph β�
((
Kh ◦ ê ◦Ξ−1)α∗π̃�̃e ∗d volg

)
(3.1)= β�

((
Kh ◦ ê ◦Ξ−1)(β∗� ∗ph

)
α∗π̃�̃e ∗d volg

)
(4.1f)= β�

((
Kh ◦ ê ◦Ξ−1)(α∗� ∗ph

)
α∗π̃�̃e ∗d volg

)
(4.1f)= β�

((
Kh ◦ ê ◦Ξ−1)α∗π̃�

(
π̃∗� ∗ph ẽ ∗d volg

))
.

Thus,

e∗qh ◦Ψ −� ∗ph
= β�

{(
Kh ◦ ê ◦Ξ−1)α∗π̃�

((̃
e∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph

)
ẽ ∗d volg

)}
+O

(
h2),

and by Jensen’s inequality,∣∣e∗qh ◦Ψ −� ∗ph
∣∣2

� β�
{(
Kh ◦ ê ◦Ξ−1)α∗π̃�

(∣∣̃e∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph
∣∣2

ẽ ∗d volg
)}

(3.1)= β�α
∗{(Kh ◦ ê ◦Ξ−1 ◦ α)

π̃�
(∣∣̃e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph

∣∣2 ẽ ∗d volg
)}

(4.1g)= � ∗��

{(
Kh ◦ ê ◦Ξ−1 ◦ α)

π̃�
(∣∣̃e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph

∣∣2 ẽ ∗d volg
)}
.

We then use the fact that Kh ◦ ê ◦Ξ−1 ◦ α � C/hn J2h and the local rigidity theorem to obtain∣∣e∗qh ◦Ψ −� ∗ph
∣∣2

� C

hn
� ∗��

{
J2hπ̃�

(
dist2

(
dfh,SO(n)

) ◦ ẽ ẽ ∗d volg
)}

+O
(
h2).
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Substituting into (4.15):

I2 � C

hn

∫
S

(π�d volg)��

× {
(Kh ◦Φ)� ∗��

{
J2hπ̃�

(
dist2

(
dfh,SO(n)

) ◦ ẽ ẽ ∗d volg
)}
π̃�̃e

∗d volg
}

(3.1)= C

hn

∫
S

(π�d volg)��

{
J2hπ̃�

(
dist2

(
dfh,SO(n)

) ◦ ẽ ẽ ∗d volg
)}
��

{
(Kh ◦Φ) π̃�̃e ∗d volg

}
= C

hn

∫
S

(π�d volg)��

{
J2hπ̃�

(
dist2

(
dfh,SO(n)

) ◦ ẽ ẽ ∗d volg
)}

= C

∫
S

(π�d volg)��

{
K4hπ̃�

(
dist2

(
dfh,SO(n)

) ◦ ẽ ẽ ∗d volg
)}
,

and the latter is identical to I1a , up to the fact that K2h has been replaced by K4h.
Putting together the estimates for I1a , I1b , and I2 we obtain

I

|Ωh| � Ch2(Eh[fh] + 1
)
,

as required.
It remains to estimate the derivative of qh. Writing

qh =��

{
Kh π̃�

(̃
e ∗(dfh ◦Π) ẽ ∗d volg

) ◦Ψ }
,

we differentiate,

∇qh =��

{
dKh π̃�

(̃
e ∗(dfh ◦Π) ẽ ∗d volg

) ◦Ψ }
+��

{
Kh∇π̃�

(̃
e ∗(dfh ◦Π) ẽ ∗d volg

) ◦Ψ }
+��

{
Kh π̃�

(̃
e ∗(dfh ◦Π) ẽ ∗d volg

) ◦ ∇Ψ }
.

The second term vanishes because π̃�(̃e ∗(dfh ◦Π) ẽ∗d volg) is a top-degree form. The third term
is O(h) because ∇Ψ = 0 at the zero section of T S.

Finally, noting that

0 = d(1)ph =��

{
dKn π̃�

((
π̃∗� ∗ph

)̃
e ∗d volg

)}
,

we get

∇qh =��

{
dKh π̃�

((̃
e ∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph

)
ẽ ∗d volg

)} +O(h).

Using once more Jensen’s inequality, along with the bound (4.4) for |dKh|,

|∇qh|2 � C

hn+2
��

{
Jhπ̃�

(∣∣̃e∗dfh ◦ ẽ ∗Π ◦ π̃∗Ψ − π̃∗� ∗ph
∣∣2 ẽ ∗d volg

)} +O
(
h2).
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Applying the local rigidity theorem and integrating over S we recover, up to a 1/h2 prefactor,
the same bound as above. �

Let fh :Ωh → Rn satisfy the finite bending assumption (2.3), and let qh : TM|S → Rn be a
corresponding family of sections that by Theorem 4.2 satisfies

−
∫
Ωh

∣∣dfh ◦Π − π∗qh
∣∣2
d volg � Ch2{Eh[fh] + 1

} =O
(
h2),

and ∫
S

|∇qh|2 π�d volg
|Ωh| � C

{
Eh[fh] + 1

} =O(1).

By property (3.3) of the push-forward operator π� and the Cauchy–Schwarz inequality,

1

|Ωh|
∫
S

dist2
(
qh,SO(n)

)
π�d volg = −

∫
Ωh

dist2
(
π∗qh,SO(n)

)
d volg

� 2h2 Eh[fh] + 2 −
∫
Ωh

∣∣dfh ◦Π − π∗qh
∣∣2
d volg

=O
(
h2),

from which we deduce that ∫
S

|qh|2 π�d volg
|Ωh| =O(1). (4.16)

5. Compactness

The results of the previous section can be summarized as follows: let fh ∈W 1,2(Ωh;Rn) be
a family of mappings satisfying the finite bending assumption (2.3). Then there exists a family
of sections qh ∈W 1,2(T ∗M|S ⊗ Rn), such that

−
∫
Ωh

∣∣dfh ◦Π − π∗qh
∣∣2
d volg =O

(
h2), (5.1)

∫
S

|qh|2 π�d volg
|Ωh| =O(1), (5.2)

and ∫
S

|∇qh|2 π�d volg
|Ωh| =O(1). (5.3)
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Proposition 5.1. There exists a sequence (not relabeled) qh that weakly converges, as h→ 0, to
a limit q ∈W 1,2(S;T ∗M|S ⊗ Rn), namely,

qh ⇀ q in W 1,2(S;T ∗M|S ⊗ Rn
)
.

In particular, qh → q strongly in L2(S;T ∗M|S ⊗ Rn).

Proof. It follows from Eqs. (5.2), (5.3), and Lemma 3.4, that both qh and its covariant
derivative are bounded in L2(S). Weak convergence follows from the weak-compactness of
W 1,2(S;T ∗M|S ⊗ Rn). The weak convergence of qh to q in W 1,2(S;T ∗M|S ⊗ Rn), the fact
that weak boundedness implies strong boundedness, and the Sobolev embedding theorem imply
that qh strongly converges to q in L2(S;T ∗M|S ⊗ Rn). �

A notational convention: we will henceforth write

q⊥
h = qh ◦ ι⊥ and q⊥ = q ◦ ι⊥.

They belong to W 1,2(S;NS∗ ⊗ Rn). We write

q
‖
h = qh ◦ ι‖ and q‖ = q ◦ ι‖.

They belong to W 1,2(S;T ∗S ⊗ Rn).

Corollary 5.1.

lim
h→0

−
∫
Ωh

∣∣dfh ◦Π − π∗q
∣∣2
d volg = 0. (5.4)

Proof. Proposition 5.1 together with Eq. (5.1) gives the desired result. �
Proposition 5.2. q ∈ SO(n) a.e.

Proof. By the Cauchy–Schwarz inequality and the invariance of SO(n) under parallel transport,

−
∫
Ωh

dist2
(
π∗q,SO(n)

)
d volg � 2h2 Eh[fh] + 2 −

∫
Ωh

∣∣dfh ◦Π − π∗q
∣∣2
d volg .

Both terms on the right hand side tend to zero as h→ 0, hence

lim
h→0

−
∫
Ωh

dist2
(
π∗q,SO(n)

)
d volg = 0.

By the properties (3.3), (3.4) of the push-forward operator π�, and the uniform limit (3.17),



Author's personal copy

3018 R. Kupferman, J.P. Solomon / Journal of Functional Analysis 266 (2014) 2989–3039

0 = lim
h→0

−
∫
Ωh

dist2
(
π∗q,SO(n)

)
d volg

= lim
h→0

1

|Ωh|
∫
S

π�
(
dist2

(
q,SO(n)

) ◦ π d volg
)

=
∫
S

dist2
(
q,SO(n)

)(
lim
h→0

π�d volg
|Ωh|

)

= −
∫
S

dist2
(
q,SO(n)

)
d volg|S ,

which implies that q ∈ SO(n) a.e. �
Corollary 5.2.

−
∫
Ωh

|dfh|2 d volg =O(1). (5.5)

Proof. This is an immediate consequence of the finite bending assumption (2.3). �
Define now the averaging operator π� :L1(Ωh)→ L1(S),

π�(φ)= π�(φ d volg)

π�d volg
,

and consider the family of mappings Fh : S → Rn defined by

Fh = π�(fh). (5.6)

It follows from (2.1) and Lemma 3.4 that

lim
h→0

−
∫
S

Fh d volg|S = 0. (5.7)

In the rest of this section we prove that Fh strongly converges in W 1,2(S;Rn) to a limit
F ∈W 2,2(S;Rn), which is the reduced-limit of the sequence fh.

Lemma 5.1.

−
∫
Ωh

|fh − Fh ◦ π |2 d volg � Ch2 −
∫
Ωh

|dfh|2 d volg .
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Proof. By the definition of Fh,

π�(fh − Fh ◦ π)= 0.

So, we apply the fibered Poincaré inequality,

π�
(|fh − Fh ◦ π |2) � Ch2 π�

(|dfh|2),
and integrate over S with respect to the measure π�d volg. �
Proposition 5.3.

−
∫
S

∣∣dFh − q
‖
h

∣∣2
d volg|S =O

(
h2). (5.8)

Proof. Using Corollary 3.3, Lemma 3.3 and the fiberwise integrability of fh,

Fh = π�(fh)= π�(fhπ
�d volg|S ∧ω)

π�(π�d volg|S ∧ω) = π�(fhω)

π�ω
= 1

νkhk
π�(fhω)

(
mod O(h)

)
.

So,

dFh = 1

νkhk

[
π�(dfh ∧ω)+ π�(fh ∧ dω)+ (π |∂Ωh)�(fhω)

] (
mod O(h)

)
. (5.9)

By Lemma 3.5 we have

(π |∂Ωh)�(fhω)= 0. (5.10)

Similarly, using also the fact that π�ω is constant,

π�(dω)= d(π�ω)+ (π |∂Ωh)�ω= 0.

So,

π�(fh ∧ dω)= π�
(
(fh − Fh ◦ π)dω)

,

and

dFh − q
‖
h = 1

νkhk

{
π�

((
dfh − π�q

‖
h

) ∧ω) + π�
(
(fh − Fh ◦ π)dω)} (

mod O(h)
)
.

Write dω= α∧ω+β where α is a 1-form and π�β = 0. Choose C such that |α|2 � C. By (3.6),
π is a Riemannian submersion with respect to g̃. So, by Corollary 3.2, we have

∣∣dFh − q
‖
h

∣∣ = 1 +O(h)

νkhk

{
π�

(∣∣dfh − π�q
‖
h

∣∣ω) + √
Cπ�

(|fh − Fh ◦ π |ω)} (
mod O(h)

)
.
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By Jensen’s inequality and the Cauchy–Schwarz inequality,

∣∣dFh − q
‖
h

∣∣2 � 3 +O(h)

νkhk

{
π�

(∣∣dfh − π�q
‖
h

∣∣2
ω

) +Cπ�
(|fh − Fh ◦ π |2ω)}

(mod O
(
h2)).

By Lemma 3.2 and Eqs. (3.14), we have

π�q
‖
h ◦ (σ ⊕ ι)= (σ ⊕ ι)∗ ◦ ρ ◦ π∗q‖

h = π∗q‖
h.

So, by Lemma 3.1

∣∣dfh − π�q
‖
h

∣∣2 = ∣∣dfh ◦Π − π�q
‖
h ◦Π ∣∣2

� 2
∣∣dfh ◦Π − π�qh ◦ (σ ⊕ ι)

∣∣2 +O
(
h2)

= 2
∣∣dfh ◦Π − π∗qh

∣∣2 +O
(
h2).

So, integrating and using Lemma 3.4 and Corollary 3.3 we obtain

∫
S

∣∣dFh − q
‖
h

∣∣2 d volg|S
|S|

� 3 +O(h)

νkhk|S|
∫
Ωh

(
2
∣∣dfh ◦Π − π∗qh

∣∣2 +C|fh − Fh ◦ π |2)η ∧ω

= (
3 +O(h)

) −
∫
Ωh

(
2
∣∣dfh ◦Π − π∗qh

∣∣2 +C|fh − Fh ◦ π |2)d volg
(
mod O

(
h2)).

The first term on the right hand side is O(h2) by (5.1). The second term is O(h2) by Lemma 5.1
and (5.5). �
Corollary 5.3.

lim
h→0

−
∫
S

∣∣dFh − q‖∣∣2
d volg|S = 0.

Proof. The corollary follows from Proposition 5.3 and the strong convergence of qh to q, Propo-
sition 5.1. �
Lemma 5.2. Fh is uniformly bounded in W 1,2(S,Rn).

Proof. By Corollary 5.3, dFh is uniformly bounded in L2(S;Rn). So, by the Poincaré inequality
and Eq. (5.7), Fh is also uniformly bounded in L2(S;Rn). �
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Theorem 5.1. The sequence Fh has a subsequence that converges to F ∈W 2,2(S;Rn),

Fh → F in W 1,2(S;Rn
)
.

Moreover, dF = q‖.

Proof. By Lemma 5.2 and the Sobolev embedding theorem, after passing to a subsequence, Fh
converges in L2(S;Rn) to a limit F . By Corollary 5.3, dFh converges strongly in L2(S;Rn)
to q‖. So, we conclude that Fh converges strongly in W 1,2(S;R). Since the limit must still
be F , we conclude that dF = q‖. Finally, since q‖ ∈ W 1,2(S;T ∗S ⊗ Rn), it follows that
F ∈W 2,2(S;R). �
Corollary 5.4.

lim
h→0

−
∫
Ωh

|fh − F ◦ π |2 d volg = 0,

lim
h→0

−
∫
Ωh

∣∣dfh ◦Π − π∗(dF ⊕ q⊥)∣∣2
d volg = 0.

Proof. The result follows from Lemma 5.1, Corollary 5.2, Corollary 5.1 and Theorem 5.1. �
To conclude, we have shown that fh has a subsequence that reduced-converges to a limit

(F,q⊥).

6. Recovery sequence

Let

X =W 2,2(S;Rn
) ×W 1,2(S;NS∗ ⊗ Rn

)
.

In this section we show that for every pair (F,q⊥) ∈ X there exists a so-called recovery sequence
fh ∈W 1,2(Ωh;Rn) that reduced-converges to (F,q⊥), such that

lim
h→0

Eh[fh] = Elim
[
F,q⊥]

,

where Elim is given by (2.6).
Let (F,q⊥) ∈ X . We construct a recovery sequence fh ∈W 1,2(Ωh;Rn) as follows,

fh = F ◦ π + π∗q⊥ ◦ λ, (6.1)

or in explicit form, for ξ ∈ NS,

fh(ξ)= F
(
π(ξ)

) + q⊥
π(ξ)(ξ).
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Proposition 6.1. The derivative of the recovery sequence satisfies

dfh ◦ σ = π∗dF + π∗(∇q⊥) ◦ λ,
dfh ◦ ι= π∗q⊥, (6.2)

or in explicit form, for ξ ∈ NS and X =X‖ ⊕X⊥ ∈ (π∗T S ⊕ π∗NS)ξ � (T S ⊕ NS)π(ξ),[
dfh ◦ (σ ⊕ ι)

]
ξ

(
X‖ ⊕X⊥) = dFπ(ξ)

(
X‖) + q⊥

π(ξ)

(
X⊥) + (∇X‖q⊥)

π(ξ)
(ξ).

Proof. Let ξ ∈ NS and η ∈ (NS)π(ξ). Recall that

ιξ (η)= d

dt
(ξ + t η)

∣∣∣∣
t=0
,

hence,

(dfh ◦ ι)ξ (η)= d

dt
fh(ξ + t η)

∣∣∣∣
t=0

= d

dt

[
F

(
π(ξ)

) + q⊥
π(ξ)(ξ + t η)

]∣∣∣∣
t=0

= q⊥
π(ξ)(η),

or in compact notation,

dfh ◦ ι= π∗q⊥.

Let then α : I → S, such that X = α̇(0) ∈ (T S)π(ξ). Recall that σξ (X)= γ̇ (0), where γ : I →
NS is any parallel normal field along α. Then

(dfh ◦ σ)ξ (X)= d

dt

[
F

(
α(t)

) + q⊥
α(t)

(
γ (t)

)]∣∣∣∣
t=0

= dFπ(ξ)(X)+
(∇Xq⊥)

π(ξ)
(ξ)+ q⊥

π(ξ)

(
Dγ

dt

∣∣∣∣
t=0

)
.

The last term on the right hand side vanishes because γ is parallel. So, in compact notation,

dfh ◦ σ = π∗dF + π∗(∇q⊥) ◦ λ. �
Proposition 6.2. fh reduced-converges to (F,q⊥), namely,

lim
h→0

−
∫
Ωh

|fh − F ◦ π |2 d volg = 0,

lim
h→0

−
∫
Ωh

∣∣dfh ◦Π − π∗(dF ⊕ q⊥)∣∣2
d volg = 0.
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Proof. For every ξ ∈Ωh,

(fh − F ◦ π)(ξ)= q⊥
π(ξ)(ξ)=O(h),

hence

−
∫
Ωh

|fh − F ◦ π |2 d volg =O
(
h2).

Next, by the Cauchy–Schwarz inequality,

∣∣dfh ◦Π − π∗(dF ⊕ q⊥)∣∣2 � 2
∣∣dfh ◦ (σ ⊕ ι)− π∗(dF ⊕ q⊥)∣∣2 + 2

∣∣dfh ◦ (Π − σ ⊕ ι)
∣∣2

� 2
∣∣π∗(∇q⊥) ◦ λ∣∣2 + 2|dfh|2 |Π − σ ⊕ ι|2.

Since by Lemma 3.1, |Π − σ ⊕ ι| =O(h) and dfh is uniformly bounded, i.e., satisfies (5.5), it
follows that

−
∫
Ωh

|dfh|2 |Π − σ ⊕ ι|2 d volg =O
(
h2).

Finally, since uniformly for every ξ ∈Ωh,

∣∣π∗(∇q⊥) ◦ λ∣∣(ξ)= ∣∣(∇q⊥)
π(ξ)

(ξ)
∣∣ =O(h),

it follows that

−
∫
Ωh

∣∣π∗(∇q⊥) ◦ λ∣∣2
d volg =O

(
h2). �

Lemma 6.1. For all A ∈ GL(n),

∣∣∣∣dist
(
Id+A,SO(n)

) −
∣∣∣∣A+AT

2

∣∣∣∣∣∣∣∣ � C min
(|A|, |A|2).

Proof. The O(|A|) bound follows from the fact that all the terms on the left hand side are
O(|A|). The O(|A|2) bound follows form the fact that |A+AT |/2 is the first-order Taylor ex-
pansion of dist(I +A,SO(n)) at A= 0. �
Proposition 6.3.

lim
h→0

Eh[fh] = Elim
[
F,q⊥]

.
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Proof. Note first that by Lemma 3.1 and Proposition 6.1,

dfh ◦Π = dfh ◦ (σ ⊕ ι)− dfh ◦ σ ◦ π∗ II◦(
λ⊗ π∗P ‖) + |dfh|O

(
h2)

= π∗(dF ⊕ q⊥) + π∗(∇q⊥ − dF ◦ II
) ◦ (

λ⊗ π∗P ‖)
+ (∣∣∇q⊥∣∣ + |dfh|

)
O

(
h2).

By the invariance of SO(n) under parallel transport,

dist
(
dfh,SO(n)

) = dist
(
π∗(dF ⊕ q⊥) + π∗(∇q⊥ − dF ◦ II

) ◦ (
λ⊗ π∗P ‖),SO(n)

)
+ (∣∣∇q⊥∣∣ + |dfh|

)
O

(
h2).

Hence, by the uniform L2-boundedness of dfh,

lim
h→0

Eh[fh] = lim
h→0

1

h2
−
∫
Ωh

dist2
(
π∗(dF ⊕ q⊥)

+ π∗(∇q⊥ − dF ◦ II
) ◦ (

λ⊗ π∗P ‖),SO(n)
)
d volg .

Note that for ξ ∈Ωh, π∗(∇q⊥ − dF ◦ II) ◦ (λ⊗ π∗P ‖)|ξ =O(h), hence

lim
h→0

h2Eh[fh] = lim
h→0

−
∫
Ωh

dist
(
π∗(dF ⊕ q⊥)

,SO(n)
)
d volg

= −
∫
S

dist
(
dF ⊕ q⊥,SO(n)

)
d volg|S ,

and therefore if dF ⊕ q⊥ /∈ SO(n) a.e., then

lim
h→0

Eh[fh] = ∞ = Elim
[
F,q⊥]

.

It remains to consider the case q = dF ⊕ q⊥ ∈ SO(n). We have

dist
(
π∗q + π∗(∇q⊥ − dF ◦ II

) ◦ (
λ⊗ P ‖),SO(n)

)
= dist

(
Id+π∗(∇q⊥ − dF ◦ II

) ◦ (
λ⊗ P ‖) ◦ π∗q−1,SO(n)

)
.

It follows from Lemma 6.1 that for A ∈ GL(n) with |A| =O(h),

dist2
(
Id+A,SO(n)

) =
∣∣∣∣A+AT

2

∣∣∣∣2

+O
(
h3).

Take

A= π∗(∇q⊥ − dF ◦ II
) ◦ (

λ⊗ π∗P ‖) ◦ π∗q−1, (6.3)
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or more explicitly, for v ∈ Rn

Aξv = (∇
(P

‖
q )π(ξ)(v)

q⊥)
π(ξ)

(ξ)− (dF ◦ II)π(ξ)
(
ξ,

(
P

‖
q

)
π(ξ)

(v)
)
.

Using the fact that Aξ =O(h), we obtain

lim
h→0

Eh[fh] = lim
h→0

1

h2
−
∫
Ωh

∣∣∣∣A+AT

2

∣∣∣∣2

d volg

= lim
h→0

1

2h2
−
∫
Ωh

tr
(
ATA+A2)d volg . (6.4)

At this point, it is helpful to introduce index notation to clarify the sense in which tensors with
several upper and lower indices are composed and transposed. Let p ∈ S, and letX1, . . . ,Xn, be a
basis for TpM such that X1, . . . ,Xm is a basis for TpS, and Xm+1, . . . ,Xm+n, is a basis for NSp .
To keep our notation concise, we use the following convention for ranges of summation:

i, j, k, run from 1 to n,

a, b, c, run from 1 to m,

u,v,w, run from m+ 1 to n.

The orthogonality of TpS and NSp implies that gau = 0.
Let Y1, . . . , Yn, be a basis of Rn. We reserve Greek letters for indices associated to the Y ′s.

For ξ ∈ NSp and η ∈ Rn, write

ξ = ξuXu, η= ηαYα.

So, for example,

Aξη= (∇aqαu − qαc IIcau
)(

q−1)a
β
ξuηβYα.

By Eq. (6.4) and Lemma 3.4 we get that

lim
h→0

Eh[fh] = −
∫
S

W d volg|S ,

where

W = lim
h→0

(
1

2h2
π�

(
tr
(
ATA+A2))).

We now calculate W explicitly. Define the section M of NS ⊗ NS by

M = lim
h→0

1

h2
π�(λ⊗ λ).
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At the point p ∈ S, we have

W = eαγ gab
(∇aqαu − qαc IIcau

)(∇bqγt − q
γ

d IIdbt
)
Mut

+ (∇aqαu − qαc IIcau
)(

q−1)a
β

(∇bqβt − q
β
d IIdbt

)(
q−1)b

α
Mut .

Since we have chosen Ωh to be the set of all points of distance less than h from S, we have
Muv = κguv , where κ is the volume of the k − 1 dimensional unit sphere divided by k + 2.
Hence the reduced energy density is

W = κ

2
eαγ gabgut

(∇aqαu − qαc IIcau
)(∇bqγt − q

γ

d IIdbt
)

+ κ

2
gut

((
q−1)b

α
∇aqαu − IIbau

)((
q−1)a

β
∇bqβt − IIabt

)
. (6.5)

Since (dF )αa = qαa , it follows that

∇cqαa = ∇aqαc . (6.6)

Differentiating the equation 0 = P ‖ ◦ ι⊥ = P ‖ ◦ q−1 ◦ q ◦ ι⊥ = P
‖
q ◦ q⊥, we obtain

0 = ∇P ‖
q ◦ q⊥ + P

‖
q ◦ ∇q⊥,

or, in index notation, (∇aqαu)(q−1)b
α

= −(∇a(q−1)b
α

)
qαu. (6.7)

By Eqs. (6.6), and (6.7), the fact the metrics are covariant constants and the orthogonality of q,

(∇aqαu)(q−1)b
α

= −(∇a(q−1)b
α

)
qαu = −eαγ gbc

(∇aqγc )
qαu

= −eαγ gbc
(∇cqγa )

qαu = eαγ gbc
(∇cqαu)qγa .

Substituting this last identity as well as the symmetry of the second fundamental form into the
second term of (6.5),

gut
((

q−1)b
α
∇aqαu − IIbau

)((
q−1)a

β
∇bqβt − IIabt

)
= gut

(
eαγ gbc

(∇cqαu)qγa − gbcgad IIdcu
)((

q−1)a
β
∇bqβt − IIabt

)
= guteαγ gbc

((∇cqαu) − qαd IIdcu
)(

q
γ
a

(
q−1)a

β
∇bqβt − q

γ
a IIabt

)
= ∣∣P ‖

q ◦ (∇q⊥ − q‖ ◦ II
)∣∣2
.

Thus,

W = κ

2

∣∣∇q⊥ − q‖ ◦ II
∣∣2 + κ

2

∣∣P ‖
q ◦ (∇q⊥ − q‖ ◦ II

)∣∣2
.
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Noting that | · |2 = |P ‖
q ◦ ·| + |P⊥

q ◦ ·|, P ‖
q ◦ q‖ = Id, and P⊥

q ◦ q⊥ = 0, we have

W = κ
∣∣P ‖

q ◦ ∇q⊥ − II
∣∣2 + κ

2

∣∣P⊥
q ◦ ∇q⊥∣∣2

.

The proposition follows immediately. �
7. Lower semicontinuity

In this section we show that a sequence fh that satisfies the finite bending assumption (2.3)
and whose reduced-limit is (F,q⊥), satisfies the lower-semicontinuity property,

lim inf
h→0

Eh[fh] � Elim
[
F,q⊥]

.

We first pass to a subsequence fhk so that

lim
k→∞Ehk [fhk ] = lim inf

h→0
Eh[fh].

Thus, in the following arguments, we may freely pass to a further subsequence; from now on, we
drop the subscript k.

Let qh be a sequence obtained from the rigidity Theorem 4.2, and let q̃h be an orthogo-
nal projection of qh on SO(n), i.e., q̃h ∈ SO(n) and |qh − q̃h| = dist(qh,SO(n)). Applying the
Cauchy–Schwarz inequality and the invariance of SO(n) under parallel transport,∣∣π∗qh − π∗q̃h

∣∣2 � 2
∣∣dfh ◦Π − π∗qh

∣∣2 + 2 dist2
(
dfh,SO(n)

)
.

Averaging over Ωh, using once more the properties of the push-forward operator π�, esti-
mate (5.1), the finite bending assumption (2.3), and the estimate of the volume form discrepancy,
Lemma 3.4, we have

−
∫
S

|qh − q̃h|2 d volg|S =O
(
h2). (7.1)

It follows from Eqs. (5.1) and (7.1) that

−
∫
Ωh

∣∣dfh ◦Π − π∗q̃h
∣∣2
d volg =O

(
h2). (7.2)

Passing to a subsequence and using the L2-convergence of qh to q (Proposition 5.1), we have

lim
h→0

−
∫
S

|q̃h − q|2 d volg|S = 0.

Note that we can only guarantee the convergence of q̃h to q in L2(S;T ∗M|S ⊗ Rn), whereas
qh converges to q weakly in W 1,2(S;T ∗M|S ⊗ Rn). The reason for defining the possibly less
regular sequence q̃h will be made clear further below.
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Proposition 7.1. The sequence

ah = qh − q̃h

h
(7.3)

has a subsequence (not relabeled) that weakly converges, as h→ 0, in L2(S;T ∗M|S ⊗ Rn); we
denote the limit by a.

Proof. This is an immediate consequence of Eq. (7.1), as it follows that the sequence ah is
bounded in L2(S;T ∗M|S ⊗ Rn). �
Proposition 7.2. Let Fh = π�(fh) and define

f̂h = Fh ◦ π + π∗q⊥
h ◦ λ.

Then

lim
h→0

−
∫
Ωh

|dfh − df̂h|2 d volg =O
(
h2).

Proof. Compare the definition of f̂h with that of the recovery sequence (6.1). By an argument
similar to that used in Proposition 6.1 we find

df̂h ◦ σ = π∗dFh + π∗(∇q⊥
h

) ◦ λ,
df̂h ◦ ι= π∗q⊥

h . (7.4)

Using the invariance of the inner-product under parallel transport, along with the Cauchy–
Schwarz inequality (twice) and Lemma 3.1,

|dfh − df̂h|2 = |dfh ◦Π − df̂h ◦Π |2
� 2

∣∣dfh ◦Π − df̂h(σ ⊕ ι)
∣∣2 + 2|df̂h|2

∣∣(σ ⊕ ι)−Π
∣∣2

� 4
∣∣dfh ◦Π − π∗(dFh ⊕ q⊥

h

)∣∣2 + 4
∣∣π∗(∇q⊥

h

) ◦ λ∣∣2 + 2|df̂h|2O
(
h2).

We then average over Ωh. The first term on the right hand side is O(h2) by Eq. (5.1), Proposi-
tion 5.3, and Lemma 3.4. The second term is O(h2) because ∇qh is bounded in L2 by Eq. (5.3)
and |λ| =O(h). Finally, the third term is O(h2) because |df̂h|2 is uniformly bounded in L2(Ωh)

as obtained by combining Eq. (7.4), Lemma 3.1, Lemma 5.2, Eq. (5.2) and Eq. (5.3). �
Proposition 7.3. Let f̂h be defined as above. Then the sequence

bh = dfh − df̂h

h
(7.5)

weakly converges to zero in the sense of Definition 3.1.
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Proof. Let Φ ∈ C∞
0 (Ωh0;TΩh0 ⊗ Rn). Denote by d ∗̃ the dual of the exterior derivative with

respect to the L2 pairing of g̃. By Lemma 3.8, d ∗̃ is also the dual of the exterior derivative with
respect to the L2 pairing of μ�hg. Integrating by parts,∫

Ωh0

(
μ�hg̃

)(
μ∗
h(dfh − df̂h),Φ

)
d volg̃ =

∫
Ωh0

(
μ�hg̃

)(
(fh − f̂h) ◦μh,d ∗̃Φ

)
d volg̃ .

Using the Cauchy–Schwarz inequality and Lemma 3.7

∣∣∣∣ ∫
Ωh0

(
μ�hg̃

)(
μ∗
h(dfh − df̂h),Φ

)
d volg̃

∣∣∣∣2

� C′(Φ)
( ∫
Ωh0

|fh − f̂h|2 ◦μh d volg̃

)

� C(Φ)

(
−
∫
Ωh

|fh − f̂h|2 d volg

)
.

Using the fact that π�(f̂h)= π�(fh) and applying the fibered Poincaré inequality,

∣∣∣∣ ∫
Ωh0

(
μ�hg̃

)(
μ∗
h(dfh − df̂h),Φ

)
d volg

∣∣∣∣2

� C(Φ)

|Ωh|
∫
S

π�
(|fh − f̂h|2

)
π� d volg

� C(Φ)h2

|Ωh|
∫
S

π�
(|dfh − df̂h|2

)
π� d volg

= C(Φ)h2 −
∫
Ωh

|dfh − df̂h|2 d volg .

Dividing by h2 and applying Proposition 7.2,

lim
h→0

∣∣∣∣ ∫
Ωh0

(
μ�hg̃

)(
μ∗
h

(
dfh − df̂h

h

)
,Φ

)
d volg̃

∣∣∣∣2

� C(Φ) lim
h→0

−
∫
Ωh

|dfh − df̂h|2 d volg = 0.

Since C∞(Ωh0;T ∗Ωh0 ⊗ Rn) is dense in L2(Ωh0;T ∗Ωh0 ⊗ Rn), this equation holds for all
Φ ∈ L2(Ωh0;T ∗Ωh0 ⊗ Rn). �
Proposition 7.4. The sequence

ch = dFh − q
‖
h

h
(7.6)



Author's personal copy

3030 R. Kupferman, J.P. Solomon / Journal of Functional Analysis 266 (2014) 2989–3039

has a subsequence (not relabeled) that weakly converges, as h → 0, in L2(S;T ∗S ⊗ Rn); we
denote the limit by c.

Proof. This is an immediate consequence of Proposition 5.3, which together with Lemma 3.4
implies that

−
∫
S

∣∣dFh − q
‖
h

∣∣2
d volg|S =O

(
h2),

hence ch is a bounded sequence in L2(S;T ∗S ⊗ Rn). �
We now turn to estimate Eh[fh] as h→ 0. By the invariance of SO(n) under parallel transport

and the fact that q̃h ∈ SO(n),

dist2
(
dfh,SO(n)

) = dist2
(
dfh ◦Π,SO(n)

)
= dist2

(
dfh ◦Π ◦ π∗q̃−1

h ,SO(n)
)

= dist2
(
I + hGh,SO(n)

)
,

where Gh ∈ L2(Ωh;GL(n)) is given by

Gh = dfh ◦Π ◦ π∗q̃−1
h − Id

h
. (7.7)

Thus,

Eh[fh] = 1

h2
−
∫
Ωh

dist2
(
Id+hGh,SO(n)

)
d volg .

We start by making a few observations about Gh:

Proposition 7.5. The sequence Gh ∈ L2(Ωh;Rn ⊗ Rn) is bounded, namely,

−
∫
Ωh

|Gh|2 d volg =O(1).

Proof. This is an immediate consequence of the estimate (7.2), as

−
∫
Ωh

|Gh|2 d volg = 1

h2
−
∫
Ωh

∣∣dfh ◦Π ◦ π∗q̃−1
h − Id

∣∣2
d volg

= 1

h2
−
∫
Ωh

∣∣dfh ◦Π − π∗q̃h
∣∣2
d volg =O(1). �
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Proposition 7.6. Gh can be expressed in the following form:

Gh = bh ◦Π ◦ π∗q̃−1
h + π∗((ah + ch ◦ P ‖) ◦ q̃−1

h

)
+ df̂h ◦ (Π − σ ⊕ ι+ σ ◦ π∗ II◦(λ⊗ π∗P ‖))

h
◦ (
π∗q̃−1

h

)
+ π∗(∇q⊥

h − dFh ◦ II
) ◦

(
λ

h
⊗ π∗P ‖

)
◦ π∗q̃−1

h

− π∗(∇q⊥
h

) ◦
(
λ⊗ π∗ II◦

(
λ

h
⊗ π∗P ‖

))
◦ π∗q̃−1

h .

Proof. This follows after straightforward algebraic manipulations from the definitions (7.3) and
(7.5) of ah and bh, formula (7.4) for df̂h ◦ (σ ⊕ ι), and the definition (7.6) of ch. �
Proposition 7.7. Let

Ẽh[fh] = 1

h2
−
∫
Ωh

χh dist2
(
Id+hGh,SO(n)

)
d volg,

where

χh =
{

1 |Gh|< h−1/4,

0 otherwise,

and let

Jh[fh] = −
∫
χh

∣∣∣∣Gh +GTh

2

∣∣∣∣2

d volg .

Then,

lim
h→0

(
Jh[fh] − Ẽh[fh]

) = 0.

Proof. By definition,

Jh[fh] − Ẽh[fh] = −
∫
Ωh

χh
(
α2
h − β2

h

)
d volg,

where

αh = dist(Id+hGh,SO(n))

h
and βh =

∣∣∣∣Gh +GTh

2

∣∣∣∣.
Using Lemma 6.1 with A replaced by hGh, we obtain

|αh − βh| � Cmin
(|Gh|, h|Gh|2). (7.8)
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When the indicator function χh is non-zero, |Gh|< h−1/4, hence∣∣α2
h − β2

h

∣∣ � |αh − βh|
(|αh − βh| + βh

)
� Ch|Gh|2 · 2|Gh| =O

(
h1/4),

from which follows that

∣∣Jh[fh] − Ẽh[fh]
∣∣ � −

∫
Ωh

χh
∣∣α2
h − β2

h

∣∣d volg =O
(
h1/4),

which completes the proof. �
Since, trivially, Ẽh[fh] � Eh[fh], if follows that

lim inf
h→0

Eh[fh] � lim inf
h→0

Jh[fh],

hence it only remains to show that

lim inf
h→0

Jh[fh] � Elim
[
F,q⊥]

.

To this end we write Gh =G
(1)
h +G

(2)
h , where

G
(1)
h =Gh − A

h
− π∗[(c ◦ P ‖ + a

) ◦ q−1],
and

G
(2)
h = A

h
+ π∗[(c ◦ P ‖ + a

) ◦ q−1],
where A is given by Eq. (6.3), namely,

A= π∗(∇q⊥ − q‖ ◦ II
) ◦ (

λ⊗ π∗P ‖) ◦ π∗q−1.

Thus,

Jh[fh] = 1

4
−
∫
Ωh

χh
∣∣G(1)h +G

(1)
h

T ∣∣2
d volg

+ 1

4
−
∫
Ωh

χh
∣∣G(2)h +G

(2)
h

T ∣∣2
d volg

+ 1

2
−
∫
Ωh

χh e
(
G
(1)
h +G

(1)
h

T
,G

(2)
h +G

(2)
h

T )
d volg,

and
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lim inf
h→0

Jh[fh] � lim inf
h→0

1

4
−
∫
Ωh

χh
∣∣G(2)h +G

(2)
h

T ∣∣2
d volg

+ lim inf
h→0

1

2
−
∫
Ωh

χhe
(
G
(1)
h +G

(1)
h

T
,G

(2)
h +G

(2)
h

T )
d volg, (7.9)

Proposition 7.8.

lim inf
h→0

1

4
−
∫
Ωh

χh
∣∣G(2)h +G

(2)
h

T ∣∣2
d volg = lim inf

h→0

1

4
−
∫
Ωh

∣∣G(2)h +G
(2)
h

T ∣∣2
d volg .

Proof. Consider the difference

"h = −
∫
Ωh

(1 − χh)
∣∣G(2)h +G

(2)
h

T ∣∣2
d volg .

Using the Cauchy–Schwarz inequality (twice), the uniform bound |λ/h| � 1, and Lemma 3.7,

"h � 4 −
∫
Ωh

(1 − χh)
∣∣G(2)h ∣∣2

d volg

� 8 −
∫
Ωh

(1 − χh)π
∗(∣∣∇q⊥∣∣2 + ∣∣(c ◦ P ‖ + a

)∣∣2 + ∣∣(q‖ ◦ II
)∣∣2)

d volg

� C

∫
Ωh0

(
(1 − χh) ◦μh

)
π∗(∣∣∇q⊥∣∣2 + ∣∣(c ◦ P ‖ + a

)∣∣2 + ∣∣(q‖ ◦ II
)∣∣2)

η ∧ω. (7.10)

Using Lemma 3.7 and Proposition 7.5,∫
Ωh0

(
(1 − χh) ◦μh

)
η ∧ω� C ′ −

∫
Ωh

(1 − χh)d volg

� C′h1/2 −
∫
Ωh

|Gh|2 d volg =O
(
h1/2).

It follows that (1 − χh) ◦μh is the indicator function of a set of measure tending to zero with h.
So, since π∗(|∇q⊥|2 +|(c◦P ‖ +a)|2 +|(q‖ ◦ II)|2) is integrable inΩh0 , inequality (7.10) implies
that "h tends to zero as h→ 0, which completes the proof. �
Proposition 7.9.

lim inf
h→0

1

4
−
∫
Ωh

∣∣G(2)h +G
(2)
h

T ∣∣2
d volg � Elim

[
F,q⊥]

.
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Proof. The integral

1

4
−
∫
Ωh

∣∣G(2)h +G
(2)
h

T ∣∣2
d volg

depends on the sections a and c. It is easy to see that for every finite h > 0 this integral is minimal
for a, c =O(h2), hence

lim inf
h→0

1

4
−
∫
Ωh

∣∣G(2)h +G
(2)
h

T ∣∣2
d volg � lim

h→0

1

h2
−
∫
Ωh

∣∣∣∣A+AT

2

∣∣∣∣2

d volg = Elim
[
F,q⊥]

,

and the last identity was proved in Section 6. �
Proposition 7.10.

lim inf
h→0

1

2
−
∫
Ωh

χhe
(
G
(1)
h +G

(1)
h

T
,G

(2)
h +G

(2)
h

T )
d volg

= lim inf
h→0

1

2
−
∫
Ωh

e
(
G
(1)
h +G

(1)
h

T
,G

(2)
h +G

(2)
h

T )
d volg .

Proof. Consider the difference

"h = −
∫
Ωh

(1 − χh)e
(
G
(1)
h +G

(1)
h

T
,G

(2)
h +G

(2)
h

T )
d volg .

Using the bilinearity of g and the Cauchy–Schwarz inequality,

|"h|2 � 4

(
−
∫
Ωh

∣∣G(1)h ∣∣2
d volg

)(
−
∫
Ωh

∣∣χhG(2)h ∣∣2
d volg

)
.

The first term on the right hand side is uniformly bounded by Proposition 7.5 whereas the second
term tends to zero by the same argument as in the proof of Proposition 7.8. �
Proposition 7.11.

lim
h→0

1

2
−
∫
Ωh

e
(
G
(1)
h +G

(1)
h

T
,G

(2)
h +G

(2)
h

T )
d volg = 0.

Proof. Note that

e
(
G
(1)
h +G

(1)
h

T
,G

(2)
h +G

(2)
h

T ) = g
((
G
(1)
h +G

(1)
h

T ) ◦ π∗q,
(
G
(2)
h +G

(2)
h

T ) ◦ π∗q
)
.

Using Proposition 7.6, the sections G(1)h ◦ π∗q can be rewritten as follows:
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G
(1)
h ◦ π∗q = bh ◦Π ◦ π∗(q̃−1

h ◦ q
)

+ π∗[(ah + ch ◦ P ‖) ◦ q̃−1
h ◦ q

] − π∗[a + c ◦ P ‖]
+ π∗∇q⊥

h ◦
(
λ

h
⊗ π∗P ‖

)
◦ π∗(q̃−1

h ◦ q
) − π∗∇q⊥ ◦

(
λ

h
⊗ π∗P ‖

)

− π∗(dFh ◦ II) ◦
(
λ

h
⊗ π∗P ‖

)
◦ π∗(q̃−1

h ◦ q
) + π∗(q‖ ◦ II

) ◦
(
λ

h
⊗ π∗P ‖

)

+ df̂h ◦ (Π − σ ⊕ ι+ σ ◦ π∗ II◦(λ⊗ π∗P ‖))
h

◦ π∗(q̃−1
h ◦ q

)
− π∗(∇q⊥

h

) ◦
(
λ⊗ π∗ II◦

(
λ

h
⊗ π∗P ‖

))
◦ π∗(q̃−1

h ◦ q
)
.

Consider the first line of the right hand side: bh weakly converges to zero in the sense of Defini-
tion 3.1 (Proposition 7.3), whereas q̃−1

h is bounded inL∞(S;Rn⊗TM|S) and strongly converges
to q−1 in L2(S;Rn ⊗ TM|S). It is a known fact that the product of an L2 weakly converging
sequence and an L2 strongly convergent sequence that is bounded in L∞ weakly converges in
L2 to the product of the limits. We therefore conclude that the first line weakly converges to zero
in the sense of Definition 3.1. By a similar argument the second, third, and fourth lines weakly
converge to zero as well. For the fourth line, we use also Proposition 5.3. The fifth line is O(h)
by Lemma 3.1, whereas the sixth line is O(h) due to the λ-factor. Thus, G(1)h ◦ π∗q weakly con-

verges to zero in the sense of Definition 3.1. Similarly, G(1)
T

h ◦ π∗q weakly converges to zero.
Noting that

(
G
(2)
h +G

(2)
h

T ) ◦ π∗q = π∗β1 + π∗β2 ◦ λ
h

for suitable β1, β2, we apply Lemma 3.9 to obtain the desired result. �
Corollary 7.1.

lim inf
h→0

Jh[fh] � Elim
[
F,q⊥]

.

Proof. This is an immediate consequence of Eq. (7.9) and Propositions 7.8, 7.9, 7.10,
and 7.11. �
Corollary 7.2.

lim inf
h→0

Eh[fh] � Elim
[
F,q⊥]

.
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8. Examples

8.1. Plates and shells

Plates and shells correspond to the case of n = 3 and k = 1, that is, the limiting manifold S

is a two-dimensional surface. For k = 1, the limiting energy functional Elim further simplifies, as
the second term in (2.6) vanishes. This is because for k = 1,

P⊥
q ◦ ∇q⊥ = 0. (8.1)

Indeed, let u be a local unit length section of NS. Then, ∇u= 0 because

0 = dg(u,u)= 2g(u,∇u)

and NS is one-dimensional. So,

(∇q⊥)
(u)= d

(
q⊥(u)

) − q⊥(∇u)= d
(
q⊥(u)

)
.

On the other hand, since P⊥ is an orthogonal projection, and q is orthogonal,

g
(
P⊥

q ◦ (∇q⊥)
(u),u

) = e
((∇q⊥)

(u),q⊥(u)
)

= e
(
d
(
q⊥(u)

)
,q⊥(u)

)
= 1

2
de

(
q⊥(u),q⊥(u)

)
= 0.

Since u spans NS, Eq. (8.1) follows.
Finally, we note that since q ∈ SO(3), it follows that q⊥ is unambiguously determined by dF ,

which means that the F : S → R3 fully characterizes the limiting configuration. Noting that
κ = 1/3, the limiting functional for plates and shells is:

Elim[F ] = 1

3
−
∫
S

∣∣P ‖
q ◦ ∇q⊥ − II

∣∣2
d volg|S . (8.2)

This integral has a well-defined physical meaning. It is the mean square difference between
the induced second fundamental form P

‖
q ◦ ∇q⊥ (the gradient of the normal to the surface) and

the intrinsic second fundamental form, i.e., it is a bending energy.
The limiting energy (8.2) applies equally to plates and shells, the only difference being

whether II = 0 (plates) or II �= 0 (shells). It also applies equally to Euclidean and non-Euclidean
plates/shells. The plate/shell is Euclidean if there exists an immersion F : S → R3, such that
F ∗e = g|S and P ‖

q ◦∇q⊥ = II, or equivalently, if g|S and II satisfy the Gauss–Codazzi–Mainardi
equations [6]. If gS and II are incompatible, then the plates/shell is residually-stressed and the
minimizer of (8.2) has non-zero energy.
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8.2. Rods

Rods correspond to the case n= 3 and k = 2, which means that S is a one-dimensional sub-
manifold. For n− k = 1 it is dF that is uniquely determined by q⊥.

The remarkable fact in the case of a one-dimensional submanifold is that there exists a limiting
configuration, (F,q⊥), such that the limiting energy Elim vanishes. That is, dF ⊕ q⊥ ∈ SO(n)
and

P⊥
q ◦ ∇q⊥ = 0 and P

‖
q ◦ ∇q⊥ = II . (8.3)

This means that there exists a sequence of approximate minimizers fh for which Eh[fh] = o(1).
Hence, to obtain a finer limiting structure one should divide the physical elastic energy by a
higher power of h.

We now show that a solution satisfying (8.3) does exist. In particular, we show that Eqs. (8.3)
are equivalent to a system of linear ordinary differential equations. Let p ∈ S. Since q‖ ◦ P ‖

q =
Id−q⊥ ◦ P⊥

q , it follows that

q‖ ◦ P ‖
q ◦ ∇q⊥ = ∇q⊥ − q⊥ ◦ P⊥

q ◦ ∇q⊥.

Substituting using Eqs. (8.3), we obtain

∇q⊥ = q‖ ◦ II . (8.4)

On the other hand, Eq. (8.4) immediately implies Eqs. (8.3).
Moreover, an equation for q‖ can be derived from (8.4) as follows. Since for every ξ ∈ NS

and η ∈ T S

e
(
q⊥(ξ),q‖(η)

) = 0,

differentiating and using Eq. (8.4), we obtain

e
(
q⊥(ξ),∇η′q‖(η)

) = −e
(∇η′q⊥(ξ),q‖(η)

)
= −e

(
q‖ ◦ II

(
η′, ξ

)
,q‖(η)

) = −g
(
II

(
η′, ξ

)
, η

)
.

Introducing the metric adjoint of the second fundamental form ÎI : T S × T S → NS, we have

e
(
q⊥(ξ),∇η′q‖(η)

) = −g
(
ξ, II

(
η,η′)) = −e

(
q⊥(ξ),q⊥ ◦ II

(
η,η′)),

from which we conclude that

∇q‖ = −q⊥ ◦ ÎI. (8.5)

Since S is one-dimensional, (8.4) and (8.5) form a linear ordinary differential system, which
can be solved globally. In fact, they are generalized Serret–Frenet equations, which uniquely
determine the shape of the limiting curve.
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9. Discussion

The main contribution of this paper is to unify the analyses of dimensionally-reduced elastic-
ity models, resulting in a limiting model that covers a variety of known cases as well as cases
that have not yet been rigorously treated, such as non-Euclidean shells and rods. The general-
ization has been attained by performing the entire analysis within the framework of Riemannian
geometry. While being at times technically cumbersome, the Riemannian formalism is the appro-
priate framework when considering incompatible elastic bodies, so that the notion of a Euclidean
reference configuration becomes irrelevant.

The entire analysis rests on the so-called finite bending assumption, whereby there exists a
family of mappings fh, such that Eh[fh] = O(1). As noted by Lewicka and Pakzad [17], this
condition is equivalent to the existence of a W 2,2 isometric immersion of (S,g|S) in Rn. The
equivalence between the two conditions in an immediate corollary of our results: if the finite
bending assumption holds then we have shown that fh has a subsequence that reduced-converges
to a W 2.2(S;Rn) isometric immersion. Conversely, if a W 2,2 isometric immersion exists, then
the recovery sequence defined in Section 6 satisfies the finite bending assumption.

It should be noted that in the present work we assumed a specific elastic energy func-
tional (2.2). Note that this energy is tolerant to local orientation reversal, which is clearly
unphysical. A more general treatment would assume, as customary, an arbitrary energy density
along with the standard Lipschitz continuity and coercivity conditions. We intentionally chose
a specific energy in order to avoid additional technicalities; the analysis in [10], for example,
indicates that a more general energy can be addressed by the same techniques.

This work raises a number of questions of interest.

• Under what conditions on g|S does the finite bending assumption hold? There exists a large
amount of work on Hölder regular or smooth isometric immersions in Euclidean space. How-
ever, we are not aware of similar work for Sobolev maps.

• The proof of local rigidity, Theorem 4.1, relies on the rigidity theorem proved in [10] for
mappings Rn → Rn. Generalizations to mappings between Riemannian manifolds would be
of much interest.

• How does fh approach the limit (F,q⊥), and in particular, how does Eh[fh] − Elim[F,q⊥]
scale with h. The (non-rigorous) analysis in [8] indicates that the deviation of fh from the
limit F is focused in a boundary layer of width O(h1/2) in the vicinity of the boundary of S,
and consequently, Eh[fh] − Elim[F,q⊥] =O(h1/2).
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