
3. Topological vector spaces

3.1 Definitions

Banach spaces, and more generally normed spaces, are endowed with two structures:
a linear structure and a notion of limits, i.e., a topology. Many useful spaces
are Banach spaces, and indeed, we saw many examples of those. In certain cases,
however, one deals with vector spaces with a notion of convergence that is not
normable. Perhaps the best example is the space of C∞0 (K) functions that are
compactly supported inside some open domain K (this space is the basis for the
theory of distributions). Another such example is the space of continuous functions
C(W) defined on some open set W ⊂ Rn. In such cases, we need a more general
construct that embodies both the vector space structure and a topology, without
having a norm. In certain cases, the topology is not only not normable, but even not
metrizable (there are situations in which it is metrizable but not normable).

We start by recalling basic definition in topological spaces:

Definition 3.1 — Topological space. A topological space ( �*#&-&5&) "(9/) is
a set S with a collection t of subsets (called the open sets) that contains both S
and �, and is closed under arbitrary union and finite intersections.

A topological space is the most basic concept of a set endowed with a notion of
neighborhood.

Definition 3.2 — Open neighborhood. In a topological space (S,t), a neigh-
borhood ( �%"*"2) of a point x is an open set that contains x. We will denote the
collection of all the neighborhoods of x by

Nx = {U ∈ t � x ∈U}.
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Topological spaces are classified according to certain additional properties that
they may satisfy. A property satisfied by many topological spaces concerns the
separation between points:

Definition 3.3 — Hausdorff space. A topological space is a Hausdorff space
if distinct points have distinct neighborhoods, i.e., ∀x ≠ y there are Ux ∈Nx and
Uy ∈Ny such that

Ux∩Uy =�.
The Hausdorff property is required, for example, for limits to be unique.

Definition 3.4 — Base. In a topological space (S,t), a collection t ′ ⊂ t of open
sets is a base for t (�2*2") if every open set is a union of members of t ′.

Bases are useful because many properties of topologies can be reduced to statements
about a base generating that topology, and because many topologies are most easily
defined in terms of a base that generates them.

� Example 3.1 The open balls

B(x,a) = {y ∈ S � d(y,x) < a}
form a base for a topology in a metric space. A set is open if and only if it is the
union of open balls. �

Definition 3.5 — Local base. Let (S,t) be a topological space and let x ∈ S. A
collection gx ⊂Nx is called a local base at x ( �*/&8/ 2*2") if every neighborhood
of x contains an element of gx.

It is easy to see that the union of all local bases is a base for the topology. Indeed, let
A ∈ t . Let x ∈ A. Since A is a neighborhood of x, then by the definition of the local
base, there exists a Ux ∈ gx, such that Ux ⊂ A. Clearly,

A =�
x∈AUx,

which proves that ∪x∈Sgx is a base for t .

Definition 3.6 — Closure. Let (S,t) be a topological space and let E ⊂ S. The
closure of E, denoted E, is the set of all points all of whose neighborhoods
intersect E:

E = {x ∈ S � ∀U ∈Nx, U ∩E ≠�}.
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Definition 3.7 — Induced topology. Let (S,t) be a topological space and let
E ⊂ S. Then t ∩E is called the induced topology on E.

A key concept in topological spaces is that of the convergence of sequences:

Definition 3.8 — Limit. A sequence (xn) in a Hausdorff space (S,t) converges
to a limit x ∈ S if every neighborhood of x contains all but finitely many points of
the sequence.

So we have two notions: that of a vector space and that of a topological space. We
now blend the two together.

Definition 3.9 — Topological vector space. Let V be a vector space endowed
with a topology t . The pair (V ,t) is called a topological vector space if

¿ For every point x ∈ V , the singleton {x} is a closed set (namely, {x}c ∈ t).
¡ The vector space operations are continuous with respect to t .

Comment 3.1 The first condition is not required in all texts.

The second condition means that the mappings:

V ×V → V (x,y)� x+y

F ×V → V (a,x)� ax

are continuous. That is, for every x,y ∈ V ,

(∀V ∈Nx+y)(∃Vx ∈Nx,Vy ∈Ny) ∶ (Vx+Vy ⊂V),
and for every x ∈ V and a ∈F ,

(∀V ∈Nax)(∃Vx ∈Nx,Va ∈Na) ∶ (Va ⋅Vx ⊂V).

O

x y

x+y

Having defined a topological vector space, we proceed to define notions concerning
subsets:
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Definition 3.10 — Bounded set. Let X be a topological vector space. A subset
E ⊂X is said to be bounded if

(∀V ∈N0)(∃s ∈R) ∶ (∀t > s)(E ⊂ tV).
That is, every neighborhood of zero contains E after being blown up sufficiently.

As will be shown later, the topological notion of boundedness may not coincide with
the metric notion of boundedness.

Definition 3.11 — Balanced set. Let X be a topological vector space. A
subset E ⊂X is said to be balanced ( �0'&!/) if

∀a ∈F , �a � ≤ 1 aE ⊂ E.

We denote the set of balanced neighborhoods of zero by N bal
0 .

The notion of being balanced is purely algebraic. When we talk about balanced
neighborhoods we connect the algebraic concept to the topological concept. Note
that in C the only balanced sets are discs and the whole of C.

Definition 3.12 — Symmetric set. Let X be a topological vector space. A
subset E ⊂X is said to be symmetric if

x ∈ E implies (−x) ∈ E,

namely (−E) = E. We denote the set of symmetric neighborhoods of x by N sym
x .

Symmetry is also an algebraic concept. Every balanced set is symmetric; the
opposite is not true.

Definition 3.13 With every a ∈X we associate a translation operator, Ta ∶
X →X , defined by

Tax = x+a,

and with every 0≠a ∈F we associate a multiplication operator, Ma ∶X →X ,
defined by

Max = ax.

Proposition 3.1 Both Ta and Ma are homeomorphisms of X onto X .

Proof. Both Ta and Ma are bijections by the vector space axioms. Their inverses
are T−a and M1�a . All are continuous by the very definition of a topological vector
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space. �

Corollary 3.2 Every open set is translationally invariant: E ⊂X is open if and
only if a+E is open for every a ∈X . In particular,

Na = a+N0.

Hence the topology is fully determined by the neighborhoods of the origin.

We conclude this section with a classification of various types of topological vector
spaces:

Definition 3.14 Let (X ,t) be a topological vector space.

¿ X is locally convex ( �;*/&8/ 9&/8) if there exists a local base at 0 whose
members are convex.

¡ X is locally bounded if 0 has a bounded neighborhood.
¬ X is locally compact if 0 has a neighborhood whose closure is compact.
√ X is metrizable (�*-*"'*9)/) if it is compatible with some metric d (i.e.,

t is generated by the open balls B(x,a) = {y ∈X � d(y,x) < a}).
ƒ X is an F-space if its topology is induced by a complete translationally

invariant metric. Every Banach space is an F-space. An F-space is a
Banach space if in addition d(ax,0) = �a �d(x,0).

≈ X is a Frechet space if it is a locally convex F-space.
∆ X is normable (�*-*"/9&1) if it can be endowed with a norm whose induced

metric is compatible with t .
« X has the Heine-Borel property if every closed and bounded set is

compact.

As we will see, local convexity is important because local convexity amount to
the topology being generated by a family of seminorms. Local convexity is also
the minimum requirement for the validity of geometric Hahn-Banach properties.
Weak topologies, which we will investigate later are always locally convex. We
will prove that the only topological vector spaces that are locally compact are finite
dimensional. We will prove that a topological vector space is metrizable if it has a
countable local base at the origin, which in turn, is guaranteed if the space is locally
bounded. We will prove that a topological vector space is normable if and only if it
is both locally convex and locally bounded.
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Exercise 3.1 Consider the vector space R endowed with the topology t gener-
ated by the base

B = {[a,b) � a < b}.
Show that (R,t) is not a topological vector space. �

3.2 Separation theorems

A topological vector space can be quite abstract. All we know is that there is a
vector space structure and a topology that is compatible with it. We have to start
make our way from these very elementary concepts.

Lemma 3.3 Let X be a topological vector space.

∀W ∈N0 ∃U ∈N sym
0 such that U +U ⊂W.

Proof. Since 0+0 = 0 and addition is continuous, there exist neighborhoods V1,V2 ∈
N0 such that

V1+V2 ⊂W.

Set
U =V1∩(−V1)∩V2∩(−V2).

U is symmetric; it is an intersection of four open sets that contain zero, hence it is a
non-empty neighborhood of zero. Since U ⊂V1 and U ⊂V2 it follows that

U +U ⊂W.

�

W

V1

V2
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Lemma 3.4 Let X be a topological vector space.

∀W ∈N0 ∃V ∈N sym
0 such that V +V +V +V ⊂W.

Proof. Apply the previous lemma with U in place of W . �

Theorem 3.5 Let X be a topological vector space. Let K,C ⊂X satisfy:

K is compact, C is closed and K∩C =�.
Then there exists a V ∈N0 such that

(K+V)∩(C+V) =�.
In other words, there exist disjoint open sets that contain K and C.

K C

Comment 3.2 Thus, a topological vector space is regular (a topological space is
regular if separates points from closed sets that do not include that point).

Proof. Let x ∈K. Since Cc is an open neighborhood of x, it follows from the above
lemma that there exists a Vx ∈N sym

0 such that

x+Vx+Vx+Vx ∈Cc,

i.e., (x+Vx+Vx+Vx)∩C =�.
Since Vx is symmetric, (x+Vx+Vx)∩(C+Vx) =�.
For every x ∈ K corresponds such a Vx. Since K is compact, there exists a finite
collection of (xi,Vxi)ni=1 such that

K ⊂ n�
i=1
(xi+Vxi).
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Define
V =Vx1 ∩⋅ ⋅ ⋅∩Vxn .

Then, for every i,

(x+Vxi +Vxi) does not intersect (C+Vxi),
and a forteriori,

(x+Vxi +V) does not intersect (C+V).
Taking the union over i:

K+V ⊂ n�
i=1
(xi+Vxi +V) does not intersect (C+V).

�
Comment 3.3 Since K+V and C+V are both open and mutually disjoint, it follows
that also

K+V does not intersect C+V.

Indeed, if x ∈C+V then there exists U ∈Nx such that

U ⊂C+V.

But since x ∈K+V , every neighborhood of x, and U in particular, intersects K+V ,
i.e., where exists a y ∈U satisfying

y ∈ (K+V)∩(C+V),
which is a contradiction.

Corollary 3.6 Let B be a local base at zero for a topological vector space X .
Then every member in B contains the closure of some other member in B. That
is, ∀U ∈B ∃W ∈B such that W ⊂U.

Proof. Let U ∈B. Let K = {0} (compact) and C =Uc (closed). By Theorem 3.5
there exists a V ∈N sym

0 , such that

V ∩(Uc+V) =�.
It follows that

V ⊂ (Uc+V)c ⊂U.

By the definition of a local base there exists a neighborhood W ∈B such that

W ⊂V ⊂ (Uc+V)c ⊂U.
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Since (Uc+V)c is closed,
W ⊂ (Uc+V)c ⊂U.

�

Corollary 3.7 Every topological vector space X is Hausdorff.

Proof. Let x,y ∈X , x ≠ y. Both sets {x} and {y} are closed (by definition) and
compact, hence X is Hausdorff by Theorem 3.5. �
The following proposition establishes relations between sets, their closure, and their
interior.

Proposition 3.8 Let X be a topological vector space.

¿ For A ⊂X ,
A = �

V∈N0

(A+V).
That is, the closure of a set is the intersection of all the open neighborhoods
of that set.

¡ A+B ⊂ A+B.
¬ If Y ⊂X is a linear subspace, then so is Y .
√ If C is convex so is C.
ƒ If C is convex so is C○.
≈ For every B ⊂X : if B is balanced so is B.
∆ For every B ⊂X : if B is balanced and 0 ∈ B○ then B○ is balanced.
« If E ⊂X is bounded then so is E.

Proof.

¿ Let x ∈ A. By definition, for every V ∈N0, x+V intersects A, of x ∈ A−V .
Thus,

x ∈ �
V∈N0

(A−V) = �
V∈N0

(A+V).
Conversely, suppose that x �∈ A. Then, there exists a V ∈N0 such that x+V
does not intersect A, i.e., x �∈ A−V , hence

x �∈ �
V∈N0

(A+V).
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¡ Let a ∈ A and b ∈ B. By the continuity of vector addition, for every U ∈Na+b
there exist V ∈Na and W ∈Nb such that

V +W ⊂U.

By the definition of A every neighborhood of a intersects A and by the defini-
tion of B every neighborhood of b intersects W : that is, there exist x ∈V ∩A
and y ∈W ∩B. Then,

x ∈ A and y ∈ B implies x+y ∈ A+B,

and
x ∈V and y ∈W implies x+y ∈V +W ⊂U.

In other words, every neighborhood of a+b ∈ A+B intersects A+B, which
implies that a+b ∈ A+B, and therefore

A+B ⊂ A+B.

¬ Let Y be a linear subspace of X , which means that,

Y +Y ⊂Y and ∀a ∈F , aY ⊂Y .

By the previous item,
Y +Y ⊂Y +Y ⊂Y .

Since scalar multiplication is a homeomorphism it maps the closure of a set
into the closure of its image, namely, for every a ∈F ,

aY ⊂Y .

√ Convexity is a purely algebraic property, but closures and interiors are topo-
logical concepts. The convexity of C implies that for all t ∈ [0,1]:

tC+(1− t)C ⊂C.

Let t ∈ [0,1], then

tC = tC and (1− t)C = (1− t)C.

By the second item:

tC+(1− t)C = tC+(1− t)C ⊂ tC+(1− t)C ⊂C,

which proves that C is convex.
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ƒ Suppose once again that C is convex. Let x,y ∈C○. This means that there exist
neighborhoods U,V ∈N0, such that

x+U ⊂C and y+V ⊂C.

Since C is convex:

t(x+U)+(1− t)(y+V) = (tx+(1− t)y)+U +(1− t)V ⊂C,

which proves that tx+(1− t)y ∈C○, namely C○ is convex.
≈ Since multiplication by a (non-zero) scalar is a homeomorphism,

aB = aB.

If B is balanced, then for �a � ≤ 1,

aB = aB ⊂ B,

hence B is balanced.
∆ Again, for every 0 < �a � ≤ 1,

aB○ = (aB)○ ⊂ B○.
Since for a = 0, aB○ = {0}, we must require that 0 ∈ B○ for the latter to be
balanced.

« Let V be a neighborhood of zero. By Corollary 3.6 there exists a neighborhood
W of zero such that W ⊂ V . Since E is bounded, E ⊂ tW ⊂ tW ⊂ tV for
sufficiently large t. It follows that for large enough t,

E ⊂ tW ⊂ tV,

which proves that E is bounded.

�

Exercise 3.2 Let

A = {(z1,z2) ∈C2 � �z1� ≤ �z2�} ⊂C2.

Show that A is balanced by A○ is not. �

Theorem 3.9 Let X be a topological vector space.

¿ Every neighborhood of zero contains a balanced neighborhood of zero:

∀U ∈N0 ∃W ∈N bal
0 such that W ⊂U.

¡ Every convex neighborhood of zero contains a balanced convex neighbor-
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hood of zero:

∀U ∈N conv
0 ∃A ∈N bal,conv

0 such that A ⊂U.

Proof.

¿ Let U ∈N0. Since scalar multiplication is continuous, and 0 ⋅0 = 0, there exists
a V ∈N0 and a disc

D = {a ∈C � �a � < d},
such that

DV ⊂U.

It is easy to see that DV is balanced (thus, the existence of a balanced sub-
neighborhood in X follows from the existence of a balanced sub-neighborhood
in the field of scalars).

¡ Let U ∈N conv
0 and set

A = ��a �=1
aU.

Since A is the intersection of convex sets it is convex. It is balanced because
for every �b � ≤ 1,

bA = ��a �=1
(ba)U = ��a �=1

(�b �a)U = �b �A,
and by convexity, �b �A = �b �A+(1− �b �){0} ⊂ A.

Since A contains the origin, A○ is balanced; it is also convex.

�

Corollary 3.10 Every topological vector space has a local base whose elements
are balanced (a balanced local base).

Corollary 3.11 Every locally convex topological vector space has a local base
whose elements are convex and balanced (a balanced convex local base).

Theorem 3.12 Let V ∈N0 in a topological vector space X . Then:
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¿ For every sequence rn→∞,

∞�
n=1

rnV =X .

¡ Every compact set is bounded.
¬ If V is bounded (which requires X to be locally bounded) and dn→ 0, then

{dnV � n ∈N}
is a local base for X .

Proof.

¿ Let x ∈X and consider the sequence x�rn. This sequence converge to zero by
the continuity of the scalar multiplication F ×X →X . Thus, for sufficiently
large n,

x�rn ∈V i.e. x ∈ rnV.

¡ Let K ⊂X be compact. We need to prove that it is bounded, namely, that for
every V ∈N0,

K ⊂ tV for sufficiently large t.

Let V ∈N0 be given. By Theorem 3.9 there exists a W ∈N bal
0 such that W ⊂V .

By the previous item

K ⊂ ∞�
n=1
(nW).

Since K is compact,

K ⊂ K�
k=1
(nkW) = nK

K�
k=1
� nk

nK
W� ⊂ nKW,

where in the last step we used the fact that W is balanced. Thus,

∀t > nK K ⊂ nKW = t �nK

t
W� ⊂ tW,⊂ tW ⊂ tV,

which proves that K is bounded.
¬ Let U ∈N0. Since V is bounded,

V ⊂ tU for sufficiently large t,

or,
t−1V ⊂U. for sufficiently large t.

Thus, dnV ⊂U for sufficiently large n.

�
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Exercise 3.3 Let (X ,t) be a topological vector space. Show that a set E ⊂X
is bounded if and only if every countable subset of E is bounded. �

Exercise 3.4 Let (X ,t) be a topological vector space. Show that:

¿ If X is locally bounded then the convex hull of a convex set is bounded.
¡ If A,B are bounded so is A+B.
¬ If A,B are compact so is A+B.
√ if A is compact and B is closed then A+B is closed.
ƒ Give an example where A,B are closed by A+B is not closed.

�

3.3 Linear maps

We already know what are linear maps between vector spaces. The following
theorem is an obvious consequence of the translational invariance of the space:

Theorem 3.13 Let X and Y be topological vector spaces and let T ∶X →Y
be linear. If T is continuous at zero then it is continuous everywhere.

The following Lemma will be needed below:

Lemma 3.14 Linear maps between topological vector spaces map balanced sets
into balanced sets.

Proof. Let T ∶X →Y be linear, and let V ⊂ X be balanced. For every �a � ≤ 1,

a{T(x) ∶ x ∈V}={aT(x) ∶ x ∈V}={T(ax) ∶ x ∈V}={T(y) ∶ y ∈aV}⊂{T(y) ∶ y ∈V}.
�

In Banach spaces continuous and bounded linear maps are the same. We need a
notion of bounded map to obtain a generalization for topological vector spaces.

Definition 3.15 A linear map T ∶X →Y is bounded if it maps bounded sets
into bounded sets.
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The following theorem concerns only scalar-valued linear maps, i.e., linear function-
als. Please note that since F is a topological vector space, there is a well-defined
notion of continuity for functionals. In particular, we may define:

Definition 3.16 Let (X ,t) be a topological vector space. Its dual X∗ is the
space of continuous linear functionals over X .

As of now, X ∗ is not endowed with any topology, as it was in Banach spaces. We
will see how to topologize X ∗ later when we study weak topologies.

The following theorem establishes the equivalence between continuity and bounded-
ness for linear functionals:

Theorem 3.15 Let 0 ≠ f ∶X →F be a linear functional. Then the following
assertions are equivalent:

¿ f is continuous.
¡ ker f is closed.
¬ ker f is not dense in X .
√ f maps some V ∈N0 into a bounded set in F .

Proof.

¿ Suppose that f is continuous, then since {0} ∈F is closed then f −1(0) = ker f
is closed.

¡ Suppose that ker f is closed. Since we assume that f ≠ 0, it must be that
ker f ≠X , hence ker f can’t be dense in X .

¬ Suppose that ker f is not dense in X . That is, its complement has a non-empty
interior. There exists an x ∈X and a V ∈N0, such that

(x+V)∩ker f =�. (3.1)

This means that
f (x+V) �∋ 0,

i.e., ∀y ∈V f (y) ≠ − f (x).
By Theorem 3.9 (every neighborhood contains a balanced neighborhood) we
may assume that V is balanced; by Lemma 3.14, f (V) is balanced as well.

Balanced set in C are either bounded, in which case we are done, of equal to
the whole of C, which contradicts the requirement that f (y) ≠ − f (x) for all
y ∈V .
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√ Suppose that f (V) is bounded for some V ∈N0, i.e., there exists an M such
that ∀x ∈V � f (x)� ≤M.

Let e > 0 be given. Set W = (e�M)V . Then for all y ∈W

� f (y)� ≤ e
M

sup
x∈V � f (x)� ≤ e,

which proves that f is continuous at zero (and hence everywhere).

�
Comment 3.4 If f maps some V ∈N0 into a bounded set then f is bounded. Let
W ⊂X be bounded. Then for large enough t:

W ⊂ tV,

hence
sup � f (W)� ≤ sup � f (tV)� = t sup � f (V)� <∞.

3.4 Finite dimensional spaces

As for Banach spaces, finite-dimensional topological vector spaces are simpler than
infinite-dimensional ones.

Lemma 3.16 Let X be a topological vector space. Any linear function T ∶F n→
X is continuous.

Proof. Denote by {e j} the standard basis in F n and set

u j = T(e j) j = 1, . . . ,n.

By linearity, for any z = (z1, . . . ,zn),
T(z) = n�

j=1
z ju j.

The map z� z j (which is a map F n →F ) is continuous and so are addition and
scalar multiplication in X . �
The following proposition shows, in particular, that all finite-dimensional subspaces
of a topological vector space are closed.
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Proposition 3.17 Let Y be an n-dimensional subspace of a topological vector
space X . Then:

¿ Every isomorphism F n→Y (equivalence in the category of vector spaces)
is a homeomorphism (equivalence in the category of topological spaces).

¡ Y is closed in X .

Proof.

¿ Let T ∶F n � Y be an isomorphism (i.e., linear and bijective). We need
to show that both T and T−1 are continuous. By the previous lemma T is
continuous, so only remains T−1.

S

F n Y

K = T(S)

V ∩YT−1(V ∩Y )

let S = ∂BF n be the unit sphere in F n, and let K = T(S). By Lemma 3.16
since T is linear it is also continuous, and since continuous functions map
compact sets into compact sets, K is compact.

Since 0 �∈ S and f is injective, it follows that 0 �∈K, and therefore

∃V ∈N bal
0 such that V ∩K =�.

Note that V is a neighborhood of 0 in X , but V ∩Y is a neighborhood of
zero in Y (in the induced topology). By injectivity,

E = T−1(V ∩Y )
is disjoint from S.

By Lemma 3.14, E which is the linear image of a balanced set is also balanced,
hence it is connected. It follows that T−1 maps V ∩Y into BF n . T−1 is an
n-tuple of linear functionals on Y . Since it maps a bounded neighborhood of
zero in Y into a bounded set in F , it is continuous by Theorem 3.15, hence
T is a homeomorphism.
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¡ Let {u j} be a basis for Y , and let T ∶F n → Y be a linear map defined by
T(e j) = u j. It is an isomorphism, hence by the preceding item it is a homeo-
morphism. Let as above K = T(S) and let V be a balanced neighborhood of 0
(in X ) that does not intersect K.

Let x ∈Y . By Theorem 3.12, there exists a t > 0 for which

x ∈ tV,

and therefore it is in the closure of the set1

tV ∩Y ⊂ tT(BF n) ⊂ T(tBF n).
The latter being compact, it is closed. Since x is in the closure of a closed set,

x ∈ T(tBF n) ⊂Y .

�

Corollary 3.18 There is exists a unique topology on F n (viewed as a topological
vector space), and all n-dimensional topological vector spaces are homeomorphic.

Proposition 3.19 Every locally compact topological vector space has finite di-
mension.

Proof. Let X be a locally compact topological vector space: it has some neighbor-
hood V whose closure V is compact. By Theorem 3.12 V is bounded and hence also
V . Moreover,

B = {V �2n ∶ n ∈N}
is a local base for X .

Let y ∈V . By definition y− 1
2V intersects V , i.e., y ∈V + 1

2V , from which we infer
that

V ⊂V + 1
2V =�

x∈V(x+ 1
2V).

Since V is compact, it can be covered by a finite union:

V ⊂ (x1+ 1
2V)∩⋅ ⋅ ⋅∩(xm+ 1

2V).
Let Y =Span{x1, . . . ,xm}. It is a finite-dimensional subspace of X , hence closed by
Proposition 3.17. Since V ⊂Y + 1

2V , and since aY =Y for every a ≠ 0, it follows
that

1
2V ⊂ 1

2Y + 1
4V =Y + 1

4V,

1It is easy to show that x ∈V and x ∈Y implies that x ∈V ∩Y .
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and hence
V ⊂Y + 1

2V ⊂Y +Y + 1
4V =Y + 1

4V.

We may continue similarly to show that V ⊂Y + 1
8V , and so on, namely

V ⊂ ∞�
n=1
(Y + 1

2n V).
Since B is a local base at zero, it follows that V is a subset of every neighborhood
of Y , that is2

V ⊂Y =Y .

On the other hand, still by Theorem 3.12,

X = ∞�
n=1

nV ⊂Y ,

which implies X =Y , i.e., X is finite-dimensional. �

Corollary 3.20 Every locally bounded topological vector space that has the
Heine-Borel property has finite dimension.

Proof. If X is locally bounded then it has a bounded neighborhood V . It follows
that V is also bounded. Since X satisfies the Heine-Borel property V is compact,
i.e., X is locally compact, and therefore has finite dimension. �

3.5 Metrization

What does it take for a topological vector space to be metrizable? Suppose there is
a metric d compatible with the topology t . Thus, all open sets are unions of open
balls, and in particular, the countable collection of balls B(0,1�n) forms a local
base at the origin. It turns out that the existence of a countable local base is also
sufficient for metrizability.

Theorem 3.21 Let X be topological vector space that has a countable local base.
Then there is a metric d on X such that:

¿ d is compatible with t (every t-open set is a union of d-open balls).
¡ The open balls B(0,a) are balanced.
¬ d is invariant: d(x+ z,y+ z) = d(x,y).

2Indeed, let x ∈V , then for every n,
x ∈Y + 1

2n V.

Let U ∈N0. Then x+U intersects Y which proves that x ∈Y .
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√ If, in addition, X is locally convex, then d can be chosen such that all open
balls are convex. (Please note: we are used that open balls are convex; this
is true in a normed space but not in general metric spaces.)

Proof. Let B′ be a countable local base. By Theorem 3.9 and Lemma 3.3 there
exists a countable local base B = {Vn} whose members are all balanced, and further-
more,

Vn+1+Vn+1+Vn+1+Vn+1 ⊂Vn.

(If X is locally convex, the local base can be chosen to include convex sets.) This
implies that for all n and k:

Vn+1+Vn+2+Vn+3+�+Vn+k ⊂Vn.

Let D be the set of dyadic rational numbers:

D = �∞�
n=1

cn

2n � cn ∈ {0,1}, and cn = 0 for n >N, N ∈N� .
D is dense in [0,1]. Define the function j ∶D∪{r ≥ 1}→ 2X :

j(r) = �������
X r ≥ 1
c1(r)V1+c2(r)V2+ . . . r ∈D.

The sum in this definition is always finite. For example, j(1.2) =X and j(0.75) =
V1+V2. By the property of the base {Vn},

j
�
�

N2�
n=N1

cn

2n

�
� =

N2�
n=N1

cnVn ⊂VN1−1.

Then define the functional f ∶X →R:

f (x) = inf{r ∶ x ∈ j(r)},
and define

d(x,y) = f (y−x).
We will show that d is indeed a metric on X that satisfies all required properties.
This will rely on the following fact:

Lemma 3.22 For r,s ∈D

j(r)+j(s) ⊂ j(r+ s).
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Proof. If r+ s ≥ 1 then this is obvious as j(r+ s) =X .

Suppose then that r,s ∈D and r+ s ∈D. The first possibility is that cn(r)+cn(s) =
cn(r+s) for all n. This happens if cn(r) and cn(s) are never both equal to one. Then,

j(r+ s) = ∞�
n=1

cn(r+ s)Vn = ∞�
n=1

cn(r)Vn+ ∞�
n=1

cn(s)Vn = j(r)+j(s).
Otherwise, there exists an n for which

cn(r)+cn(s) ≠ cn(r+ s).
Let N be the smallest n where this happens: then

cN(r) = cN(s) = 0 and cN(r+ s) = 1.

It follows that

j(r) ⊂ c1(r)V1+ . . .cN−1(t)VN−1+VN+1+VN+2+ . . .⊂ c1(r)V1+ . . .cN−1(t)VN−1+VN+1+VN+1,

j(s) ⊂ c1(s)V1+ . . .cN−1(s)VN−1+VN+1+VN+1,

and

j(r)+j(s) ⊂ c1(r+ s)V1+ . . .cN−1(r+ s)VN−1+VN+1+VN+1+VN+1+VN+1⊂ c1(r+ s)V1+ . . .cN−1(r+ s)VN−1+VN ⊂ j(r+ s).
�

Lemma 3.23 For all r ∈D∪ [1,∞):
0 ∈ j(r).

Proof. For every r, j(r) is non-empty and it contains a neighborhood of zero. �

Lemma 3.24 The set {j(r) ∶ r ∈D}
is totally ordered:

r < t implies j(r) ⊂ j(t).

Proof. By the first lemma, for r < t:

j(r) ⊂ j(r)+j(t − r) ⊂ j(t).
�
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Lemma 3.25 For all x,y ∈X :

f (x+y) ≤ f (x)+ f (y).

Proof. Let x,y ∈X be given. Note that the range of f is [0,1], hence we can limit
ourselves to the case where the right hand side is less than 1. Fix e > 0. There are
r,s ∈D such that

f (x) < r f (y) < s and r+ s < f (x)+ f (y)+e.

Because {j(r)} is fully ordered, this implies that x ∈ j(r), y ∈ j(s), hence

x+y ∈ j(r)+j(s) ⊂ j(r+ s).
Thus,

f (x+y) ≤ r+ s < f (x)+ f (y)+e,
which holds for every e > 0. �

Lemma 3.26 The function f satisfies the additional properties:

¿ f (x) = f (−x).
¡ f (0) = 0.
¬ f (x) > 0 for x ≠ 0.

Proof. Since the j(r) are unions of balanced sets they are balanced, from which
follows that f (x) = f (−x). f (0) = 0 because 0 ∈j(r) for all r ∈D. Finally, if x ≠ 0, it
does no belong to some Vn (by separation) i.e., to some j(s), and since the {j(r)}
form an ordered set, it does not belong to j(r) for all r < s, from which follows that
f (x) > 0. �
Back to the main proof. The properties of f imply that d(x,y) = f (x−y) is a metric
on X . It is symmetric, vanishes if and only if x = y, it is translationally invariant,
and

d(x,y) = f (x−y) = f (x− z−(y− z))
≤ f (x− z)+ f (y− z)
= d(x,z)+d(z,y).

We next want to show that this metric is compatible with the topology. Consider the
d-open balls,

B(0,d) = {x ∶ d(x,0) < d} = {x ∶ f (x) < d} =�
r<d

j(r).
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(We used the fact that f (x) < t implies that x ∈ j(t).) In particular, if d < 1�2n, then
B(0,d) ⊂Vn, which proves that the open balls, B(0,1�2n), form a local base.

The open balls are balanced because each j(r) is balanced and the union of balanced
set is balanced. If the Vn are convex then j(r) are convex.

�

3.6 Cauchy sequences

Cauchy sequences in metric spaces

We know from second year undergrad: a sequence (xn) in a metric space (X ,d) is
called a Cauchy sequence if

∀e > 0 ∃N ∈N such that ∀m,n >N d(xm,xn) < e.

Cauchy sequences in topological vector spaces

In a topological vector space we can define a Cauchy sequence independently of a
metric. Take a local base B. A sequence (xn) is a Cauchy sequence if

∀V ∈B ∃N ∈N such that ∀m,n >N xm−xn ∈V.

This definition is independent of the local base since if this is true for one local base
it is true for any other local base.

Cauchy sequences in topological vector spaces with compatible metric

Is a d-Cauchy sequence the same as a t-Cauchy sequence? Yes. In a topological
vector space with a compatible metric the open metric balls are a local base.

The following proposition refers to a distance increasing map between two metric
spaces:

Proposition 3.27 Let (X ,d1) and (Y ,d2) be metric spaces, where (X ,d1) is
complete. Let E ⊂X1 be a closed set and suppose that

f ∶ E →Y

is continuous and satisfies

d2( f (x), f (x′)) ≥ d1(x,x′).
Then f (E) is closed in Y .
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Proof. Take y ∈ f (E). Then there exists a sequence f (xn) ∈ f (E) such that f (xn)→ y
in Y . It follows that (xn) is a Cauchy sequence, and since E is closed, the limit x is
in E. By the continuity of f ,

y = lim
n→∞ f (xn) = f (x) ∈ f (E).

�
We found that finite-dimensional subspaces of topological vector spaces are closed.
The following proposition provides a criterion for an infinite-dimensional subspace
of a topological vector space to be closed.

Proposition 3.28 Let X be a topological vector space and let Y ⊂X be a linear
subspace endowed with the induced topology. If Y is an F-space then it is closed
in X .

Proof. Recall that being an F-space means that the topology on Y is consistent with
a complete translationally invariant metric.

Let d be such an invariant metric, and set

B1�n = {y ∈Y ∶ d(y,0) < 1�n},
which are open balls in Y .

Let Un ∈N0 be neighborhoods of zero in X such that Un∩Y = B1�n (such neigh-
borhoods exist because the open sets in Y are intersections of open sets in X with
Y ). Let then Vn ∈N sym

0 such that Vn+1 ⊂Vn and Vn+Vn ⊂Un.

Let x ∈Y (the closure of Y in X ). Define

En = (x+Vn)∩Y

(this intersection is not empty because every neighborhood of x intersects Y ).
Suppose that y1,y2 ∈ En, then

y1−y2 ∈Y and y1−y2 ∈Vn+Vn ⊂Un �⇒ y1−y2 ∈ B1�n.
We now use the fact that Y is an F-space: The sets En are non-empty and their
diameter tends to zero. Since Y is complete, the intersection of the Y -closure of
the sets En contains exactly one point, which we denote by y0. Specifically, y0 is the
only point, such that for every U ′ ∈N0 in Y and every n,

(y0+U ′)∩ [(x+Vn)∩Y ] ≠�.
Since open neighborhoods in Y are intersections of open neighborhoods in X with
Y , it follows that for every U ∈N0 in X and every n

(y0+U)∩(x+Vn)∩Y ≠�,
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Take now any neighborhood W ∈N0 in X and define

FW
n = (x+W ∩Vn)∩Y .

By the exact same same argument the intersection of the Y closure of the sets FW
n

contains exactly one point. But since FW
n ⊂ En, this point has to be y0. Thus, there

exists a unique point y0, such that for every U,W ∈N0 in X and every n,

(y0+U)∩(x+W ∩Vn)∩Y ≠�.
Since x+W ∩Vn ⊂ x+W , it follows that for every U,W ∈N0

(y0+U)∩(x+W) ≠�.
Since the space is Hausdorff, x = y0 ∈Y , i.e., Y =Y . �
The following lemma will turn to be useful:

Lemma 3.29

¿ Let d be a translation invariant metric on a vector space X , then

d(nx,0) ≤ nd(x,0).
¡ If xn→ 0 in a metrizable topological vector space, then there exist positive

scalars an→∞, such that anxn→ 0.

Proof. The first part is obvious by successive applications of the triangle inequality,

d(nx,0) ≤ n�
k=1

d(kx,(k−1)x) ≤ nd(x,0).

For the second, we note that since d(xn,0)→ 0, there exists a diverging sequence of
positive integers nk, such that

d(xk,0) ≤ 1
n2

k
,

from which we get that

d(nkxk,0) ≤ nk d(xk,0) ≤ 1
nk
→ 0.

�
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3.7 Boundedness and continuity

We defined bounded sets in topological vector spaces. When the space is metrizable,
one could also define a set to be bounded if its diameter is finite. The two definitions
are not equivalent. For example, the metric that was defined in Theorem 3.21
satisfies d(x,y) ≤ 1, so that even X is a bounded set. We will always refer to the
topological notion of boundedness.

We already know that compact sets are bounded (Theorem 3.12), and that the closure
of a bounded set is bounded (Proposition 3.8).

Here is a simple exercise:

Proposition 3.30 A Cauchy sequence (and in particular a converging sequence)
in a topological vector space is bounded.

Proof. Let (xn) be a Cauchy sequence. Let W ∈N bal
0 , and let V ∈N bal

0 satisfy

V +V ⊂W.

By the definition of a Cauchy sequence, there exists an N such that for all m,n ≥N,

xn−xm ∈V,

and in particular, ∀n >N xn ∈ xN +V.

Set s > 1 such that xN ∈ sV (we know that such an S exists), then for all n >N,

xn ∈ sV +V ⊂ sV + sV ⊂ sW.

Since for balanced sets sW ⊂ tW for s < t, and since every neighborhood of zero
contains a balanced neighborhood, this proves that the sequence is indeed bounded.�

Proposition 3.31 For every x ≠ 0 the set E = {nx ∶ n ∈N} is not bounded.

Proof. By separation, there exists a neighborhood V ∈N0 that does not contain x,
hence nx �∈ nV , i.e., for every n,

E �⊂ nV.

�
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Corollary 3.32 The only bounded subspace of a topological vector space is {0}.

Proposition 3.33 Let X be a topological vector space and let E ⊂X . Then, E
is bounded if and only if for every sequence xn ∈ E and every sequence of scalars
an→ 0, anxn→ 0.

Proof. Suppose that E is bounded. Let an → 0. Let V ∈N bal
0 . Then, E ⊂ tV for

some t, and for sufficiently large n, ant < 1, in which case

anE ⊂ (ant)V ⊂V.

Thus, for every sequence xn ∈ E, anxn is eventually in any neighborhood of zero.

Suppose that for every sequence xn ∈ E and every an→ 0, anxn→ 0. Suppose, by
contradiction, that E were not bounded. Then there exists a V ∈N0 and a sequence
rn→∞, such that no rnV contains E. Take then a sequence xn ∈ E such that xn �∈ rnV .
Thus,

r−1
n xn �∈V,

which implies that r−1
n xn �→ 0, which is a contradiction. �

We are now in measure to establish the relations between continuous and bounded
linear transformations. As we shall see, the relation is more involved than in normed
spaces, where the two notions coincide.

Theorem 3.34 Let T ∶X →Y be a linear map between topological vector spaces.
Consider the following four properties:

¿ T is continuous.
¡ T is bounded.
¬ If xn→ 0 then {T(xn) � n ∈N} is bounded.
√ If xn→ 0 then T(xn)→ 0.

Then,
¿ �⇒ ¡ �⇒ ¬.

If, moreover, X is metrizable, then

¬ �⇒ √ �⇒ ¿,

i.e., all four are equivalent.
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Proof. ¿→¡. Suppose that T is continuous. Let V ⊂X be bounded. Let W ∈N0
in Y . Since T(0) = 0, ∃U ∈N0 T(U) ∈W.

Because V is bounded there exists an s such that for all t > s,

V ⊂ tU.

By linearity, for all t > s,

T(V) ⊂ T(tU) = t T(U) ⊂ tW,

hence T(V) is bounded, which implies that T is bounded.

¡→¬. Suppose that T is bounded and let xn→ 0. Since convergent sequences are
bounded (Proposition 3.30), namely,

E = {xn � n ∈N}
is bounded, then

T(E) = {T(xn) � n ∈N}
is bounded.

¬→√. Suppose now that X is metrizable and let d be a compatible and invariant
metric. Suppose that xn→ 0 and {T(xn) � n ∈N} is bounded. By the second part of
Lemma 3.29 (and here we need metrizability), there exists a sequence an→∞, such
that anxn→ 0. Then,

T(xn) = 1
an

T(anxn)���������������������������
bounded

,

and by Proposition 3.33, T(xn)→ 0.

√→¿. For any first countable topological space, sequential continuity implies conti-
nuity. Any metrizable topological vector space is first countable (has a countable
local base) because the open balls are bounded. �

3.8 Seminorms and local convexity

Definition 3.17 A seminorm ( �%/9&1 */2) on a vector space X is function
p ∶X →R, such that

p(x+y) ≤ p(x)+ p(x),
and

p(ax) = �a � p(x).
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Definition 3.18 Let P be a family of seminorms. It is called separating if to
each x ≠ 0 corresponds a p ∈P , such that p(x) ≠ 0.

Comment 3.5 The only difference between a norm and a seminorm is that the
latter does not separate between points; knowing that p(y−x) = 0 does not guarantee
that x = y. While a single seminorm does not separate between points, a family of
seminorms might do so.

Recall the definition of absorbing sets (�;3-&" %7&"8). In fact, we proved that
every neighborhood of zero is absorbing. For convex absorbing sets K (in a vector
space—no topology required) we defined the Minkowski functionals,

pK(x) = inf{t > 0 ∶ x�t ∈K}.
We proved that the Minkowski functionals are sub-additive, and pK(ax) = a pK(x)
for a > 0. Also, pK(x) ≤ 1 for x ∈ K and pK(x) < 1 for internal points (�+&; ;&$&81)
of K.

There turns out to be a strong relation between Minkowski functionals and semi-
norms: every seminorm is a Minkowski functional of some balanced, convex,
absorbing set. This follows from the following propositions:

Proposition 3.35 Let p be a seminorm on a vector space X (no topology). Then:

¿ p is symmetric.
¡ p(0) = 0.
¬ �p(x)− p(y)� ≤ p(x−y).
√ p(x) ≥ 0.
ƒ ker p is a linear subspace.
≈ The set B = {x ∶ p(x) < 1} is convex, balanced and absorbing.
∆ p = pB.

Proof. By the properties of the seminorm:

¿ p(x−y) = p(−(y−x)) = �−1� p(y−x) = p(y−x).
¡ p(0) = p(0 ⋅x) = 0 ⋅ p(x) = 0.
¬ This follows from the inequalities

p(x) ≤ p(y)+ p(x−y) and p(y) ≤ p(x)+ p(y−x) = p(x)+ p(x−y).
√ By the previous item, for every x:

0 ≤ �p(x)− p(0)� ≤ p(x).
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ƒ If x,y ∈ ker p:

p(ax+by) ≤ p(ax)+ p(by) = �a � p(x)+ �b � p(y) = 0.

≈ If p(x) < 1 then for every �a � ≤ 1, p(ax) = �a �p(x) < 1, which proves that B is
balanced. If x,y ∈ B then for every 0 ≤ t ≤ 1

p(tx+(1− t)y) ≤ t p(x)+(1− t) p(y) < 1,

hence B is convex. For every x ∈X and s > p(x), p(x�s) < 1, i.e., x ∈ sB, so
that B is absorbing.

∆ Finally, consider

pB(x) = inf{s > 0 ∶ x�s ∈ B} = inf{s > 0 ∶ p(x�s) < 1} = inf{s > 0 ∶ p(x) < s}.
If p(x) < r then pB(x) < r, i.e., pB ≤ p. If pB(x) < r, then there exists an
s < pB(x) such that p(x) = s, i.e., p ≤ pB.

�
And now for the reverse direction, which we have already shown:

Proposition 3.36 Let K be a convex absorbing set in a vector space X . Then

¿ pK(x+y) ≤ pK(x)+ pK(y).
¡ pK(tx) = t pK(x) for all t > 0.
¬ If K is also balanced then pK(ax) = �a � pK(x).

To conclude:

Corollary 3.37 In a vector space X there is a one-to-one correspondence be-
tween the seminorms and Minkowski functionals on convex balanced absorbing
sets.

Up to now we were in the realm of vector space with no topology. We proceed to
see the importance of seminorms in the context of topological vector spaces. Recall
that in a topological vector space every open neighborhood of zero is absorbing and
contains a balanced neighborhood. What we need in addition is convexity.

Proposition 3.38 Let B be a convex and balanced local base in a (locally con-
vex!) topological vector space X . Then,

¿ ∀V ∈B V = {x ∶ pV (x) < 1}.
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¡ {pV � V ∈B} is a separating family of continuous seminorms.

Comment 3.6 This is essentially what local convexity gives—the fact that the
Minkowski functional over that base are both continuous and separating.

Proof.

¿ Let x ∈V . Since V is open, there is a t < 1 such that x�t ∈V , which implies that

pV (x) = inf{s > 0 ∶ x�s ∈V} < 1

i.e.,
V ⊂ {x � pV (x) < 1}.

Conversely, if x �∈V , then by convexity x�t ∈V only for t > 1, i.e., pV (x) ≥ 1.
¡ We already know that the functions pV are seminorms. We will first show that

this family of seminorms is separating. Let x ≠ 0. Let V ∈B be such that x �∈V
(separation). Then pV (x) ≥ 1 > 0. The continuity of the pV ’s follows from the
inequality �pV (x)− pV (0)� ≤ pV (x).
Recall that {V �n ∶ n ∈N} is a local base. If x ∈V �n then

�pV (x)− pV (0)� ≤ pV (x) = 1
n

pV (nx) < 1
n
.

That is, for all e > 0 there exists a neighborhood U ∈N0 such that

pV (U) ⊂ [0,e).
�

And why do we care about separating families of seminorms? The answer is below:
a separating family of seminorms allows us to define a topology on a vector space.
In fact, very often a vector space is given without any topology, and the way to
topologize it by means of a separating family of seminorms.

Theorem 3.39 Let P be a separating family of seminorms on a vector space X .
For each p ∈P and n ∈N define

V(p,n) = {x ∶ p(x) < 1�n}.
Let B be the set of all finite intersections of V(p,n)’s. Then, B is a convex
balanced local base for a topology t on X (that is, (X ,t) is locally convex with
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respect to this topology). Moreover,

¿ Every p ∈P is continuous.

¡ A set E ⊂X is bounded if and only if p is bounded on E for every p ∈P .

Proof. We defined

B = { �(p,n)∈IV(p,n) � I ⊂P ×N, �I� <∞},
where all the intersections are finite. Clearly, B is a collection of sets that contain
the origin and that are closed under finite intersections.

Set A ⊂X be be open if it is a union of translates of members of B. That is, A is
open if and only if it can be represented in the form

A = �
x∈X ,B(x)∈B(x+B(x)) ,

where the union can be empty. We denote the collection of all such set by t . t is a
translation-invariant topology on X because:

¿ � ∈ t .
¡ X ∈ t (obvious as well).
¬ t is closed under arbitrary unions.
√ t is closed under finite intersection as

�
x∈I,B(x)∈BI

(x+B(x))∩ �
y∈J,B(y)∈BJ

(y+B(y)) = �
x∈I,B(x)∈BI

�
y∈J,B(y)∈BJ

(x+B(x))∪(y+B(y))
=????

We know that each V(p,n) is convex and balanced. An intersection of convex
balanced sets is convex and balanced, hence B constitutes a convex balanced local
base.

We need to show that the vector space X with the topology t is a topological vector
space. Let 0 ≠ x ∈X . Since the family of seminorms is separating,

∃p ∈P p(x) > 0.

For n ∈N such that n p(x) ≥ 1,

p(x) = n p(x)
n
≥ 1

n
,

i.e., x �∈V(p,n), or 0 �∈ x−V(p,n). This means that the complement of {0} is open,
i.e., {0} is closed. By translation-invariance, every {x} is closed.
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We next show that addition is continuous. Let U ∈N0. Then, by the property of the
local base, there exist

V(p1,n1)∩⋅ ⋅ ⋅∩V(pk,nk) ⊂U.

Let
W =V(p1,2n1)∩⋅ ⋅ ⋅∩V(pk,2nk),

then since seminorms are subadditive,

V(p1,2n1)+V(p1,2n1) = {x � p1(x) < 1�2n}+{x � p1(x) < 1�2n}
= {x+y � p1(x) < 1�2n, p1(y) < 1�2n}
⊂ {x+y � p1(x+y) < 1�n} =V(p1,n1),

from which we conclude that
W +W ⊂U.

This proves that addition is continuous! A similar argument shows that scalar
multiplication is continuous as well.

X is a locally convex topological vector space. Every p ∈P is continuous at 0
because for every e > 0 set n > 1�e and

p(V(p,n)) ⊂ B(0,e).
It is continuous everywhere by

�p(x)− p(y)� ≤ p(x−y).
Finally, suppose that E is bounded. Take p ∈P . Then

V(p,1) = {x ∈X ∶ p(x) < 1}
is a neighborhood of zero. Hence,

E ⊂ nV(p,1)
for some n (by definition of boundedness). Hence, for all x ∈ E,

x ∈ {nx ∈X ∶ p(x) < 1} = {nx ∈X ∶ p(nx) < n} = {y ∈X ∶ p(y) < n},
i.e., p(x) < n.

Conversely, if p(E) is bounded for every p ∈P . Then there are numbers Mp such
that

sup
x∈E p(x) <Mp.

Let U ∈N0. Again, there are

V(p1,n1)∩⋅ ⋅ ⋅∩V(pk,nk) ⊂U.

For sufficiently large n,

E ⊂ n(V(p1,n1)∩⋅ ⋅ ⋅∩V(pk,nk)) ⊂ nU,

i.e., E is bounded. �
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Comments 3.1

¿ Let (X ,t) be a locally convex topological vector space, and let B be a convex
balanced local base. This local base defines a separating family of seminorms
on X , which by the previous theorem induces a topology t ′ on X . Is this
topology the same as t? The answer is positive.

¡ If P = (pn) is countable separating family of seminorms, then the resulting
topology has a countable local base, and by Theorem 3.21 it is metrizable.
One can show that the following is a compatible metric:

d(x,y) =max
n

cn pn(x−y)
1+ pn(x−y) ,

where (cn) is any sequence of positive numbers that decays to zero (it is easy
to see that the maximum is indeed attained). Clearly, d(x,x) = 0. Also, since
the pn’s are separating d(x,y) > 0 for x ≠ y. Symmetry, as well as translational
invariance are obvious. Finally, the triangle inequality follows form the fact
that every pn is subadditive, and that a ≤ b+c implies that

a
1+a

≤ b
1+b

+ c
1+c

.

It remains to show that this metric is compatible with the topology.

And finally:

Theorem 3.40 (X ,t) is normable if and only if there exists a convex bounded
neighborhood.

Proof. If X is normable then BX = {x ∶ �x� < 1} is convex and bounded.

Suppose that there exists a convex and bounded V ∈N0. Then there exists, by
Theorem 3.9 a convex and balanced (and certainly bounded) neighborhood U ⊂V .
Set �x� = pU(x).
We will show that this is indeed a norm. Clearly, �x� = 0 if and only if x = 0. Since
U is balanced then pU(ax) = �a � pU(x). The triangle inequality follows from the
properties of pU . It remains to show that this norm is compatible with the topology.
This follows from the fact that

B(0,r) = {x ∶ �x� < r} = {x ∶ pU(x) < r} = {x ∶ pU(x�r) < 1} ⊂ rU,

which means that B(0,r) is bounded, hence

{B(0,r) ∶ r > 0}
is a local base. �



3.9 Examples 215

3.9 Examples

3.9.1 The space C(W)
Let W an open set in Rn. We consider the space C(W) of all continuous functions.
Note that the sup-norm does not work here. There exist unbounded continuous
functions on open sets.

Every open set W in Rn can be written as

W = ∞�
n=1

Kn,

where Kn �Kn+1, where the Kn are compact, and � stands for compactly embedded,
i.e., Kn is a compact set in the interior of Kn+1. We topologize C(W) with the
separating family of seminorms,

pn( f ) = sup{� f (x)� ∶ x ∈Kn} ≡ � f �Kn .

(These are clearly seminorms, and they are separating because for every f ≠ 0 there
exists an n such that f �Kn ≠ 0.)

Since the pn’s are monotonically increasing,

M�
m=1

n�
k=1

V(pk,m) = M�
m=1

n�
k=1
{ f ∶ pk( f ) < 1�m} =V(pn,M),

which means that the V(pn,M) form a convex local base for C(W). In fact, V(pn,M)
contains a neighborhood obtained by taking n,M to be the greatest of the two, from
which follows that

Vn = { f ∶ pn( f ) < 1�n}
is a convex local base for C(W), and the pn’s are continuous in this topology.

We can thus endow this topological space with a compatible metric, for example,

d( f ,g) =max
n

2−n pn( f −g)
1+ pn( f −g) .

We will now show that this space is complete. Recall that if a topological vector
space has a compatible metric with respect to which it is complete, then it is called
an F-space. If, moreover, the space is locally convex, then it is called a Fréchet
space. Thus, C(W) is a Fréchet space.

Let then ( fn) be a Cauchy sequence. This means that for every e > 0 there exists an
N, such that for every m,n >N,

max
k

2−k pk( fn− fm)
1+ pk( fn− fm) < e,
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and a fortiori,

(∀k ∈N) 2−k pk( fn− fm)
1+ pk( fn− fm) < e,

which means that ( fn) is a Cauchy sequence in each Kk (endowed with the sup-
norm), and hence converges uniformly to a function f .

Given e let K be such 2−K < e , then

max
k>K

2−k pk( fn− f )
1+ pk( fn− f ) < e,

and there exists an N, such that for every n >N,

max
k≤K

2−k pk( fn− f )
1+ pk( fn− f ) < e,

which implies that fn→ f , hence the space is indeed complete.

Remains the question whether C(W) with this topology is normable. For this, the
origin must have a convex bounded neighborhood. Recall that a set E is bounded if
and only if {pn( f ) ∶ f ∈ E} is bounded for every n, i.e., if

{sup{� f (x)� ∶ x ∈Kn} ∶ f ∈ E}
is a bounded set for every n, or if

∀n ∈N sup{� f (x)� ∶ x ∈Kn, f ∈ E} <∞.

Because the Vn form a base, every neighborhood of zero contains a set

Vk = { f ∶ pk( f ) < 1�k},
hence,

sup{� f (x)� ∶ x ∈Kn, f ∈ E} ≥ sup{� f �Kn ∶ � f �Kk < 1�k}.
The right hand side can be made as large as we please for n > k, i.e., no set is
bounded, and hence the space is not normable.

3.9.2 The space C∞(R)
For simplicity, we consider in the section functions R→R.

Definition 3.19 A function f ∶R→R belongs to the space C∞(R) if for every
k ∈N, f (k) ∈C.
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Definition 3.20 The support ( �+/&;) of a function f ∶R→R is

Supp f = {x ∶ f (x) ≠ 0}.
Definition 3.21 Let K ⊂R be compact. The space DK is the subspace of C∞(R)-
functions whose support lies in K.

We endow C∞(R) with a topology, turning it into a Fréchet space, such that for
every compact set K, DK is a closed subspace. As above, let (Kn) be an increasing
sequence of compact sets covering R. We define the seminorms:

pn( f ) =max{� f (k)(x)� ∶ x ∈Kn,k ≤ n}.
These seminorms are a separating family, hence

Exercise 3.5 In undergraduate calculus, you learned to distinguish between
pointwise convergence and uniform convergence. In particular, you learned that
the latter is convergence in a metric space (in fact a normed space)—the space of
functions on a compact set endowed with the sup-norm. Pointwise convergence,
of the other hand, was not presented as a mode of convergence in any topological
space.

Consider then the space X of functions [0,1]→R. We topologize it with the
separating family of seminorms:

P = {px ∶ x ∈ [0,1]} px( f ) = � f (x)�.
¿ Show that this is indeed a separating family of seminorms, and describe

the induced topology t .
¡ Show that there exists a sequence fn → 0, such that for every sequence

an→∞, an fn �→ 0.
¬ Conclude that (X ,t) is not metrizable.

�

3.10 Completeness

This section is devoted to the notion of completeness. Most of the content of the
second chapter of Rudin coincides with material learned along this course. We will
only highlight differences that result from the more general context.
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3.10.1 The Banach-Steinhaus theorem

Recall the Banach-Steinhaus theorem, as we proved it for Banach spaces:

Theorem 3.41 Let X be a Banach space and let Y be a normed space. Let{Ta ∶ a ∈ A} be a collection of bounded linear maps, such that

(∀x ∈X ) sup
a
�T x� <∞.

Then,
sup

a
�Ta� <∞.

We will now see how this generalizes for topological vector spaces. First, a defini-
tion:

Definition 3.22 Let X ,Y be topological vector spaces. let {Ta ∶ a ∈ A} be a
collection of linear maps X → Y . This collection is equicontinuous (%5*79
�%$*(! %$*/") if

(∀U ∈N Y
0 )(∃V ∈N X

0 ) ∶ (∀a ∈ A)(Ta(V) ⊂U).
Comment 3.7 Compare with the definition of equicontinuity in a metric space.

We have shown that continuity implies boundedness. We will now show that
equicontinuity implies uniform boundedness:

Proposition 3.42 Let X ,Y be topological vector spaces. Let {Ta ∶ a ∈ A} be a
equicontinuous collection of linear maps X →Y . Then to every bounded set
E ⊂X corresponds a bounded set F ⊂Y , such that

(∀a ∈ A) Ta(E) ⊂ F.

We say then that {Ta ∶ a ∈ A} is uniformly bounded.

Proof. Let E ⊂X be bounded, and set

F = �
a∈ATa(E).

Obviously, Ta(E) ⊂ F for all a ∈ A, so it only remains to prove that F is bounded.

Let U ∈N Y
0 . Because {Ta} is equicontinuous, there exists a V ∈N X

0 such that

(∀a ∈ A) Ta(V) ⊂U.
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Since E is bounded, there exists an s > 0 such that

(∀t > s) E ⊂ tV.

Then, (∀a ∈ A)(∀t > s) Ta(E) ⊂ Ta(tV) = t Ta(V) ⊂ tU,

hence F ⊂ tU , which proves that F is bounded. �
This is the Banach-Steinhaus theorem in the context of topological vector spaces:

Theorem 3.43 Let X and Y be topological vector spaces. Let {Ta ∶a ∈ A} be a
collection of continuous linear mappings X →Y . Define

B = {x ∈X ∶ {Ta(x) ∶ a ∈ A} is bounded}.
If B is of the second category (i.e., not a countable union of nowhere dense sets),
then B =X and the {Ta} are equicontinuous.

Comment 3.8 OK, let’s remind ourselves what is this category stuff. A set is called
nowhere dense (�-*-$) if its closure has an empty interior. An example of a nowhere
dense set in R is the set {1�n ∶ n ∈N}.
The complement of the closure of a nowhere dense set is dense.

A set is called of the first category if it is a countable union of nowhere dense sets.
An example of a set of the first category is the set of functions in C[0,1] that are
differentiable at some point. A set that is not of the first category is of the second
category.

Baire’s theorem states that in a complete metric set, if the space can be covered by
a countable union of closed set, then one of them contains an open set. (Equivalently,
Baire’s theorem states that the intersection of every countable collection of dense
open sets is dense.)

Let En be a countable collection of nowhere dense sets. Then, (En)c is open and
dense, and by Baire’s theorem,

∞�
n=1
(En)c ≠�.

Taking complements, ∞�
n=1
(En) ≠X .

That is, a complete metric space is not a countable union of nowhere dense sets—it
is of the second category.
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Proof. Choose U,W ∈N bal
0 in Y , such that

U +U ⊂W,

and set
E = �

a∈AT−1
a (U) = {x ∈X ∶ ∀a ∈ A,Ta(x) ∈U}.

Since each of the Ta is continuous, and E is an intersection of closed sets, it is
closed.

By definition, if x ∈ B, then the set {Ta(x) ∶ a ∈ A} is bounded in Y . Thus,

(∃n ∈N) ∶ {Ta(x) ∶ a ∈ A} ⊂ nU.

Thus x ∈ nE, namely.

B ⊂ ∞�
n=1

nE.

If B is of the second category, then at least one of the nE is of the second category3,
i.e., E itself is of the second category. A set of the second category has an interior
point, say x, hence E −x contains a neighborhood V of zero. Then for every a ∈ A,

Ta(V) ⊂ Ta(x)−Ta(E) ⊂U −U ⊂W,

which proves that {Ta} is equicontinuous.

It thus follows that {Ta} is uniformly bounded, i.e., for every x,

{Ta(x) ∶ a ∈ A}
is bounded, i.e., B =X . �

Corollary 3.44 If {Ta} is a collection of continuous linear maps from an F-space
X into a topological vector space Y , and if the sets

{Ta(x) ∶ a ∈ A}
are bounded (in Y ) for every x ∈X , then {Ta} is equicontinuous.

Proof. This is an immediate consequence of the previous theorem, because an
F-space is of the second category. �

3A countable union of sets of the first category is also of the first category.
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How does this last corollary translate in the case of a Banach space? If X is a
Banach space and Y is a normed space, then if

sup
a∈A �Tax� <∞,

then the {Ta} are equicontinuous, which in turn implies that they are uniformly
bounded. That is, for every there exists an M such that the (bounded) unit ball in X
is mapped into a bounded set in Y ,

(∀x ∈X ∶ �x� ≤ 1) �Ta(x)� ≤M,

and hence,
sup
a∈A �Ta� <∞,

which is our good old Banach-Steinhaus theorem.

3.11 The Hahn-Banach theorem

We felt with the Hahn-Banach theorem in Chapter 2, but recall that most of the
content had nothing to do with Banach spaces. Let us first refresh our memory.

The theorem that we called the Hahn-Banach theorem was the following:

Theorem 3.45 — Hahn-Banach. Let V be a real vector space and let p a
functional over V that satisfies:

¿ Sub-linearity: p(x+y) ≤ p(x)+ p(y).
¡ Homogeneity: for every a ≥ 0, p(ax) = a p(x).

Let Y ⊂V be a linear subspace and let f ∶Y →R be a linear functional satisfying:

� f , ⋅� ≤ p�Y .

There there exists a linear functional F on V such that F �Y = f and �F, ⋅� ≤ p.

Note that the Hahn-Banach involves no topology. It is a theorem about a vector
space, a linear subspace, and linear and nonlinear functionals. Also, note that any
seminorm (a term that we did not used back then) satisfies the requirements on p.

Then came an extension theorem:

Theorem 3.46 — Extension theorem. Let X be a normed space and let Y be
a linear subspace. Let f ∈Y ∗. Then there exists an F ∈X ∗, such that F �Y = f
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and �F� = � f �.
Obviously, this theorem does not apply to topological vector spaces.

Definition 3.23 Let X be a topological vector space. Its dual, X ∗, is the vector
space of continuous linear functionals on X .

Comment 3.9 As for now, the dual space is only a vector space, but not a topologi-
cal vector space.

We also had a separation theorem:

Theorem 3.47 — Separation theorem. Let M and N be disjoint convex sets in
a vector space V . If at least one of them, say M, has an internal point, then there
exists a non-zero linear functional that separates between M and N.

Note that this theorem refers to an internal point, which unlike an interior point is
not a topological concept; it is a vector space concept.

In contrast, the following corollary applies to normed spaces:

Corollary 3.48 Let X be a normed space and let K1,K2 be disjoint convex sets
that at least one of them has an interior point. Then there exists a bounded linear
functional f ≠ 0 that separates K1 and K2.

Yes, this theorem does carry on to topological vector spaces.

A very important consequence of the Hahn-Banach theorem is the following:

Proposition 3.49 In a locally-convex topological vector space X , X ∗ separates
points of X .

3.12 Weak topologies

3.12.1 General statements

Definition 3.24 Let S be a set and let t1 and t2 be topologies on S. t1 is said to
be weaker than t2 if

t1 ⊂ t2.

This means that every t1-open set is a t2-open set.
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Comment 3.10 A topology t1 is weaker than a topology t2 if for every t1-open
set A, every point a ∈ A has a t2-neighborhood Ua contained in A, as

A =�
a∈AUa,

i.e., A is also t2-open.

Comment 3.11 If t1 is weaker than t2 then

Id ∶ (S,t1)→ (S,t2)
is an open mapping and

Id ∶ (S,t2)→ (S,t1)
is continuous.

Proposition 3.50 Let t1,t2 be topologies on a set S with t1 ⊂ t2. If (S,t1) is
Hausdorff then so is (S,t2).

Proof. This is obvious by the inclusion of the topologies. �

Proposition 3.51 Let t1,t2 be topologies on a set S with t1 ⊂ t2. If (S,t1) is
Hausdorff and (S,t2) is compact then t1 = t2.

Comment 3.12 This means that one cannot weaken a compact Hausdorff topology
without losing the Hausdorff property. This also means that one cannot strengthen a
compact Hausdorff space without losing compactness.

Proof. Let F be a t2-closed set. Since (S,t2) is compact then F is t2-compact.
Since t1 ⊂ t2 it follows that F is t1-compact (any t1-open cover of F is also a
t2-open cover of F and has a finite subcover). Since t1 is Hausdorff and F is
t1-compact then it is also t1-closed, which completes the proof (we showed that
every t2-closed set is a t1-closed set). �
Let S be a set and let F be a family of mappings from S into topological spaces:

F = { fa ∶ S→Ya � a ∈ I}.
Let t be the topology generated by the subbase

{ f −1
a (V) � a ∈ I, V ∈ tYa}.

Then t is the weakest topology on S for which all the fa are continuous maps (it
is the intersection of all topologies having this property). It is called the weak
topology induced by F , or the F -topology of S.
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Proposition 3.52 Let F be a family of mappings S→Ya where S is a set and
each Ya is a Hausdorff topological space. If F separates points on S then the
F -topology on S is Hausdorff.

Comment 3.13 Here separates between point means that x ≠ y implies that f (x−
y) ≠ f (0). In the linear case it reduces to f (x) ≠ f (y).
Proof. Let x ≠ y ∈ S. Since F separates points, there exists an f ∈F such that

f (x−y) ≠ f (0).
Because Y is Hausdorff there exists U ∈N f (x−y) and W ∈N f (0) that are disjoint. By
definition f −1(U) and f −1(W), which are neighborhoods of x−y and 0, are F -open.
The sets

x+ f −1(U) and y+ f −1(W)
are disjoint and open. �

Proposition 3.53 Let (S,t) be a compact topological space. If there is a sequence{ fn � n ∈N} of continuous real-valued functions that separates points in S then S
is metrizable.

Proof. Since (S,t) is compact and the fn are continuous then they are bounded.
Thus, we can normalize them such that � fn� ≤ 1. Define:

d(x,y) = ∞�
n=1

� fn(x)− fn(y)�
2n .

This series converges. In fact, it converges uniformly on S×S hence the limit is
continuous. Because the fn separate points d(x,y) = 0 iff x = 0. d is also symmetric
and satisfies the triangle inequality.

Thus d is a metric and we denote by td the topology induced by this metric. We
need to show that td = t . Consider the metric balls:

B(x,r) = {y ∈ S � d(x,y) < r}.
Since d is t-continuous on S×S these balls are t-open and

td ⊂ t.

By Proposition 3.51, since t is compact and td is Hausdorff (like any metric space)
then t = td . �
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Lemma 3.54 Let f1, . . . , fn and f be linear functionals on a vector space V (no
topology). Let

N = ker f1∩⋅ ⋅ ⋅∩ker fn.

Then the following are equivalent:

¿ There are scalars such that

f = n�
k=1

ak fk,

i.e.,
f ∈ Span{ fk � k = 1, . . . ,n}.

¡ There exists a constant C > 0 such that for all x ∈ V :

� f (x)� ≤max
k
� fk(x)�.

¬ N ⊂ ker f .

Proof. Suppose that ¿ holds. Then for all x

� f (x)� ≤ n�
k=1
�ak�� fk(x)� ≤ �n max

k
�ak��max

k
� fk(x)�.

Suppose that ¡ holds: � f (x)� ≤Cmax
k
� fk(x)�,

then f vanishes on N.

Finally, suppose that ¬ holds. Define T ∶ V →F n,

T(x) = ( f1(x), . . . , fn(x)).
If is a linear map. If T(x) = T(y) then y−x ∈N and f (x) = f (y). Define a map

s ∶ T(V )→F

by
s( f1(x), . . . , fn(x)) = f (x).

s can be extended as a linear functional to all of F n, i.e., there are scalars a1, . . . ,an

such that

s(u1, . . . ,un) = n�
k=1

akuk,
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and in particular

f (x) = s( f1(x), . . . , fn(x)) = n�
k=1

ak fk(x).
�

Theorem 3.55 Let V be a vector space (no topology) and let V ′ be a separating
vector space of linear functionals on V . Denote by t ′ the V ′-topology on V .
Then (V ,t ′) is a locally convex topological vector space whose dual space is V ′.

Comment 3.14 Local convexity is important because of the Hahn-Banach theo-
rem. An extension of the separation theorem states that If X is a locally convex
topological vector space, A is compact, and B closed, then there exists a continuous
linear map f ∶X →F and s,t ∈R such that

Re f (a) < t < s <Re f (b) for all a ∈ A and b ∈ B.

Proof. V ′ is a point-separating family of maps V →F . Since F is a Hausdorff
space, it follows from Proposition 3.52 that the V ′-topology on V is a Hausdorff
topology. The topology t ′ is translation invariant because the open sets in (V ,t ′)
are generated by the base

{ f −1(A) � f ∈ V ′, A open in F}.
and f is linear.

The topology t ′ is generated by the local subbase,

V( f ,r) = {x ∈ V � � f (x)� < r}.
These sets are balanced and convex (by linearity) hence every finite intersection of
them (i.e. every element in the local base) is balanced and convex. If follows that(V ,t ′) is a locally convex topological space.

We next show that (V ,t ′) is a topological vector space. Note that

1
2

V( f ,r)+ 1
2

V( f ,r) = {1
2 x+ 1

2 y � � f (x)� < r, � f (y)� < r} ⊂V( f ,r).
It follows that every U in the base satisfies such an inclusion as well, hence addition
is continuous. Scalar multiplication is continuous by a similar argument.

It remains to show that V ′ is the dual space of (V ,t ′). Every f ∈V ′ is t ′-continuous
as for all e > 0 � f (V( f ,e))� = � f ({x � � f (x)� < e})� ⊂ [0,e).
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Conversely, let f be a t ′-continuous functional on V ; we need to show that it
belongs to V ′. Take e = 1, there exists a U in the local base such that

� f (U)� ⊂ [0,1).
In other words, there exists a U of the form

U = {x � � f1(x)� < r1, . . . , � fm(x)� < rm},
for which

sup
x∈U � f (x)� < 1.

In particular,
ker f ⊂ ker f1∩⋅ ⋅ ⋅∩ker fm.

It follows from that last lemma that f ∈ Span{ f1, . . . , fm}. �
3.12.2 The weak topology of a topological vector space

Given a topology, we can determine whether a function is continuous. This argu-
ment can be reversed: given a space and functions on that space, we can define a
topology with respect these functions are continuous. For example, we can take
the discrete topology, which is not interesting (only sequence that are eventually
constant converge). In the previous section we have laid the foundations to endow
the space with the weakest topology that makes those function continuous. This is
the context of weak topologies over topological vector spaces.

Weak and original topologies

Definition 3.25 Let (X ,t) be a topological vector space whose dual X ∗ (the
vector space of continuous linear functionals) separates points. The X ∗-topology
on X is called the weak topology (it is the weakest topology with respect every
t-continuous linear functional is continuous).

We denote the weak topology by tw (the space itself is often denoted by Xw).

Corollary 3.56 Xw is locally convex and X ∗
w =X ∗.

Proof. This is in fact what Theorem 3.55 states. �
Another corollary is:
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Corollary 3.57 (Xw)w =Xw.

Note that since every f ∈X ∗ is t continuous and since tw is the weakest topology
with this property, it follows that

tw ⊂ t,

justifying the name of weak topology.

The next proposition shows that weak convergence is consistent with what we know:

Proposition 3.58 A sequence xn in a topological vector space (X ,t) weakly
converges to zero, xn⇀ 0, if and only if

∀ f ∈X ∗ f (xn)→ 0.

Proof. Weak convergence means that for every tw-neighborhood V of zero, the
sequence is eventually in V . Since every tw-neighborhood of zero contains a set of
the form {x � � f j(x)� < r j, j = 1, . . . ,n},
if follows that f (xn)→ 0 for all f ∈X ∗ guarantees weak convergence.

Conversely, if xn⇀ 0, then the sequence is eventually in every tw-neighborhood of
zero, and in particular, for all f ∈X ∗ and e > 0, the sequence is eventually in

V( f ,e) = {x � � f (x)� < e},
hence f (xn)→ 0. �

Corollary 3.59 — Strong convergence implies weak convergence. Every
t-convergent sequence is tw convergent.

Proof. If xn→ 0 then f (xn)→ 0 for all f ∈X ∗. �
Weak and original boundedness

Proposition 3.60 Let (X ,t) be a topological vector space. A set E ⊂X is
tw-bounded (weakly bounded) if and only if

∀ f ∈X ∗ f is a bounded functional on E.
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Proof. E is weakly bounded iff (by definition) for all tw-neighborhoods V of zero

E ⊂ tV

for sufficiently large t. This means that for every set of the form

{x ∈X � � f j(x)� < r j, j = 1, . . . ,n},
and for sufficiently large t:

E ⊂ {tx ∈X � � f j(x)� < r j, j = 1, . . . ,n} = {y ∈X � � f j(y)� < tr j, j = 1, . . . ,n},
which means that all those f j are bounded on E. �

Proposition 3.61 If (X ,t) is an infinite-dimensional topological vector space
then every tw-neighborhood of zero contains an infinite-dimensional subspace; in
particular (X ,tw) is not locally bounded.

Comment 3.15 Recall that a topological vector space is metrizable if and only if it
has a countable local base. Local boundedness implies the existence of a countable
local base. Not being locally bounded does not imply a lack of metrizability.

Proof. Consider elements of the base

V = {x ∈X � � f j(x)� < r j, j = 1, . . . ,n}.
Set as before

N = ker f1∩⋅ ⋅ ⋅∩ker fn.

The map
x� ( f1(x), . . . , fn(x))

is a map X →F n with null space N. Hence,

dimX ≤ n+dimN,

i.e., dimN =∞. Since N ⊂V it means that every element in the base contains an
infinite-dimensional subspace. �
Weak and original closedness

We next come to the concept of closure. If a set is tw-closed then it is clearly
t-closed. Let E be a set in a topological vector space (X ,t). Its t-closure E is
the intersection of all t-closed sets that contain it, whereas its tw-closure Ew is the
intersection of all tw-closed sets that contain it. Since there are more t-closed sets
than tw-closed sets,

E ⊂ Ew.
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Theorem 3.62 Let E be a convex subset of a locally convex topological vector
space (X ,t). Then,

E = Ew.

Proof. The proof of this theorem relies on a version of the Hahn-Banach separation
theorem: if A,B are convex disjoint non-empty sets in a locally convex topological
vector space, A is compact and B is closed, then there exists an f ∈X ∗ such that

sup{Re f (a) � a ∈ A} < inf{Re f (b) � b ∈ A}.
Let x0 �∈ E. It follows from the Hahn-Banach separation theorem that there exists an
f ∈X ∗ and a g ∈R such that

Re f (x0) < g <Re f (E).
The set

{x � Re f (x) < g}
is a weak neighborhood of x0 that does not intersect E, i.e.,

x �∈ Ew,

namely Ew ⊂ E. �
Comment 3.16 This last theorem states that if E is a convex set in a locally convex
topological vector space and there is a sequence xn ∈ E that weakly converges to x
(which is not necessarily in E), then there is also a sequence yn ∈ E that originally-
converges to x. We proved such a theorem for Hilbert spaces (using the Banach-Saks
theorem).

Corollary 3.63 For convex subsets of locally convex topological vector spaces:

¿ t-closed equals tw-closed.
¡ t-dense equals tw-dense.

Proof. It is always true that tw-closed implies t-closed. If E is a t-closed convex
subset of a locally convex set then Ew = E = E, i.e., it is also tw-closed. The second
part is then obvious. �
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3.12.3 The weak-* topology of the dual space

Let (X ,t) be a topological vector space. The dual space X ∗ does not come with
an a priori topology. In Banach spaces, the dual space has a natural operator norm,
and we proved that the dual space endowed with that norm is also a Banach space
(in fact, we proved that the dual of a normed space is a Banach space). But for
general topological vector spaces, we don’t have as for now a topology.

Recall the natural inclusion from X to linear functionals on X ∗,
i ∶ x→ Fx,

where for f ∈X ∗:
Fx( f ) = f (x).

The family of functionals {i(x) � x ∈X } (which we can’t call continuous because
there is no topology on X ∗) separates points on X ∗ as if

i(x)( f ) = i(x)(g)
for all x ∈X then ∀x ∈X f (x) = g(x),
i.e., f = g.

If follows from Theorem 3.55 that the i(X )-topology of X ∗ turns it into a locally
convex topological vector space whose dual space is i(X ). The i(X )-topology of
X ∗ is called the weak-* topology. Every linear functional on X ∗ that is weak-*
continuous is of the form i(x) for some x ∈X . The open sets in the weak star
topology (X ,t∗) are generated by the subbase:

V(x,r) = { f ∈X ∗ � � f (x)� < r}.
Weak-* convergence of a sequence ( fn) ⊂X ∗ to f ∈X ∗ means that

∀x ∈X lim
n→∞ fn(x) = f (x).

� Example 3.2 Recall that c∗0 = `1 and `∗1 = `∞. Weak convergence of a sequence(xn)k ⊂ `1 to zero (with `1 viewed as a topological vector space) means that

∀yk ∈ `∞ lim
n→∞

∞�
k=1
(xn)kyk = 0.

Weak-* convergence of a sequence (xn)k ∈ `1 to zero (with `1 viewed as the dual
space of the topological vector space c0) means that

∀yk ∈ c0 lim
n→∞

∞�
k=1
(xn)kyk = 0.

Clearly, weak convergence implies weak-* convergence (but not the opposite). In
reflexive spaces the two notions of convergence are identical. �
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The following central theorem states a compactness property of the weak-* topology.
It was proved in 1932 by Banach for separable spaces and in 1940 by Alaoglu in the
general case. (Leonidas Alaoglu (1914–1981) was a Greek mathematician.)

Theorem 3.64 — Banach-Alaoglu. Let (X ,t) be a topological vector space.
Let N0 ∋V ⊂X and let

K = { f ∈X ∗ � � f (x)� ≤ 1 for all x ∈V}.
Then K is weak-*-compact. (The set of functionals K is call the polar (%7&"8%
�;*")&8%) of the set of vectors V .)

Proof. Since V is absorbing (like any neighborhood of zero), every x ∈X has a
g(x) > 0 such that

x ∈ g(x)V.
Hence, for x ∈X and f ∈K:

� f (x)� = g(x)� f (x�g(x))� ≤ g(x),
where we used the definition of K.

Let
Dx = {a ∈F � �a � ≤ g(x)},

and let
P = �

x∈X
Dx

with the product topology tP (the weakest topology with respect to which the
projections px ∶ P→Dx are continuous). Each Dx is compact, and by Tychonoff’s
theorem (which relies on the axiom of choice), P is compact. Every element in P
can be identified with a function f ∶X →F (not necessarily linear) satisfying

� f (x)� ≤ g(x).
If follows that every f ∈K belongs to P, namely,

K ⊂X ∗∩P.

The set K can therefore be assigned two topologies: the weak-* topology t∗ induced
from X ∗ and the product topology tP induced from P.

Lemma 3.65 t∗ and tP coincide on K.
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Proof. Fix f0 ∈K. Take x1, . . . ,xn ∈X . Take d > 0. Set

W1 = { f ∈X ∗ � � f (x j)− f0(x j)� < d , j = 1, . . . ,n},
and

W2 = { f ∈ P � � f (x j)− f0(x j)� < d , j = 1, . . . ,n}.
Sets of the form W1 and W2 are local bases for t∗ and tP. Since

W1∩K =W2∩K

the two topologies coincide on K. �

Lemma 3.66 K is a tP-closed subset of P.

Proof. Let f0 belong to the tP closure of K. We need to show that it belongs to K.
Choose x,y ∈X , scalars a,b and e > 0. Consider the tP neighborhood of f0,

{ f ∈ P � � f (x)− f0(x)� < e, � f (y)− f0(y)� < e, � f (ax+by)− f0(ax+by)� < e}.
By definition of the closure there is an element f ∈K that belongs to this set, i.e., it
is a linear functional satisfying

� f (x)− f0(x)� < e � f (y)− f0(y)� < e and �a f (x)+b f (y)− f0(ax+by)� < e.

It is easy to see that it follows that

� f0(ax+by)−a f0(x)−b f0(y)� < (1+ �a �+ �b �)e,
and since this holds for all e , it follows that f0 is linear.

Let x ∈V and consider the tP-neighborhood of f0:

{ f ∈ P � � f (x)− f0(x)� < e}.
This neighborhood intersects K, hence there exists an f ∈K such that

� f (x)� ≤ 1 and � f (x)− f0(x)� < e.

Since this holds for all e > 0, we conclude that � f0(x)�≤ 1 for all x ∈V , i.e., f0 ∈K. �
Back to the main theorem: Since P is compact and K is tP-closed, it is tP compact.
Since both topologies coincide on K, then K is t∗-compact. �
The Banach-Alaoglu theorem holds in a very general setting. The following theorem
holds in the case where the space is separable:
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Theorem 3.67 Let X be a separable topological vector space. Let K ⊂X ∗ be
weak-* compact. Then K endowed with the weak-* topology is metrizable.

Comment 3.17 The claim is not that X ∗ endowed with the weak-* topology is
metrizable. For example, this is not true in infinite-dimensional Banach spaces.

Proof. Take {xn � n ∈N}
a dense set in X and Fn = i(xn). By definition of the weak-* topology on X ∗, the
functional Fn are weak-* continuous. Also, if for every n,

Fn( f ) = Fn(g),
i.e.,

f (xn) = g(xn),
then f = g (continuous functionals that coincide on a dense set).

Thus, {Fn � n ∈ N} is a countable family of continuous functionals that separate
points in X ∗. It follows by Proposition 3.53 that K is metrizable. �

Corollary 3.68 Let V ∈N0 in a separable topological vector space X . Let
fn ∈X ∗ satisfy � fn(x)� ≤ 1 ∀n ∈N, x ∈V.

Then there exists an f ∈X ∗ and a subsequence fnk such that

lim
k→∞ fnk(x) = f (x)

for all x ∈X .

Proof. Compactness and sequential compactness are equivalent in metric spaces.�

3.13 The Krein-Milman theorem

The Krein–Milman theorem is a proposition about convex sets in topological vector
spaces. A particular case of this theorem, which can be easily visualized, states that
given a convex polygon, one only needs the corners of the polygon to recover the
polygon shape (the polygon is the convex hull of its vertices).
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Definition 3.26 Let V be a vector space and E ⊂ V . The convex hull (�9&/8) of
E, denoted Conv(E), is the intersection of all the convex sets that contains E
(equivalently, it is the set of convex combinations of elements in E).

Definition 3.27 Let V be a vector space and E ⊂ V . The closed convex hull of
E, denoted Conv(E) is the closure of the convex hull of E.

Definition 3.28 Let X be a topological vector space. A set E ⊂X is called
totally bounded (�-*-, .&2() if to every V ∈N0 corresponds a finite set F , such
that

E ⊂ F +V.

(Compare with the parallel notion in a metric space.)

Theorem 3.69

¿ Let A1, . . . ,An be compact convex sets in a topological vector space X .
Then

Conv(A1∪⋅ ⋅ ⋅∪An)
is compact.

¡ Let X be a locally convex topological vector space. If E ⊂X is totally
bounded then Conv(E) is totally bounded as well.

¬ If X is a Frechet space (i.e., locally convex, metrizable and complete) and
K ⊂X is compact then Conv(K) is compact.

√ If K ⊂Rn is compact then Conv(K) is compact.

Proof.

¿ Let S ⊂Rn be the simplex

S = {(s1, . . . ,sn) � s j ≥ 0, s1+ ⋅ ⋅ ⋅+ sn = 1}.
Set A = A1×⋅ ⋅ ⋅×An, and define the function f ∶ S×A→X :

f (s,a) = n�
k=1

skak.

Consider the set K = f (S,A). It is the continuous image of compact sets and
it is therefore compact. Moreover,

K ⊃Conv(A1∪⋅ ⋅ ⋅∪An).



236 Topological vector spaces

It is easy to show that K is convex, and since it includes all the Ak’s it must in
fact be equal to Conv(A1∪⋅ ⋅ ⋅∪An).

¡ Let U ∈N0. Because X is locally convex there exists a convex neighborhood
V such that

V +V ⊂U.

Since E is totally bounded there exists a finite set F such that

E ⊂ F +V ⊂Conv(F)+V.

Since the right hand side is convex

Conv(E) ⊂Conv(F)+V.

By the first item Conv(F) is compact, therefore there exists a finite set F ′
such that

Conv(F) = F ′+V,

i.e.,
Conv(E) ⊂ F ′+V +V ⊂ F ′+U,

which proves that Conv(E) is totally bounded.
¬ In every metric space the closure of a totally bounded set is totally bounded,

and if the space is complete it is compact. Since K is compact, then it is
totally bounded. By the previous item Conv(K) is totally bounded and hence
its closure is compact.

√ Let S ⊂Rn+1 be the convex simplex. One can show that Conv(K) is the image
of the continuous map S×Kn+1:

(s,x1, . . . ,xn)� n+1�
k=1

skxk,

whose domain is compact.

�

Definition 3.29 Let V be a vector space and K ⊂ V . A non-empty set S ⊂K is
called an extreme set (�0&7*8 ;7&"8) for K if no point of S is an internal point of
a segment whose endpoints are in K, except if both points are in S. I.e.

x,y ∈K, t ∈ (0,1), tx+(1− t)y ∈ S implies x,y ∈ S.

Extreme points ( �0&7*8 ;&$&81) are extreme sets that consist of one point. The set
of all extreme points of K is denoted by Ext(K).
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Comment 3.18 Note that extreme sets and extreme points are a pure vector space
concept.

Comment 3.19 Every set is an extreme set of itself.

� Example 3.3 The extreme points of a convex polygon are its vertices. The
extreme points of a circle are the entire circle. �

Theorem 3.70 — Krein-Milman, 1940. Let X be a topological vector space in
which X ∗ separates between points. If K ⊂X is a nonempty compact convex
set, then

K =Conv(Ext(K)).
I..e, K is the closed convex hull of its extreme points.

Comment 3.20 David Milman (1912–1982) was a Soviet and then an Israeli
Mathematician. He is the father of Vitali Milman, a mathematician at Tel-Aviv
University, and grandfather of Emanuel Milman, a mathematician at the Technion.

Comment 3.21 Locally convex topological vector spaces have the property that
X ∗ separates points.

Proof. Let
P = {compact extreme subsets of K}.

This set is not empty because K ∈P .

P is closed under non-empty intersections: For every P ′ ⊂P and non-empty

S = �
A∈P′A

we have S ∈P . This is because

tx+(1− t)y ∈ S,

where x,y ∈ K and t ∈ (0,1) implies that x,y ∈ A for every A ∈P ′, i.e., x,y ∈ S. I.e.,
every non-empty intersection of compact extreme sets of K is a compact extreme set
of K.

Let S ∈P and f ∈X ∗. Define

S f = {x ∈ S � Re f (x) = µ},
where

µ =max
x∈S Re f (x).

Since S is compact, S f is non-empty; in fact, it is compact. Suppose

z = tx+(1− t)y ∈ S f .
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Because S f ⊂ S, and the latter is an extreme set, x,y ∈ S. By linearity of f :

µ =Re f (z) = t Re f (x)+(1− t)Re f (y) ≤ µ.

It follows that Re f (x) =Re f (y) = µ , i.e., x,y ∈ S f , which implies that S f ∈P .

Choose again S ∈P . Let

PS = {A ∈P � A ⊆ S}.
PS is non-empty (it contains S) and it can be partially ordered by reverse set
inclusion. Take any maximal chain W ⊂PS, and let

M = �
A∈WA.

This intersection has the finite intersection property hence its it is not empty. We
know that M ∈PS. By the maximality of W, there is no proper subspace of M that
belongs to PS.

Let f ∈X ∗. Since Mf ⊂M and Mf is non-empty we conclude that M =Mf , i,e, Re f
is constant on M. Multiply by ı and we conclude that f is constant on M. Since X ∗
separates point, it follows that M is a singleton, i.e., an extreme point. Thus, for
every compact extreme set S of K,

S∩Ext(K) ≠�.
Since K is convex

Conv(Ext(K)) ⊂K.

Since it is also compact,
Conv(Ext(K)) ⊂K.

We need to show that this is in fact an equality.

Suppose, by contradiction that

x ∈K and x �∈Conv(Ext(K)).
Consider the disjoint, compact and convex sets:

{x} and Conv(Ext(K)).
By a version of the Hahn-Banach theorem there exists an f ∈X ∗ such that

sup
y∈Conv(Ext(K))

Re f (y) <Re f (x).
Consider Kf ∈P . We have that

Conv(Ext(K))∩Kf =�,
which contradicts the fact that Kf must contain an extreme point. �


