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ABSTRACT

We study a geometric problem that originates from theories of nonlin-

ear elasticity: given a non-flat n-dimensional Riemannian manifold with

boundary, homeomorphic to a bounded subset of R
n, what is the mini-

mum amount of deformation required in order to immerse it in a Euclidean

space of the same dimension? The amount of deformation, which in the

physical context is an elastic energy, is quantified by an average over a lo-

cal metric discrepancy. We derive an explicit lower bound for this energy

for the case where the scalar curvature of the manifold is non-negative.

For n = 2 we generalize the result for surfaces of arbitrary curvature.

1. Introduction

Let (M, ḡ) be an n-dimensional smooth, oriented, simply connected Riemann-

ian manifold, homeomorphic to a bounded subset of R
n. Let F be the set

of orientation-preserving immersions f : (M, ḡ) → (En, e), where (En, e) is a
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Euclidean space (for the moment let us consider smooth immersions). The

topology of the manifold implies that F is not empty. Every mapping f ∈ F

induces on M a pullback metric, commonly denoted by g = f∗e, and defined by

(1.1) g(u, v) = 〈df(u), df(v)〉e, u, v ∈ TM,

where df : TM → TEn is the differential of f . As is well-known, there exists

an isometric orientation-preserving immersion f ∈ F, namely, an immersion for

which g = ḡ, if and only if the manifold (M, ḡ) is flat, i.e., has a vanishing

Riemann curvature tensor (simple-connectedness is needed for the “if” part; a

torus, for example, is flat but cannot be immersed isometrically into E
2). See,

e.g., Ciarlet [2], p. 26 for a proof of the n = 3 case.

A natural question is how “close” is the manifold (M, ḡ) to being flat. Such

a quantification relies on a choice of a distance between the Riemannian metric

ḡ and the set of induced metrics f∗e. To this end we define a “mismatch”

function, E : F → [0,∞), and quantify the extent by which (M, ḡ) fails to be

isometrically immersible into (En, e) by

(1.2) E0 = inf{E[f ] : f ∈ F}.
Problems of such type arise in the theory of elasticity, and notably in the-

ories of so-called “incompatible elasticity”, where the metric ḡ represents the

local equilibrium state of an elastic material (the rest distance between “neigh-

boring” material elements), whereas the set F corresponds to the set of all

actual configurations that the material can assume (Wang [12] and Kröner [7]

are classical expository references for incompatible elasticity in the context of

defects in materials; see also Efrati et al. [3] and Yavari [13] for more recent

applications). The mismatch function E is interpreted as an elastic energy,

and the equilibrium state of the material is postulated to correspond to the

orientation-preserving immersion that minimizes this elastic energy.

Elastic materials are said to be hyper-elastic (Truesdell [11]) if the elastic

energy associated with the configuration f can be represented as a volume

integral of the form

E[f ] =

∫
M

W (f(x), df(x), x) volḡ(x),

where W is an energy density function and volḡ is the volume form of (M, ḡ).

In the absence of external forces or external constraints, there is no explicit

dependence of the energy density on f , hence W =W (df(x), x).
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The energy density W is commonly subject to the following requirements:

1. It is non-negative, i.e., W (df(x), x) ≥ 0 for all f ∈ F and x ∈ M.

2. It satisfies W (df(x), x) = 0 if and only if f∗e(x) = ḡ(x).

3. It is invariant under rotations, namelyW (df(x), x) =W (Qdf(x), x) for

all f ∈ F and Q ∈ SO(n) (a condition known as “frame invariance”).

4. It is coercive in the sense that

(1.3) W (df(x), x) ≥ c |f∗e(x) − ḡ(x)|2ḡ,

for some constant c > 0, where | · |ḡ is the norm on tensors, T ∗M⊗T ∗M,

induced by the inner product ḡ.

The frame invariance condition is automatically fulfilled if the energy density

is represented as a function of g(x) rather than as a function of df(x). There is,

however, one caveat: the metric g is invariant under reflections of f , i.e., under

improper rotations, hence the energy density remains explicitly dependent on df

through the requirement that it preserves orientation. From the point of view

of the mathematical modeling there are two alternatives: the first is, as above,

to restrict from the outset the configurations f to orientation-preserving im-

mersions, in which case the energy density can be represented as W =W (g, x),

with g = f∗e, which, in particular, vanishes if and only if g(x) = ḡ(x) (see,

e.g., [3]). The second alternative, which, due to numerous technical reasons,

is somewhat more popular, is to relax the restriction that f be an immersion,

and define an energy density W = W (df(x), x), which is only invariant un-

der proper rotations, and, in particular, does not vanish if g(x) = ḡ(x) but df

reverses orientation (see e.g., Friesecke et al. [6] and Lewicka and Pakzad [9]).

The second alternative can be implemented, for example, as follows: There

exists a (non-unique) smooth orientation-preserving bundle map q̄ : TM → TEn

(i.e., π ◦ q̄ = f ◦ π, where π denote the projections TM → M and TEn → E
n),

such that ḡ = (q̄∗ ⊗ q̄∗)e, or explicitly,

(1.4) ḡ(u, v) = 〈q̄(u), q̄(v)〉e, u, v ∈ TM.

The tensor q̄ is a “square root” (with respect to the Euclidean inner product)

of the metric ḡ, in the same sense as df is a “square root” of the metric g.

The condition that W (df(x), x) be zero if and only if g(x) = ḡ(x) and df be

orientation-preserving can now be restated as follows: W (df(x), x) vanishes
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if and only if there exists a proper rotation Q ∈ SO(n), such that df(x) =

Qq̄(x). In this framework, the coercivity condition (1.3) is replaced by a similar

condition,

(1.5) W (df(x), x) ≥ c1Wquad(df(x), x),

for some constant c1 > 0, where

(1.6) Wquad(df(x), x) = min
Q∈SO(n)

|df(x)−Qq̄(x)|2ḡ,e,

and | · |ḡ,e is the norm on bundle maps TM → TEn induced by both inner

products ḡ and e. A minimizer for the right hand side of (1.6) exists since

SO(n) is a compact group. The quadratic energy density (1.6) was defined in

[9]; it is the square distance of df(x) from the set of “square roots” of ḡ(x).

The determination of E0, given by (1.2), along with a minimizing state (if

such exists) is in general a hard problem, even computationally. A subsidiary

problem is the determination of a lower bound for the elastic energy in terms

of the geometric properties of the manifold (M, ḡ). This task relates back to

our original statement of the problem: finding a quantitative measure for the

lack of isometric immersibility in terms of the non-flatness (i.e., the curvature)

of the manifold.

In a recent work by Lewicka and Pakzad [9], it was proved that E0 is positive

whenever the Riemannian curvature tensor associated with ḡ does not vanish

almost everywhere. A quantitative lower energy bound was simultaneously

derived in [8] for the case of a two-dimensional manifold, n = 2. The energy

density in [8] was taken to be

W (df(x), x) = |f∗e(x) − ḡ(x)|2ḡ,

with f explicitly restricted to orientation-preserving immersions. Using tech-

niques that are specific to two-dimensions (properties of Riemann surfaces and

complex analysis), it was proved that E0 can be bounded from below by a term

which is essentially proportional to the square of the surface integral of the

Gaussian curvature, provided that this integral is non-negative. No counterpart

was found if this integral is strictly negative, and, in particular, if the surface

is hyperbolic.

In this paper we extend the above analysis for arbitrary dimension, n ≥ 2.

The result is a generalization of [8]: E0 can be bounded from below by a quantity
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which is monotonically increasing with the volume integral of the scalar curva-

ture of the manifold, provided that the latter is non-negative (Theorem 4.1).

We further generalize this result for two-dimensional manifolds with arbitrary

Gaussian curvature. Deriving a similar result for hyperbolic n-dimensional man-

ifolds, n > 2, remains an open problem. The role of the sign of the scalar

curvature will be addressed in the Discussion section.

2. Notations and problem restatement

We start by introducing our notations and terminology. As common, we formu-

late everything in intrinsic suffix-free notation, recurring as needed to a suffix

notation for the ease of calculations.

(M, ḡ) is a smooth, oriented, simply-connected n-dimensional Riemannian

manifold, which is homeomorphic to a bounded subset of Rn. As standard, we

denote by TM and T ∗M the tangent and cotangent bundles of M. The linear

spaces of tensor fields, i.e., of sections of the tensor bundles

T r
sM = TM⊗r ⊗ T ∗M⊗s

are denoted by Tr
s(M) = ΓM(T r

sM). Likewise, we denote the spaces of differen-

tial forms by Ek(M) = ΓM(Λk(T
∗M)).

We denote the Riemannian inner-product by

〈u, v〉ḡ, u, v ∈ TM.

The corresponding norm is

|v|ḡ = 〈v, v〉1/2ḡ , v ∈ TM.

The metric ḡ induces a so-called index lowering operator � : TM → T ∗M, which

sends a vector field into a one-form via

v 
→ �v = 〈v, ·〉ḡ.
The index raising operator # : T ∗M → TM is the inverse of �. The metric ḡ

induces inner products on tensor products of TM and T ∗M of all ranks and

variance, as well as on differential forms.

Recall that every linear mapping � : TM → TM can be identified as a ten-

sor field in T 1
1M. The trace, or contraction of � is defined by its action on

decomposable tensors,

tr : u∗ ⊗ v 
→ u∗(v).
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More generally, a contraction maps T r
sM into T r−1

s−1M. For tensors � ∈ T 0
2M we

define

trḡ � = tr(#�).

We denote by ∇ the Riemannian connection associated with the metric ḡ.

The Riemann curvature tensor is a tensor field

Rḡ ∈ T1
3(M) � Hom(TM⊗3, TM),

defined by

Rḡ(u, v, w) = ∇v∇uw −∇u∇vw −∇[u,v]w.

The Ricci curvature tensor is a tensor field Ricḡ ∈ T0
2(M), defined by

Ricḡ(u, v) = trace of the endomorphism w 
→ Rḡ(w, u, v).

Finally, the scalar curvature is the metric trace of the Ricci tensor, namely,

sḡ = trḡRicḡ.

The Hodge-star operator is a linear mapping �ḡ : Ek(M) → En−k(M) defined

by the relation

λ ∧ ω = 〈�ḡλ, ω〉ḡ volḡ, λ, ω ∈: Ek(M).

The co-derivative is defined by

δ = (−1)nk+n+1�ḡd�ḡ,

where d is the exterior derivative and k is the rank of the form on which the

co-derivative operates. The deRham–Laplace operator is

ΔdR = (d+ δ)2 = dδ + δd,

where we used the fact that d2 = δ2 = 0. For scalar functions, i.e., zero-forms,

f ,

(2.1) ΔdRf = δdf = −�ḡd�ḡdf.
A scalar function is said to be harmonic if ΔdRw = 0. For scalar functions, the

deRham–Laplace operator coincides with the Bochner Laplacian, also known as

the Laplace–Beltrami operator,

ΔB = ∇∗∇,
or in suffix notation, ΔB = ḡij∇i∇j . For higher rank k-forms ΔdR and ΔB are

related by the Weitzenböck identity (e.g., Petersen [10], p. 181).
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Let f : (M, ḡ) → (En, e) be a differentiable mapping. The induced pullback

metric g = f∗e is defined by

g(·, ·) = 〈df(·), df(·)〉e.
As stated in the Introduction, every metric ḡ has a (non-unique) smooth

orientation-preserving square-root, which is a bundle map, q̄ : TM → TEn,

satisfying ḡ = (q̄⊗ q̄)∗e, or more explicitly,

〈q̄(·), q̄(·)〉e = 〈·, ·〉ḡ.
The inverse relation is

〈q̄∗(·), q̄∗(·)〉ḡ = 〈·, ·〉e.
For bundle maps S, T : TM → TEn, we define the inner product

(2.2) 〈S, T 〉ḡ,e = trḡ〈S(·), T (·)〉e = tre〈S∗(·), T ∗(·)〉ḡ,
along with the corresponding norm | · |ḡ,e. Note that |q̄|ḡ,e =

√
n as seen using

suffix notation,

〈q̄, q̄〉ḡ,e = ḡijeαβ q̄
α
i q̄

β
j = ḡij ḡij = n.

A proper rotation Q ∈ SO(n) is a linear operator, Q ∈ Hom(TEn, TEn), that

is orthogonal, namely,

〈Q(·), Q(·)〉e = 〈·, ·〉e,
and satisfies detQ = 1. The quadratic energy density Wquad was defined by

(2.3) Wquad(df, x) = min
Q∈SO(n)

|df −Qq̄|2ḡ,e.

We now turn to characterize the tensor Qq̄ that minimizes the above expres-

sion:

Proposition 2.1: Let f be twice differentiable, and let q̄ be the square root

of ḡ that minimizes (2.3). Then for every vector field v,

〈df,∇v q̄〉ḡ,e = 0 and 〈df,ΔBq̄〉ḡ,e ≤ 0.

Proof. Let v be an arbitrary vector field. Consider a “virtual” evolution equa-

tion for a one-parameter family of bundle maps p̄t : TM → TEn,

d

dt
p̄t = ∇v p̄t, p̄0 = q̄.

We show that p̄t remains a square root of ḡ for all t, namely, p̄t ∈ SO(n), or

〈p̄t(·), p̄t(·)〉e = 〈·, ·〉ḡ.
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This is true because

d

dt
〈p̄t(·), p̄t(·)〉e = 〈∇v p̄t(·), p̄t(·)〉e + 〈p̄t(·),∇v p̄t(·)〉e = ∇v〈p̄t(·), p̄t(·)〉e.

Set then At = ∇v〈p̄t(·), p̄t(·)〉e. It follows that
dAt

dt
= ∇vAt, A0 = 0,

whose unique solution is At = 0, i.e., 〈p̄t(·), p̄t(·)〉e is time-invariant.

By the defining property of q̄ as a minimizer it follows that

d

dt
〈df, p̄t〉ḡ,e

∣∣∣∣
t=0

= 0 and
d2

dt2
〈df, p̄t〉ḡ,e

∣∣∣∣
t=0

≤ 0,

i.e.,

〈df,∇v q̄〉ḡ,e = 0 and 〈df,∇v∇v q̄〉ḡ,e ≤ 0.

This proves the first statement. The second statement follows from the fact

that at every point we may express ΔB as a linear combination

ΔB =
∑
i

ci∇vi∇vi ,

with ci > 0.

The elastic energy is given by

E[f ] =

∫
M

W (df, x) volḡ.

Our goal is to find a positive lower bound for E[f ] over all mappings f ∈ F.

The set of admissible functions is some subset of W 1,2(M, ḡ), depending on the

precise form of the energy density (note we we only impose coercivity conditions,

but no growth conditions). Since we aim for a lower bound, we may consider

any function space that is dense in W 1,2(M, ḡ), for example, smooth functions.

Without loss of generality (as we explain shortly), we make an additional

coercivity assumption, whereby there exists a positive constant c2, such that

(2.4) W (df, x) ≥ c2|(�ḡ − �g)df |2ḡ,e,
where �g is the Hodge-star operator with respect to the induced metric g = f∗e.
We make this assumption to simplify some of the derivations in the next section;

however, such coercivity condition can be obviated as follows (see [9]): using

an approximation theorem [5, 6] one can show that there exists a constant

M > 0 (that depends on the metric of the manifold but not on its deriva-

tives), such that every function f ∈ W 1,2(M, ḡ) can be approximated by a
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function f̄ ∈ W 1,∞(M, ḡ), with ‖df̄‖∞ < M and E[f̄ ] ≤ 10E[f ]. This implies

that the analysis can be limited to mappings f that are uniformly bounded in

W 1,∞(M, ḡ), in which case it is easy to see that there exists a constant c2 (which

depends on M) such that (2.4) holds. In any case, condition (2.4) is plausible

in any realistic elastic model.

Our derivation of a lower energy bound is based on the following steps: (i) Us-

ing harmonic analysis, we show that the analysis can be restricted to bounding

from below the quadratic energy

(2.5) Equad[f ] =

∫
M

Wquad(df, x) volḡ,

over the set of harmonic maps f : M → E
n. (ii) For the case where the

scalar curvature is non-negative, we derive a lower bound for Equad[f ], with f

harmonic.

3. Harmonic analysis

A mapping u : (M, ḡ) → (N, h) between two Riemannian manifolds is said to

be harmonic if it is a critical point of the Dirichlet functional,∫
M

|du|2ḡ,h volḡ.

When the target space is Euclidean, and we endow (En, e) with the canonical

parametrization, xα, α = 1, . . . , n, then harmonicity amounts to the component-

wise conditions ΔBf
α = ΔdRf

α = 0.

When f : (M, ḡ) → (En, e) is an isometry, namely, f∗e = ḡ, then f is har-

monic. This follows from the pullback property,

�f∗edf
α = �f∗e(f

∗ dxα) = f∗(�edxα),

which implies that

(3.1) d �f∗e df
α = f∗(d �e dxα) = 0,

the latter being a consequence of the vanishing of d �e dx
α. In elastic contexts,

this identity is known as the vanishing of the divergence of the cofactor matrix

of df . Thus, when ḡ = f∗e,

ΔdRf
α = −�ḡd�ḡdfα = −�ḡd �f∗e df

α = 0.
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In this section, we prove that a lower bound for E[f ] can be derived by

restricting f to the set of harmonic maps, by showing that when the elastic

energy is small, then f is close in L2 to being harmonic. This analysis parallels

that in [9], however within a more general context.

Given fα : M → R
n, we decompose it as

fα = wα + zα,

where ΔBw
α = 0 and wα = fα on ∂M. Such a decomposition is uniquely de-

fined due to the well-posedness of the Laplace–Beltrami equation with Dirichlet

boundary conditions.

The coercivity condition (1.5) implies that

E[f ] ≥ c1

∫
M

|df − q̄|2ḡ,e volḡ.

Thus,

E[f ] ≥ c1

∫
M

|dw − q̄ + dz|2ḡ,e volḡ

≥ c1
2

∫
M

|dw − q̄|2ḡ,e volḡ − c1

∫
M

|dz|2ḡ,e volḡ

≥ c1
2
Equad[w]− c1

∫
M

|dz|2ḡ,e volḡ,

(3.2)

where in the passage from the first to the second line we used the inequality

|a+ b|2 ≥ 1
2a

2− b2, and in the passage from the second to the third line we used

the fact that

Wquad(dw, x) ≤ |dw − q̄|2ḡ,e.

We proceed to bound from above the L2-norm of dz. For that, we use the

fact that (2.1) and (3.1) imply

(3.3) ΔdRf = �ḡd(�g − �ḡ)df.
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Thus,∫
M

|dz|2ḡ,e volḡ =
∑
α

∫
M

〈dzα, dzα〉ḡ volḡ =
∑
α

∫
M

(�ḡdz
α) ∧ dzα

=
∑
α

∫
M

(�ḡΔdRz
α) zα

=
∑
α

∫
M

(�ḡΔdRf
α) zα

=
∑
α

∫
M

[�ḡ�ḡd(�g − �ḡ)df
α] zα

=
∑
α

∫
M

[�ḡδ(I − �ḡ
−1�g)df

α] zα

=
∑
α

∫
M

(�ḡ − �g)df
α ∧ dzα

≤
(∫

M

|dz|2ḡ,e volḡ
)1/2 (∫

M

|(�g − �ḡ)df |2ḡ,e volḡ
)1/2

,

namely, ∫
M

|dz|2ḡ,e volḡ ≤
∫
M

|(�g − �ḡ)df |2ḡ,e volḡ.
In the above, we used sequentially the integration by parts identity

(3.4)

∫
dω ∧ �η =

∫
ω ∧ �δη,

which is valid if the form ω vanishes on ∂M, along with the fact that �ḡ�ḡ =

(−1)k(n−k) for k-forms, the fact that ΔdRz = ΔdRf , eq. (3.3), once again (3.4),

and the Cauchy–Schwarz inequality. By the coercivity condition (2.4),∫
M

|dz|2ḡ,e volḡ ≤ 1

c2
E[f ],

which together with (3.2) yields

E[f ] ≥ c1c2
2(c1 + c2)

Equad[w].

This implies that we can focus henceforth our analysis on deriving a lower bound

for

(3.5) E0
quad = inf{Equad[w] : w : M → R

n, ΔBw
α = 0},

as E0 ≥ c1c2/2(c1 + c2)E
0
quad.
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4. A lower bound for E0
quad

Let χ be a smooth, non-negative, compactly supported test function, and con-

sider

I =

∫
M

〈dw − q̄, q̄〉ḡ,eΔBχ volḡ, ΔBw
α = 0.

Using the self-adjointness of the Laplace–Beltrami operator,

I =

∫
M

ΔB〈dw, q̄〉ḡ,eχ volḡ.

At this stage it is useful to write the Laplace–Beltrami operator in suffix

notation, ΔB = ∇k∇k. Using both assertions of Proposition 2.1,

I =

∫
M

∇k〈∇kdw, q̄〉ḡ,e χ volḡ

=

∫
M

〈ΔBdw, q̄〉ḡ,e χ volḡ +

∫
M

〈∇kdw,∇k q̄, 〉ḡ,eχ volḡ

=

∫
M

〈ΔBdw, q̄〉ḡ,e χ volḡ −
∫
M

〈dw,ΔBq̄, 〉ḡ,eχ volḡ

≥
∫
M

〈ΔBdw, q̄〉ḡ,e χ volḡ.

Note that in the last passage we explicitly used the fact that χ is non-negative.

We then observe that ΔBw
α = 0 implies that

ΔBdiw
α = ∇k∇idkw

α = (Ricḡ)
k
i dkw

α,

thus

I ≥
∑
α

∫
M

Ricḡ(dw
α, q̄α)χ volḡ

=
∑
α

∫
M

Ricḡ(dw
α − q̄α, q̄α)χ volḡ +

∫
M

sḡ χ volḡ,

where we used the fact that∑
α

Ricḡ(q̄
α, q̄α) = sḡ.

Rearranging terms,∫
M

〈dw − q̄,ΔBχ q̄− χRicḡq̄〉ḡ,e volḡ ≥
∫
M

sḡ χ volḡ.
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Applying the Cauchy–Schwarz inequality on the left-hand side,(∫
M

|dw − q̄|2ḡ,e volḡ
)1/2(∫

M

|ΔBχ− χsḡ|2ḡ,e volḡ
)1/2

≥
∫
M

sḡ χ volḡ.

For positive scalar curvature we may square this inequality and obtain

(4.1) Equad[w] ≥
(∫

M
sḡ χ volḡ

)2∫
M

|ΔBχ− χsḡ|2ḡ,e volḡ
.

Thus, E0
quad is bounded from below by the right hand side of (4.1) for any

choice of test function χ, and therefore by the supremum over all choices of χ.

To summarize:

Theorem 4.1: Let W (df, x) satisfy the coercivity conditions (1.5) and (2.4).

Then,

E0 ≥ c1c2
2(c1 + c2)

(∫
M

sḡ χ volḡ
)2∫

M
|ΔBχ− χsḡ|2ḡ,e volḡ

for any non-negative test function χ : M → R, provided that the integral in the

numerator is positive.

5. The case n = 2

In this section we consider the case of n = 2, and generalize the result of the

previous section to surfaces of arbitrary Gaussian curvature. The notable differ-

ence between dimension n = 2 and higher dimensions is that in two dimensions

harmonicity is closely related to analyticity. Thus, harmonic functions in two

dimensions satisfy properties that are specific to the dimensionality, whence our

inability to generalize these results for n > 2.

Two-dimensional Riemannian manifolds are conformally flat, namely, there

exists a (non-unique) system of coordinates x = (x1, x2) for which the reference

metric has a representation

(5.1) ḡij(x) = e2λ(x)δij ,

where λ is the conformal factor of the metric ḡ with respect to a Euclidean

metric (such a system of coordinates is called isothermal [1]). We also endow

(E2, e) with the canonical parametrization; the mapping f : M → E
2 is then

represented by a mapping

f : Ω → R
2,
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where Ω is the domain of parametrization of the manifold M.

With respect to an isothermal parametrization, the inner-product of two vec-

tor fields ai, bi is given by

(5.2) 〈a, b〉ḡ = e2λ(a1b1 + a2b2),

where we use superscripts and subscripts to denote components. The inner-

product of one-forms ai, bi, is given by

〈a, b〉ḡ = e−2λ(a1b1 + a2b2),

and the Laplace–Beltrami operator is given by

ΔB = e−2λ

(
∂2

∂(x1)2
+

∂2

∂(x2)2

)
.

Finally, the Gaussian curvature of the manifold is related to the conformal

factor λ via Liouville’s formula,

K = −2ΔBλ.

Our starting point in bounding E0
quad from below is the identity,

Equad[f ] =

∫
M

|df − q̄|2ḡ,e volḡ =

∫
M

(|df |2ḡ,e − 2〈df, q̄〉ḡ,e + n
)
volḡ

=

∫
M

[
n

(
1

n
〈df, q̄〉ḡ,e − 1

)2

+

(
|df |2ḡ,e −

1

n
〈df, q̄〉2ḡ,e

)]
volḡ.

By the Cauchy–Schwarz inequality and the fact that |q̄|2ḡ,e = n, the second term

is non-negative, hence

Equad[f ] ≥ n

∫
M

(
1

n
〈df, q̄〉ḡ,e − 1

)2

volḡ.

The next step is to show a property that is specific to two-dimensional sur-

faces.

Proposition 5.1: Let f : (M, ḡ) → (E2, e) be harmonic. Then

ΔB log〈df, q̄〉ḡ,e = 1

2
K,

where K is the Gaussian curvature of the manifold.

Thus we can lower bound E0
quad by the infimum of

E[ω] = 2

∫
M

(eω − 1)2 volḡ,
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over all real-valued functions that belong to the set,

FK = {ω : M → R : ΔBω = 1
2K},

namely,

(5.3) E0
quad ≥ E0 = inf{E[ω] : ω ∈ FK}.

The final step is to obtain a lower bound for E0.

Proof of Proposition 5.1. The square roots q̄ of ḡ that have positive orientation

are represented by the set of matrices,

q̄ = eλQ, Q ∈ SO(2),

that is, are parametrized by a single parameter θ ∈ [0, 2π). It takes a short

calculation to show that the quadratic energy density Wquad(df, x) is given by

|df − q̄|2 = min
θ∈[0,2π)

e−2λ
[
(∂1f

1 − eλ cos θ)2 + (∂2f1 − eλ sin θ)2

+ (∂1f
2 + eλ sin θ)2 + (∂2f

2 − eλ cos θ)2
]
.

Straightforward algebra yields

cos θ =
∂1f

1 + ∂2f
2

[(∂1f1 + ∂2f2)2 + (∂1f2 − ∂2f1)2]1/2
,

sin θ =
∂2f

1 − ∂1f
2

[(∂1f1 + ∂2f2)2 + (∂2f1 − ∂1f2)2]1/2
.

Thus,

〈df, q̄〉ḡ,e = e−λ
[
(∂1f

1 + ∂2f
2) cos θ + (∂2f

1 − ∂1f
2) sin θ

]
= e−λ(a2 + b2)1/2,

where

a = ∂1f
1 + ∂2f

2 and b = ∂1f
2 − ∂2f

1.

It is easy to verify that the harmonicity of f implies that the function a+ ib

is analytic. Recall that the modulus of any analytic function is log-harmonic,

namely, ΔB log(a2 + b2)1/2 = 0. Thus,

ΔB log〈df, q̄〉ḡ,e = −ΔBλ+ΔB log(a2 + b2)1/2 =
1

2
K.



150 R. KUPFERMAN AND Y. SHAMAI Isr. J. Math.

Lower bound for E0
. The lower bound E0 of the functional

E[ω] = 2

∫
M

(eω − 1)2 volḡ

over functions ω ∈ FK is a measure of the non-flatness of the manifold (M, ḡ).

Indeed, E[ω] is zero if and only if ω = 0 a.e., which is only possible if the

manifold is flat. Suppose it were known that functions ω ∈ FK are uniformly

bounded from below on some sub-manifold M′ ⊂ M. In such case, there would

exist a constant c > 0 such that

(eω − 1)2 ≥ cω2, ∀x ∈ M′.

We would then consider the functional

Ê[ω] = 2

∫
M′
ω2 volḡ, ω ∈ FK .

Let φ : M′ → R be a test function with support in a compact subset of M′,
and such that the product φK is non-negative in M′. Then,∫

M′
ωΔBφ volḡ =

∫
M′

ΔBω φ volḡ =
1

2

∫
M′
K φ volḡ.

By the Cauchy–Schwarz inequality, as the right-hand side is non-negative,

1

2

∫
M′

|K φ| volḡ ≤
(∫

M′
ω2 volḡ

)1/2(∫
M′

(ΔBφ)
2 volḡ

)1/2

,

i.e.,

(5.4) Ê[ω] ≥ 1

2

(∫
M′ K φ volḡ

)2∫
M′(ΔBφ)2 volḡ

,

the right-hand side being a uniform bound on Ê[ω]. (Note that the lower bound

(5.4) holds for curvatures with arbitrary sign.)

The test function φ was chosen such that the sign of (ΔBω)φ is everywhere

non-negative, for every ω ∈ FK . In general, there is no test function φ such that

(ΔBe
ω)φ has a fixed sign, unless K is non-negative. The “quadratic” functional

Ê is used as an auxiliary functional to circumvent this difficulty.

We proceed as follows: We show that for every ε > 0 there exists a sub-

manifold M′ (which varies with ε) and a constant cε, such that

E[ω] ≤ ε implies that ω ≥ cε, ∀x ∈ M′,
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in which case (eω − 1)2 ≥ e2cεω2, and

E[ω] ≥ e2cεÊ[ω] ≥ e2cε

2

(∫
M′ |K φ| volḡ

)2∫
M′(ΔBφ)2 volḡ

,

which further implies that for every ε > 0,

(5.5) E0 ≥ min

(
ε,
e2cε

2

(∫
M′ |K φ| volḡ

)2∫
M′(ΔBφ)2 volḡ

)
.

One can then maximize the right-hand side over all choices of ε > 0 and test

functions φ.

Thus, given ε > 0 it remains to choose the set M′ and uniformly bound ω

from below in M′ in terms of ε. In the rest of this section we will assume a given

isothermal parametrization with domain Ω and conformal factor λ. Denote by

Be(x, r) the open Euclidean ball of radius r > 0 centered at a point x ∈ Ω.

Given a function ω ∈ FK (which we now view as a function on Ω), we consider

the functional

(5.6) A[ω](x, r) = ω(x)−−
∫
Be(x,r)

ω(y) d�(y),

where d� denotes the Lebesgue measure, and −
∫

denotes an average with re-

spect to the domain of integration. The function A[w] quantifies the extent by

which ω fails to satisfy the mean-value property in Be(x, r) (with respect to the

parametrization-dependent Lebesgue measure).

Proposition 5.2: The functional A given by (5.6) is constant on FK , namely,

independent of ω. Furthermore, there exists a function ψx,r, independent of ω,

such that

(5.7) A[w](x, r) =

∫
Be(x,r)

Kψx,r volḡ.

Proof. Recall that the Gaussian curvature is given by K = −2ΔBλ, with

ΔB = e−2λ

(
∂2

∂u2
+

∂2

∂v2

)
,

hence the function ω+λ satisfies ΔB (ω + λ) = 0, i.e, is Harmonic with respect

to the Euclidean geometry. By the mean-value property,

A[ω](x, r) = −
∫
Be(x,r)

λ(y) d�(y)− λ(x)
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is, as claimed, independent of ω. The second part of the proof, which relates

the extent by which a function fails to satisfy the mean-value property to its

Laplacian, is classical, and can be found, for example, in Evans [4], p. 26.

Let r > 0, and let Ωr be a compact subset of Ω, with a Euclidean distance

dist(∂Ωr, ∂Ω) > r.

Proposition 5.3: Let y ∈ Ωr and let Be(x, r/2) ⊂ Be(y, r) ⊂ Ω. Then there

exist constants a(r), b(r), such that for every ω ∈ FK ,

(5.8) ω(y)− 1

4
ω(x) ≤ a(r)

√
E[ω] + b(r).

Proof. By the definition of A(y, r) and A(x, r/2), we have

ω(y)−A(y, r) =
1

πr2

∫
B(y,r)

ω d�,

ω(x)−A(x, r/2) =
4

πr2

∫
B(x,r/2)

ω d�.

Using the identity d� = e−2λvolḡ, the inequality t ≤ et − 1 and the Cauchy–

Schwarz inequality,

πr2 [ω(y)−A(y, r)] − πr2

4
[ω(x)−A(x, r/2)] =

∫
B(y,r)\B(x,r/2)

ω d�

=

∫
B(y,r)\B(x,r/2)

ωe−2λ volḡ

≤
∫
B(y,r)\B(x,r/2)

(eω− 1) e−2λ volḡ

≤
(∫

Be(y,r)

e−4λ volḡ

)1/2√
E(ω).

or

ω(y)− 1

4
ω(x) ≤ 1

πr2

(∫
Be(y,r)

e−4λ volḡ

)1/2√
E(ω) +

[
A(y, r) − 1

4
A(x, r/2)

]
,
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which implies (5.8) with a(r), b(r) given by

a(r) =max
y∈Ωr

1

πr2

(∫
Be(y,r)

e−4λ volḡ

)1/2

,

b(r) =max
x∈Ωr

∫
B(x,r)

K(z)ψx,r(z) volḡ(z)

− 1

4
min

x∈Ωr/2

∫
B(x,r/2)

K(z)ψx,r(z) volḡ(z).

(5.9)

Note that the constants a(r), b(r) are parametrization dependent. This is not

surprising as the above statement holds for every pair of points x, y that are

sufficiently close with respect to the Euclidean metric, which is parametrization

dependent.

Let Cr be defined by 1
Cr

= 2minx∈Ωr |Be(x, r)|.
Proposition 5.4: Let ω ∈ FK satisfy E(ω) ≤ ε, where Crε <

1
4 . Then for

every point x ∈ Ωr there exists a point y ∈ Be(x, r) at which

ω(y) ≥ −1

4
.

Proof. Suppose this were not the case. Then there exists a point x ∈ Ωr such

that

ω(y) < −1

4
∀y ∈ Be(x, r),

which implies that

ε ≥2

∫
M

(eω − 1)
2
volḡ > 2

∫
Be(x,r)

(
e−1/4 − 1

)2
volḡ

=2|Be(x, r)|
(
e−1/4 − 1

)2
.

Dividing both sides by 2|Be(x, r)| and taking square roots yields

1− e−1/4 <

√
ε

2|Be(x, r)| ≤
√
Crε <

1

2
,

which is a contradiction.

Given a point x ∈ Ω3r/2, then (5.8) holds for every y ∈ B(x, r/2). Applying

Proposition 5.3, we obtain the following result:
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Corollary 5.1: Let ω ∈ FK satisfy E(ω) ≤ ε, and suppose that Crε <
1
4 .

Then

(5.10) ω(x) ≥ −4a(r)
√
ε− 4b(r)− 1

for every x ∈ Ω3r/2, and a(r), b(r) are given by (5.9).

We have thus reached the goal of uniformly bounding from below functions

in FK on some subset of M in terms of ε, given that E[ω] ≤ ε. Inequality

(5.10) holds for any choice of parametrization λ, provided that the Euclidean

distance of x from the boundary of M is greater than 3r/2. In principle, one

can maximize the right-hand side with respect to all choices of parametrizations

for which x belongs to Ω3r/2.

6. Discussion

We derived a lower bound on a measure of deformation associated with the im-

mersion of a non-flat n-dimensional Riemannian manifold in the n-dimensional

Euclidean space. This problem is motivated by issues that originate from the

theory of non-linear elasticity, but is of interest also as a purely geometric prob-

lem.

For dimensions larger than two, a positive lower bound for the deformation is

obtained only if the scalar curvature of the manifold is positive (more precisely,

if the scalar curvature is positive on a sub-domain of M). A positive scalar

curvature implies that the volume of a geodesic ball in (M, ḡ) is smaller that its

Euclidean counterpart. Thus, low deformation maps of (M, ḡ) into Euclidean

space are dominated by stretching, rather than contraction. The qualitative

difference between positive and negative scalar curvature in our problem is

due to the fact that the quadratic energy density Wquad is not symmetric with

respect to stretching and contraction; it diverges at large stretching, but remains

bounded for large contractions. Yet, it was proved in [9] that the energy has a

positive lower bound regardless of the sign of the curvature, hence the derivation

of an explicit lower bound in the general case remains an open issue.

For surfaces where the Gaussian curvature K associated with the metric ḡ

changes sign, we obtain a low energy bound as the test function φ has to change

sign accordingly, and as a result the numerical prefactor obtained in Section 5 is

small (it is inversely proportional to the norm of the Laplacian of φ). One may

wonder whether a more careful analysis could not yield a lower energy bound
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of the form

E0 ≥ C

∫
M′

|K| volḡ,
where the constant C is independent of the curvature. The following theorem

shows that changes in sign of the Gaussian curvature have an inevitable effect

on the energy bound:

Theorem 6.1: Let R > 0 be given. For every ε > 0 there exists a Riemannian

disc (M, ḡ) of radius R with Gaussian curvature satisfying |K| = 1, and a

configuration f : M → R
2 such that

Equad[f ] < ε.

In other words, we can generate discs that can be immersed in the plane at ar-

bitrarily small energetic cost, even though the Gaussian curvature is everywhere

non-small in absolute value.

Proof. Consider a disc with domain of parametrization

Ω = [0, R]× [0, 2π),

i.e., with polar coordinates (r, θ), and a metric that only depends on the radial

coordinate,

ḡ(r) =

(
1 0

0 φ2(r)

)
,

with φ(r) > 0 to be determined a posteriori. This two-dimensional Riemannian

manifold is a metric disc of radius R, with Gaussian curvature

K = −φ
′′

φ
.

The manifold is elliptic, with K = 1, for functions φ of the form

φ+(r) = A sin(r +B),

and hyperbolic, with K = −1, for functions φ of the form

φ−(r) = A sinh(r +B).

Take now the map f : Ω → R
2,

f(r, θ) = r (cos θ, sin θ).

An easy calculation gives

Wquad(r, θ) = (1− r/φ(r))2 .
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To obtain an arbitrarily small energy Equad[f ], we uniformly bound the en-

ergy density Wquad(r, θ). For that, we need φ to be uniformly close to the

identity map. It is possible to uniformly approximate the identity map by a

W 2,2 function defined piecewise, where each piece is either of the form φ+ or of

the form φ−. Thus, there exists a W 2,2(Ω) metric with |K| = 1 and a map f

such that Equad[f ] < ε.
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